
Model-based Fault Classification
for Automotive Software

Mike Becker1, Roland Meyer1, Tobias Runge1,2,
Ina Schaefer1,2, Sören van der Wall1, and Sebastian Wolff3(B)

1 TU Braunschweig, Germany,
{mike.becker,roland.meyer,s.van-der-wall}@tu-bs.de

2 KIT Karlsruhe, Germany, {tobias.runge,ina.schaefer}@kit.edu
3 New York University, USA, sebastian.wolff@nyu.edu

Abstract Intensive testing using model-based approaches is the stan-
dard way of demonstrating the correctness of automotive software. Un-
fortunately, state-of-the-art techniques leave a crucial and labor intensive
task to the test engineer: identifying bugs in failing tests. Our contribu-
tion is a model-based classification algorithm for failing tests that assists
the engineer when identifying bugs. It consists of three steps. (i) Fault
localization replays the test on the model to identify the moment when
the two diverge. (ii) Fault explanation then computes the reason for the
divergence. The reason is a subset of messages from the test that is suf-
ficient for divergence. (iii) Fault classification groups together tests that
fail for similar reasons. Our approach relies on machinery from formal
methods: (i) symbolic execution, (ii) Hoare logic and a new relationship
between the intermediary assertions constructed for a test, and (iii) a new
relationship among Hoare proofs. A crucial aspect in automotive software
are timing requirements, for which we develop appropriate Hoare logic
theory. We also briefly report on our prototype implementation for the
CAN bus Unified Diagnostic Services in an industrial project.

Keywords: Fault Explanation · Fault Classification · Hoare Proofs.

1 Introduction

Intensive testing is the de-facto standard way of demonstrating the correctness
of automotive software, and the more tests the higher the confidence we have in
a system [42]. Model-based approaches have been instrumental in pushing the
number of tests that can be evaluated, by increasing the degree of automation for
the testing process. Indeed, all of the following steps are fully automated today:
determining the test cases including the expected outcome, running them on
the system, and comparing the outcome to the expectation [45]. Yet, there is a
manual processing step left that, so far, has resisted automation. If the outcome
of the test and the expectation do not match, the bug has to be identified. This
is the moment the test engineer comes into play, and also the moment when
automation strikes back. The bug will not only show up in one, but rather in



2 M. Becker et al.

Test-1 A
[ 5ms] req CTR set 5
[ 2ms] ○ res CTR ack 5

[○ 14ms] ○ req CTR get
[○ 4ms] 
 res CTR ret 0

Test-2 A
[ 0ms] req CTR set 5
[ 5ms] ○ res CTR ack 5
[○ 12ms] req CTR log <data>
[○ 11ms] res CTR done
[○ 1ms] ○ req CTR get
[○ 3ms] 
 res CTR ret 0

Test-3 B
[ 4ms] req CTR set 5
[ 3ms] res CTR ack 5
[ 2ms] req CTR log <data>
[ 12ms] res CTR done
[○ 56ms] ○ req CTR get
[○ 4ms] 
 res CTR ret 5

Figure 1. Traces of an ECU CTR with operations set, get, and log. Faults are marked
with 
, relevant events with ○. Labels A and B indicate distinct causes for the faults.

a large number of test cases, and the engineer has to go through all of them to
make sure not to miss a mistake. This is the problem we address: assist the test
engineer when searching for bugs among a large number of failing tests.

Though our ideas may apply more broadly, we develop them in the context of
hardware-in-the-loop testing for embedded controllers (ECUs) in the automotive
industry [5]. The final ECU with its software is given to the test engineer as a
black box. During testing, the ECU interacts with a (partly simulated) physi-
cal environment. This interaction is driven by a test suite derived from a test
model. There are several characteristics that make hardware-in-the-loop testing
substantially different from the earlier steps in the continuous integration and
testing process (model/software/processor-in-the-loop testing). The first is the
importance of timing requirements [2]. Second, the ECU with its software is a
black-box. Indeed, in our setting it is provided by a supplier and the testing unit
does not have access to the development model. Third, there is a test model cap-
turing the product requirements document (PRD). It is a complex artifact that
specifies the intended system behavior at a fine level of detail, including logical
states, transitions, timing requirements, and message payloads. Indeed, “testing
automotive systems often requires test scenarios with a very precise sequence of
time-sensitive actions” [5]. As is good practice [5,42,45], the test model is differ-
ent from the development model (it is even developed by a different company).
Lastly, there are hundreds to thousands of tests, which is not surprising as it is
known that real-time requirements “are notoriously hard to test” [45].

Example 1. Figure 1 illustrates the task at hand (ignore the ○ marks for now).
The figure shows three traces derived from the Unified Diagnostic Services [25].
A trace is a recording of the requests and responses resulting from executing a
test case (pre-defined request sequence) on the ECU under test. Each line of the
trace contains one message, carrying: (i) a time stamp indicating the time since
the last message resp. the start, (ii) the type of message, req for requests and res
for responses, (iii) an ECU identifier, the recipient for requests and the sender
for responses, (iv) the name of an operation, e.g., set, and (v) optional payload.

In the first trace, the ECU with identifier CTR is requested to perform the set
operation with value 5. The ECU acknowledges that the operation was executed
successfully, repeating value 5. Subsequently, CTR receives a get request to which
it responds with (returns) value 0. The second trace additionally requests a log
operation between set and get. In the third trace, get returns 5 instead of 0.



Model-based Fault Classification for Automotive Software 3

The get responses in all traces are marked with 
 because they are faulty.
Our example PRD requires get to return the value of the latest set, unless more
than 50ms have passed since the latest (response to) set, in which case 0 has to
be returned. Assume the PRD does not specify any influence of log on set/get,
and vice versa. The first two traces expose the same fault, indicated by A :
the set appears to have been ignored. The last trace exposes a different fault,
indicated by B : CTR appears to have ignored that 50ms have passed. ⊓⊔

Our contribution is an algorithm that classifies failing test cases according to
their causes. The algorithm expects as input the same information that is avail-
able to the test engineer: the test model and the traces of the failing tests. It con-
sists of three steps: fault localization, fault explanation, and fault classification.
The fault localization can be understood as replaying a trace on the model to
identify the moment when the two diverge. In Example 1, this yields the 
 marks.
The fault explanation then computes the reason for the divergence. The reason
can be understood as a small set of messages in the trace that is sufficient for the
divergence. In the example, this set is marked with ○. Even when removing the
remaining messages, we would still have a bug. The fault classification groups to-
gether traces that are faulty for similar reasons. In the example, labels A and B .

Our approach relies on machinery from formal methods, following the slogan
in [5]: “more formal semantics are needed for test automation”. Behind the fault
localization is a symbolic execution [14,29]. The challenge here is to summa-
rize loops in which time passes but no visible events are issued. We solve the
problem with a widening approach from abstract interpretation [7]. Our fault
explanation [3,18,19,20,28,40,52] is based on Hoare logic [6,44]. The challenge
is to identify messages as irrelevant (for making the test fail), if they only let
time pass but their effect is dominated by earlier parts of the test. We achieve
this using a new relationship between the assertions in the Hoare proof that is
constructed for the test at hand. The fault classification [50,51] equates Hoare
proofs [38]. The challenge is again related to timing: the precise moments in
which messages arrive will be different from test to test. We propose a notion
of proof template that allows us to equate Hoare proofs only based on timing
constraints satisfied by the underlying tests. The precise timing does not matter.

We implemented the classification in a project with the automotive industry,
targeting the CAN bus Unified Diagnostic Services. The test model has all the
features mentioned above: real time, messages, and numerical payloads. It is de-
rived from a PRD with 350 pages of natural language and has 12k states and 70k
transitions. Our approach is practical: in 24 minutes we process test suites of up
to 1000 tests with an average of 40 and outliers of up to 2500 messages in length.

One may wonder why we classify tests at all. Since they are derived from a
test model, why not group them by the functionality they test or coverage they
achieve? The point is that functionality and coverage are only means of exposing
faults [50]. The faults are what matters for the test engineer, and the same fault
will show up in tests for different functions. Our experiments confirm this: we
discover previously undetected faults in tests that targeted functions different
from the failing one. We are particularly successful with faults involving timing,



4 M. Becker et al.

which are largely function independent and therefore admit a high degree of non-
determinism. Taking a step back, tests are designed by functionality or coverage,
because it is hard to anticipate or even formulate possible faults in advance [45,
47,50,51]. Our explanation step makes the notion of a fault precise, and allows
us to obtain the classification that the engineer needs for writing a test report.

Another question is whether we approach the problem from the wrong side.
There is a large body of work on test suite minimization [36,50]. So why classify
tests a posteriori when we could have executed fewer tests in the first place? The
answer is that test suite minimization techniques are known to reduce the fault
detection effectiveness, as demonstrated in the famous WHLM [48], WHMP [49],
and Siemens [41] studies. This is unacceptable in the automotive sector.

A companion technical report containing missing details is available as [4].

2 Formal Model

We introduce a class of automata enriched by memory and clocks to model PRDs.
A so-called PRD automaton is a tuple A = (Q ,→,S ,E ,V ,C ) with a finite set
of states Q , a finite transition relation → among states, initial states S ⊆ Q ,
a finite set of events E , a finite set of memory variables V , and a finite set of
clocks C . Variables and clocks are disjoint, V ∩C = ∅. Transitions take the form
p−−−−→e, g, up q with states p, q ∈ Q , event e ∈ E , guard g , and update up. Addition-
ally, there are transitions p−−−−−→∆, g, up q that react on time progression, denoted by
the special symbol ∆ /∈ E . Guards are Boolean formulas over (in)equalities of
memory variables, clocks, and constants. We assume a strict typing and forbid
(in)equalities among memory variables and clocks. Updates are partial functions
that may give new values to variables v , up(v) ∈ Z, or reset clocks c, up(c) = 0.
Lifting variable updates from values to terms (over variables) is straightforward.

The runtime behavior of PRD automata is defined in terms of labeled transi-
tions between configurations. A configuration of A is a tuple cf = (p, φ) consist-
ing of a state p ∈ Q and a total valuation φ : V → Z ∪ C → R≥0 of variables
and clocks. The configuration is initial if p ∈ S is initial (no constraints on φ).

Valuations φ are affected by the progression of time t and updates up. Pro-
gressing φ by t yields a new valuation φ+ t , coinciding with φ on all variables
v and advancing all clocks c by t, (φ+ t)(c) = φ(c) + t . To apply up to φ, we
introduce the transformer JupK. It yields a new valuation JupK(φ) = φ′ such that

φ′(v) = up(v) ̸= ⊥ ? up(v) : φ(v) and φ′(c) = up(c) ̸= ⊥ ? 0 : φ(c) .

PRD automata A process finite traces w = s1 . . . sn of events and time pro-
gressions, si ∈ E ∪ R≥0. Events are instantaneous and time progressions make
explicit the passing of time. A basic run (p1, φ1)−−→s1 · · · −−→sn (pn+1, φn+1) of A on
w is a sequence of steps where (p1, φ1) is initial. Steps (p, φ)−→e (q , φ′) for events
e ∈ E are due to transitions in A, so they satisfy the following two conditions:

(i) There is a transition p−−−−→e, g, up q such that g is enabled. Enabledness means
that φ is a model of g , written φ |=g .

(ii) The valuation φ′ is induced by the transformer for up, φ′ = JupK(φ).



Model-based Fault Classification for Automotive Software 5

p0

AE

p1

p3

p2

p0

∆

∆

∆

∆req CTR set <val>, true, ∅ res CTR ack <val>, true, {ctx 7→ <val>}

res CTR fail <val>, true, ∅

req CTR log <data>, true, ∅ res CTR done, true, ∅

req CTR get, true, ∅ res CTR ret <val>, ctx = <val>, ∅

p4

A∆

p5 p4

∆

clk < 55, ∅
∆

E ′

∆, 50 ≤ clk < 55, {ctx 7→ 0}

res CTR ack <val>, true, {clk 7→ 0}

∆, true, ∅

Figure 2. Model AE ×A∆ for the ECU CTR from Example 1. Automaton AE specifies
operations log, get, and set. Automaton A∆ specifies how variable ctx is reset. We
omit the guards true and updates ∅ on ∆-loops. We use E ′ ≜ E\{res CTR ack <val>}.

Similarly, steps (p, φ)−→t (q , φ′) taking time t ∈ R≥0 require:
(i) There is a ∆-transition p−−−−−→∆, g, up q enabled after waiting t time, φ+ t |= g .
(ii) Valuation φ′ is induced by clock progression plus up, φ′ = JupK(φ+ t).

Finally, there are stuttering steps (p, φ)−→0 (p, φ) which have no requirements.
Next, we lift basic runs to allow for multiple ∆-transitions during a single time

progression t in w . This is needed to support complex behavior while waiting,
as seen in Example 1. We rewrite w by splitting and merging time progressions.
More precisely, we rewrite w into w ′ along these equivalences:

w1.w2 ≡ w1.0.w2 and w1.t .w2 ≡ w1.t1.t2.w2 if t = t1 + t2 . (TEQ)

Then, we say that A has a run on w if there is w ′ with w ′ ≡ w so that A has a
basic run on w ′. The specification L(A) induced by A is the set of all traces w on
which A has a run. Readers familiar with hybrid systems will observe that our
rewriting produces finite decompositions only, thus excludes zeno behavior [1].

To simplify the exposition, we hereafter implicitly assume that traces w are
normalized in the sense that every event is preceded and succeeded by exactly
one time progression. This normalization is justified by the (TEQ) equivalences.

In practice, models have many transitions between two states in order to cap-
ture state changes that ignore parts of the event or accept a large number of pos-
sible values. To avoid PRD automata growing unnecessarily large, we use regular
expressions instead of single events as transition labels. The automaton model
presented so far naturally extends to such a lift. Our implementation integrates
this optimization, see §7. For simplicity, we stick to vanilla automata hereafter.

Example 2. The automata AE ,A∆ from Figure 2 specify CTR from Example 1.
Automaton AE addresses get, log, and set. The set request takes an arbitrary
value <val> as a parameter. As discussed above, we use <val> as shorthand which
can be translated on-the-fly into vanilla automata. The set request is always
enabled and does not lead to updates. It may be followed by an ack, indicating
success, or a fail response. If successful, variable ctx is updated to <val>. The
reset of ctx after 50ms is implemented by A∆. Operations get and log are similar.



6 M. Becker et al.

Automaton AE does not specify any timing behavior, all its states have an
always-enabled ∆-self-loop without updates. The timing behavior is specified by
automaton A∆. It uses ack responses as a trigger to reset the timer clk and then
waits until clk holds a value of at least 50. Once the threshold is reached, the
∆-transition from p4 to p5 setting ctx to 0 becomes enabled. Here, A∆ allows for
slack: the reset must happen within 5ms once 50ms have passed. Within these
5ms, A∆ may choose to cycle in p4 without resetting or move to p5 while reset-
ting ctx . In practice, this kind of slack is common to account for the inability of
hardware to execute after exactly 50ms, as a guard like clk ≤ 50 would require.

The overall specification of our example is the composition AE × A∆. The
cross-product is standard: a step can be taken only if both AE and A∆ can take
the step. We do not go into the details of operations over automata. ⊓⊔

3 Fault Localization

We propose a method for localizing faults in traces w . Intuitively, we do so by
letting A run on w . If for some prefix w ′.s of w there is no step to continue the run,
i.e., w ′ ∈ L(A) but w ′.s /∈ L(A), then s is a fault and w ′.s is its witness. Witnesses
play an integral role in our approach: a Hoare proof for a witness yields a formal
reason for the fault. In §4, we will refine this reason by extracting a concise
explanation for the fault. This explanation then allows us to classify faults in §5.

Technically, identifying faults s in w is more involved. Establishing w ′ ∈ L(A)
requires us to find w ′′ ≡ w ′ and a basic run of A on w ′′. Establishing w ′.s /∈ L(A),
however, requires us to show that there exists no basic run of A on w ′.s at all. It
is not sufficient to show that the single basic run witnessing w ′ ∈ L(A) cannot
be extended to w ′.s. We have to reason over all w̃ ≡ w ′.s and over all basic runs
on them. To cope with this, we encode symbolically all such basic runs of A as
a Hoare proof. The Hoare proof can be thought of as a certificate for the fault.

Interestingly, our techniques for fault localization (§3), explanation (§4), and
classification (§5) do not rely on the exact form of Hoare proofs or how they
are obtained—any valid proof will do. Hence, we prefer to stay on the semantic
level. We discuss how to efficiently generate the necessary proofs in §6. Note that
the timing aspect of our model requires us to develop novel Hoare theory in §6.

Symbolic Encoding We introduce a symbolic encoding to capture infinitely
many configurations in a finite and concise manner.

A symbolic configuration is a pair cf♯ = (p,F ) where p is a state and F is a
first-order formula. We use F to encode potentially infinitely many variable/clock
valuations φ. We say F denotes φ if φ is a model for F , written φ |= F .

A condition P is a finite set of symbolic configurations. We write (p, φ) |= P
if there is (p,F ) ∈ P with φ |= F . We also write P ⊑ R if cf |= P implies cf |= R
for all cf . If P ⊑ R and R ⊑ P , we simply write P = R. The initial condition is
Init ≜ { (p, true) | p ∈ S } and the empty condition is false = ∅. For simplicity,
we assume that conditions contain exactly one symbolic configuration per state,
as justified by the next lemma. With that assumption, checking P ⊑ R can be
encoded as an SMT query and discharged by an off-the-shelf solver like Z3 [35].



Model-based Fault Classification for Automotive Software 7

Test-1 A
{true} [ 5ms] {true} req CTR set 5 {true} [ 2ms] {true} res CTR ack 5
{(p0, p4 : ctx ̸= 0 ∧ clk < 32)} [14ms] {(p0, p4 : ctx ̸= 0 ∧ clk < 46)} req CTR get
{(p2, p4 : ctx ̸= 0 ∧ clk < 46)} [ 4ms] {(p2, p4 : ctx ̸= 0)} res CTR ret 0 {false}

Test-2 A
{true} [ 0ms] {true} req CTR set 5 {true} [ 5ms] {true} res CTR ack 5
{(p0, p4 : ctx ̸= 0 ∧ clk < 23)} [12ms] {(p0, p4 : ctx ̸= 0 ∧ clk < 35)} req CTR log <data>
{(p3, p4 : ctx ̸= 0 ∧ clk < 35)} [11ms] {(p3, p4 : ctx ̸= 0 ∧ clk < 46)} res CTR done
{(p0, p4 : ctx ̸= 0 ∧ clk < 46)} [ 1ms] {(p0, p4 : ctx ̸= 0 ∧ clk < 47)} req CTR get
{(p2, p4 : ctx ̸= 0 ∧ clk < 47)} [ 3ms] {(p2, p4 : ctx ̸= 0)} res CTR ret 0 {false}

Figure 3. Hoare proofs for Test-1 and Test-2.

Lemma 1. P ∪ {(p,F ), (p,G)} = P ∪ {(p,F ∨G)} and P ∪ {(p, false)} = P .

Later, we will use conditions P below quantifiers ∃x.P and in the standard
Boolean connectives G ⊕ P with formulas G . We lift those operations to condi-
tions by pushing them into the symbolic configurations of P as follows:

∃x. P ≜ {(p,∃x. F ) | (p,F ) ∈ P} and G ⊕P ≜ {(p,G ⊕F ) | (p,F ) ∈ P} .

Finding Faults We localize faults in traces w = s1 . . . sn. This means we check
whether or not A has a run on w . To do so, we rely on a Hoare proof for w
which takes the form

{P0 } s1 · · · {Pi−1 } si {Pi } · · · sn {Pn } ,

where every triple {Pi } si {Pi+1 } is a Hoare triple. Intuitively, the Hoare triple
means: every step for si starting in a configuration from Pi leads to a configura-
tion in Pi+1. Hoare triples are defined to be insensitive to trace equivalence:

|= {P } s {R } :⇐⇒ ∀cf , cf ′,w ′. cf |= P ∧s ≡ w ′∧cf−−→w ′
cf ′ =⇒ cf ′ |= R .

If the condition is satisfied, we call the Hoare triple valid. For brevity, we write
{P }w ′.s {S } if there is R so that {P }w ′ {R } and {R } s {S } are both valid.
Strengthening resp. weakening the precondition P resp. postcondition R pre-
serves validity: P ′ ⊑ P and |= {P } s {R } and R ⊑ R′ implies |= {P ′ } s {R′ }.

Now, finding faults boils down to checking the validity of Hoare triples. It is
easy to see that A has no run on w ′.s if and only if |= { Init }w ′.s { false }.

Lemma 2. If |={Init }w ′{P } s {false}and P ̸= false, then w ′.s witnesses fault s.

Example 3. Figure 3 gives proofs that perform fault localization in Test-1 and
Test-2 from Figure 1. The beginning of both traces is irrelevant for the fault, so
true is used as precondition. Then, the conditions track the amount of time that
passes in the form of an upper bound on clock clk . Since clk stays below 50ms,
variable ctx is never reset by A∆. Hence, get must not return 0. But because
get does return 0 in the trace, we arrive at false—the response is a fault. ⊓⊔



8 M. Becker et al.

The Hoare proof certifying witness w ′.s is input to the fault explanation and
classification in the next sections. As stated earlier, we defer the generation of
Hoare proofs (by means of strongest postconditions and weakest preconditions)
to §6, as it is orthogonal to fault explanation and classification.

4 Fault Explanation

We analyze the Hoare proof generated in §3 which certifies the fault in a witness.
Our goal is to extract the events that contribute to the fault and dispose of those
that are irrelevant. The result will be another valid Hoare proof that concisely
explains the fault. On the one hand, the explanation will help the test engineer
understand the fault and ultimately prepare the test report alluded to in §1.
On the other hand, explanations of distinct test cases may be similar in terms
of our classification approach from §5 while the original test cases are not, thus
improving the effectiveness of the classification.

To determine a concise explanation, assume the Hoare proof certifying the
fault can be partitioned into { Init }w1 {P }w2 {R }w3 {Pk }. If P denotes fewer
configurations than R, P ⊑ R, we say that w2 is irrelevant (the events therein).
To see this, consider some configuration cf |= P . Executing w2 from cf leads
to some cf ′ |= R which in turn leads to the fault by executing w3. However,
cf |= R already holds. So, we can just execute w3 from cf to exhibit the fault—
w2 is irrelevant indeed.

When timing plays a role in the fault, one might not be able to establish the
simple inclusion P ⊑ R because removing w2 altogether also removes the time
that passes in it. However, it might be this passing of time, rather than the events,
that leads to the fault. Therefore, we also check if the events (and the events only)
in w2 are irrelevant. This is the case if waiting has the same effect as performing
full w2. Technically, we check the validity of the triple {P }w2|R≥0

{R }. The
projection w2|R≥0

removes all events E from w2: e|R≥0
= ϵ and t |R≥0

= t . The
validity of the triple captures our intuition: any configuration cf |= P can simply
wait (taking ∆-transitions) for the same amount as w2 and arrive in cf ′ |= R from
which w3 and the fault are executable—the removed events w2|E are irrelevant.

We apply the above reasoning—both P ⊑ R as well as |= {P }w2|R≥0
{R }—

to all partitionings of the given proof to identify the irrelevant sequences. The
remaining events and time progressions all contribute to the fault. The result is
the most concise explanation of the fault.

Unfortunately, our pruning rules are not confluent, meaning that different
sequences of irrelevance checks may lead to different explanations. A witness may
have more than one explanation if two irrelevant sequences partially overlap. To
see this, consider the following (special case) partitioning of the witness’ proof

{ Init } w1 {P } w2 {R } w3 {P } w4 {R } w5 { false } .

Here, we deem irrelevant w2.w3 and w3.w4. However, we cannot remove w2.w3.w4

entirely because the resulting proof might not be valid, which requires P ⊑ R.



Model-based Fault Classification for Automotive Software 9

Even removing the intersection w3 of the irrelevant sequences may not produce
a valid proof as R ⊑ P might not hold either. The same problems arise if
only (w2.w3)|E and/or (w3.w4)|E is irrelevant. We argue that this is desired: the
witness is, in fact, a witness for two different faults, explained by w1.w4.w5 resp.
w1.w2.w5. Overall, we compute all explanations in case there are overlapping
irrelevant sequences. While this gives exponentially many explanations in theory,
we rarely find overlaps in practice.

Example 4. We give the fault explanation for the proof of Test-2 from Figure 3.
As expected, both events req CTR log <data> and res CTR done are irrelevant.
The condition P = { (p0, p4 : ctx ̸= 0 ∧ clk < 23) } before the log request reaches
condition R = { (p0, p4 : ctx ̸= 0 ∧ clk < 47) } after the log response. This re-
mains true after removing both events. Indeed, {P } [12ms][11ms][ 1ms] {R } is
a valid Hoare triple and thus justifies removing the events. ⊓⊔

5 Fault Classification

We propose a classification technique that groups together witnesses exhibiting
the same or a similar fault. Grouping together similar faults significantly reduces
the workload of test engineers when preparing a test report for a large number
of failing tests since only one (representative) test case per group needs to be
inspected. The input to our classification is a set W of witness explanations
as constructed in §4. The result of the classification is a partitioning of W into
disjoint classes W =W1⊎· · ·⊎Wm. The partitioning is obtained by factorizing W
along an equivalence ∼ that relates witness explanations which have similar
faults. If ∼ is effectively computable, so is the factorization. We focus on ∼.

Intuitively, two explanations are similar, and thus related by ∼, if comprised
of the same sequence of Hoare triples, that is, the same sequence of events and
intermediary assertions. This strict equality, however, does not work well when
timing is involved. Repeatedly executing the same sequence of events is expected
to observe a difference in timing due to fluctuations in the underlying hardware.
Moreover, explanations have already been stripped by irrelevant sequences the
events and duration of which might differ across explanations.

To make up for these discrepancies, we relate explanations that are equal
up to similar clocks. Consider an (in)equality F over clocks C . We can think
of F , more concretely its solutions, as a polytope M ⊆ R|C |. Then, two clock
assignments φ,φ′ ∈ R|C | are similar if they agree on the membership in M . That
is, φ and φ′ are similar if φ,φ′ ∈ M or φ,φ′ /∈ M . The polytope M we consider
will stem from the transition guards in A. Similarity thus means that A cannot
distinguish the two clock assignments—they fail for the same reason.

Clock similarity naturally extends to sets of polytopes. The set of polytopes
along which we differentiate clock assignments is taken from a proof template. A
proof template for a trace is a unique Hoare proof where placeholders are used
instead of actual time progressions. Hence, the explanations under consideration
are instances of the template, i.e., can be obtained by replacing the placeholders



10 M. Becker et al.

with the appropriate time progressions. More importantly, the template gives
rise to a set of atomic constraints from which all polytopes appearing in the
explanations can be constructed (using Boolean connectives). Overall, this means
that two explanations are similar if the clocks they allow for are similar wrt. the
polytopes of the associated proof template, meaning that A cannot distinguish
them and thus fails for the same reason.

A proof template for events e1 . . . ek is a Hoare proof of the form

{ Init } u0 · · · {P2i−1 } ei {P2i } ui {P2i+1 } · · · uk { false } .

This proof is a template because u = u0, . . . , uk are symbolic time progressions,
i.e, they can be thought of as variables rather than actual values from R≥0. An
instance of the template is a valid Hoare proof

{ Init } t0 · · · {R2i−1 } ei {R2i } ti {R2i+1 } · · · tk { false }

with actual time progressions t = t0, . . . , tk such that the Pi subsume the Ri for
the given choice of symbolic time progressions, Ri ⊑ Pi[u 7→ t ].

For the classification to work, we require the following properties of templates:
(C1) the template is uniquely defined by the sequence u0.e1 . . . ek.uk, and
(C2) the symbolic configurations appearing in the Pi are quantifier-free.

The former property associates a unique template to every trace. This is neces-
sary for a meaningful classification via templates. The latter property ensures
that the atomic constraints we extract from the template (see below) will contain
only clocks from C . This is necessary for equisatisfiability to be meaningful. In
§6 we show that weakest preconditions generate appropriate templates.

An atomic clock constraint is an (in)equality over symbolic time progressions
and ordinary clocks (from C ). We write acc(P) for all such constraints syntac-
tically occurring in P . For Pi from the above proof template, acc(Pi) is a set
of building blocks from which the Ri of all instantiations can be constructed.
Moreover, A cannot distinguish time progression beyond acc(Pi), making them
ideal candidates for judging similarity.

We turn to the definition of the equivalence relation ∼. To that end, consider
two explanations α, β of the following form

α: { Init } · · · {R2i−1 } ei {R2i } ti {R2i+1 } · · · { false }
β: { Init } · · · {R′

2i−1 } ei {R′
2i } t ′i {R′

2i+1 } · · · { false } .

The events e1, . . . , ek match in both explanations, but the time progressions t
and t ′ may differ. (Explanations with distinct event sequences are never related
by ∼.) Both explanations are instances of the same proof template σ,

σ: { Init } · · · {P2i−1 } ei {P2i } ui {P2i+1 } · · · { false } .

Now, for α and β to be similar, α ∼ β, we require the Ri and R′
i to satisfy the

exact same atomic clock constraints appearing in Pi relative to the appropriate
instantiation of the symbolic clock values. It is worth stressing that we require
satisfiability, not logical equivalence, because we want the clocks to be similar,
not equal. We write SAT(F ) if F is satisfiable, that is, if there is an assignment φ



Model-based Fault Classification for Automotive Software 11

to the free variables in F such that φ |= F . Formally then, we have:

α ∼ β iff ∀i ∀F ∈acc(Pi). SAT(F [u 7→ t ]) ⇐⇒ SAT(F [u 7→ t ′]) .

It is readily checked that ∼ is an equivalence relation, that is, is reflexive, sym-
metric, and transitive, as alluded to in the beginning. Transitivity, in particular,
is desirable in our use case. First, it means that all explanations from a class Wi

of W are pairwise similar, that is, exhibit the same fault. Second, the partitions
are guaranteed to be disjoint. Finally, it allows for the partitioning of W to be
computed efficiently (by tabulating the result of the SAT queries), provided the
SAT queries are efficient for the type of (in)equalities used.

Lemma 3. Relation ∼ is an equivalence relation.

Example 5. We classify the explanations of
Test-1 and Test-2, which correspond to the
proofs from Figure 3 with the log events
removed (cf. Example 4). Both explanations
agree on the sequence of events. Figure 4 gives
their common template. The atomic clock
constraints are u1 + u2 < 50, clk + u1 < 50,
and clk+u1+u2 < 50. Test-1 and Test-2 are
similar because each clock constraint is sat-
isfiable after instantiating the symbolic time
progressions with the values in the respective
trace. Hence, our classification groups these
explanations together, Test-1∼ Test-2. ⊓⊔

Template<Test-1, Test-2> A

{(p1, p4 : u1+u2<50)}
res CTR ack 5
{(p0, p4 : ctx ̸=0 ∧ clk+u1+u2<50)}
[ u2ms]
{(p0, p4 : ctx ̸=0 ∧ clk+u1<50)}
req CTR get
{(p2, p4 : ctx ̸=0 ∧ clk+u1<50)}
[ u1ms]
{(p2, p4 : ctx ̸=0)}
res CTR ret 0
{false}

Figure 4. Proof template for the
explanations of Test-1 and Test-2.

6 Hoare Proofs with Timing

For the techniques presented so far to be useful, it remains to construct Hoare
proofs for traces w . Strongest postconditions and weakest preconditions are the
standard way of doing so. The former yields efficient fault localization (§3).
The latter satisfies the requirements for templates (§5). Moreover, interpolation
between the two produces concise proofs beneficial for fault explanations (§4).

It is worth pointing out that the aforementioned concepts are well-understood
for programs and ordinary automata. However, they have not been generalized
to a setting like ours where timing plays a role. Indeed, works like [21,23,24,43]
involve timing, but do not develop the Hoare theory required here.

Strongest Postconditions We compute the post image, that is, make precise
how A takes steps from symbolic configurations. A step from a symbolic config-
uration (p,F ) due to transition p−−−−−→∆, g, up q on time progression t can be taken
if the guard is enabled after waiting for t time. After waiting, all clocks c are
c′ = c + t . This means before waiting we have c = c′ − t . However, clocks are
always non-negative, c′ − t ≥ 0. Overall, we replace in F all clocks by their old
versions and enforce non-negativity, F ′ = F [C 7→ C − t ] ∧ C ≥ t . It remains to



12 M. Becker et al.

check guard g and apply update up. It is easy to see that the set of valuations in
F ′ satisfying g is precisely G = F ′∧ g . To perform a singleton update {x 7→ y },
we capture the new valuation of x by the equality x = y. To avoid an influence
of the update of x on other variables/clocks, we have to rewrite G to not contain
x. This is needed as G might use x to correlate other variables/clocks—we want
to preserve these correlations without affecting them. We use an existential ab-
straction that results in G ′ = ∃z. G [x 7→ z] ∧ x = y. Then, the post image is
(q ,G ′). For stuttering steps, we add the original configuration (p,F ) to the post
image. Steps due to events from E are similar.

We define a symbolic transformer that implements the above update of the
symbolic encoding F to G ′ in the general case:

Jg |{x 7→ y}K♯t(F ) ≜ ∃z. (F [C 7→ C − t ] ∧ C ≥ t ∧ g)[x 7→ z ] ∧ x = y ,

where x is short for a sequence x1, . . . , xm of variables/clocks. We arrive at:

post♯t(P) ≜ { (q , Jg |upK♯t(F )) | (p,F ) ∈ P ∧ p−−−−−→∆, g, up q } ∪
(
t = 0 ? P : ∅

)
post♯e(P) ≜ { (q , Jg |upK♯0(F )) | (p,F ) ∈ P ∧ p−−−−→e, g, up q } .

The post image is sound and precise in the sense that it captures accurately the
steps the configurations denoted by P can take. The lemma makes this precise.

Lemma 4. cf ′ |= post♯s(P) iff there is cf |= P with cf−→s cf ′.

Example 6. We apply post♯ to P = {(p4, 49 ≤ clk ≤ 52)} for A∆ from Figure 2.
Recall that A∆ resets variable ctx within 5ms after clk has reached the 50ms
mark. Indeed, post♯1(P) for 1ms contains both the resetting and the non-resetting
case: (p5, 50 ≤ clk ≤ 53 ∧ ctx = 0) and (p4, 50 ≤ clk ≤ 53).

The post image still lacks a way to commute with the (TEQ) congruences.
While post♯5(post

♯
1(P)) witnesses the reset via condition 55 ≤ clk ≤ 58∧ ctx = 0

for both p4 and p5, it is not equivalent to post♯6(P), which is false since all
transitions in p4 are disabled for a full 6ms wait. ⊓⊔

While the post image captures the individual steps of basic runs on traces w ,
we have to consider the basic runs of all traces w ′ ≡ w to generate a Hoare
proof for w . Basically, the (TEQ) equivalences state that the time progres-
sions between events can be split/merged arbitrarily. To that end, we define
the strongest postcondition sp which inspects all basic runs simultaneously, in-
tuitively, by rewriting according to the (TEQ) equivalences on-the-fly. (Note
that normalization according to §2 avoids the merging case of (TEQ).) Then,
for events e the strongest postcondition merely applies the post image to e. For
time progressions t , the strongest postcondition considers all decompositions of t
into fragments t1, . . . , tk that add up to t and applies the post image iteratively
to all the ti. This includes stuttering where 0 is rewritten to 0. . . 0. If there
are loops in A, the strongest postcondition might need to consider infinitely
many decompositions. We address this problem by enumerating decompositions
of increasing length and applying to each decomposition a widening ∇ with the
following properties: (i) the result of the widening is ⊑-weaker than its input,



Model-based Fault Classification for Automotive Software 13

Pi ⊑ ∇(P1, · · ·,Pk) for all i, and (ii) the widening stabilizes after finitely many
iterations for ⊑-increasing sequences, P1 ⊑ P2 ⊑ · · · implies that there is k so
that ∇(P1, · · ·,Pi) = ∇(P1, · · ·,Pi+1) for all i ≥ k. We write ∇(Pi)i∈N and mean
the stabilized ∇(P1, · · ·,Pk). Given a widening, the strongest postcondition is:

spt(P) ≜ ∇
(
∃t1, · · ·, ti. t = t1 + · · ·+ ti ∧ post♯ti ◦ · · · ◦ post

♯
t1(P)

)
i∈N

spe(P) ≜ post♯e(P) sps.w (P) ≜ spw ◦ sps(P) sp(P , w) ≜ spw (P)

where the t1, . . . , ti are fresh. Observe that the sequence of post images in spt is
⊑-increasing: one can always extend the decomposition by additionally waiting
for 0 time, post♯ti(P) ⊑ post♯0 ◦ post

♯
ti(P). The strongest postcondition considers

all basic runs and ∇ overapproximates the reachable configurations. It is sound.

Lemma 5. If sp(P , w) ⊑ R, then |= {P }w {R }.
For the lemma to be useful, an appropriate widening ∇ is required. In gen-

eral, finding such a widening is challenging—after all, it resembles finding loop
invariants—and for doing so we refer to existing works, like [8,12,13], to name a
few. In practice, a widening may be obtained more easily. In case A is free from
∆-cycles, stabilization is guaranteed after k iterations, where k is the length of
the longest simple ∆-path. If there are ∆-cycles, stabilization is still guaranteed
after k iterations if all ∆-cycles are idempotent. A ∆-cycle is idempotent if re-
peated executions of the cycle produce only configurations that already a single
execution of the cycle produces. Interestingly, idempotency can be checked while
computing the widening: if the (k+1)st iteration produces new configurations,
idempotency does not hold. In our setting, idempotency was always satisfied.
For the remainder of this paper, we assume an appropriate widening is given.

Weakest Preconditions We also compute weakest preconditions, the time-
reversed dual of strongest postconditions. Our definition will satisfy the template
requirements (C1) and (C2) from §5.

The pre image is the set of symbolic configurations that reach a given configu-
ration in automaton A. Consider some (q ,G) and p−−−−−→∆, g, up q . The pre image first
rewinds updates up={x 7→ y } by replacing x with y. Then, it adds a disjunct
H =G [x 7→ y]∨¬g . Adding the disjunct makes the pre image weaker; it does not
affect soundness in Lemma 6 which ignores the stuck configurations denoted by
(p,¬g). Finally, we rewind the clock progression t by replacing all clocks c in H
with c + t . We arrive at the pre image F = H [C 7→ C + t ]. Transitions due to
events are similar. We define a symbolic transformer to apply the above process:

Jg |{x 7→ y}K
♯

t(G) ≜ (G [x 7→ y] ∨ ¬g)[C 7→ C + t ] .

To account for other transitions leaving p that are enabled in H , we compute
the meet ⊓ of the per-transition pre images. Intuitively, this intersects symbolic
configurations on a per-state basis, ensuring that any configuration from the pre
image either gets stuck or steps to one of the configurations we computed the
pre image for. Technically, the meet ⊓ for sets M of symbolic configurations is:

l
M ≜ { (p,

∧
(p,F)∈M F ) | p ∈ Q } .



14 M. Becker et al.

Notably, when considering the meet of M , we cannot understand M as a condi-
tion. This is because conditions treat symbolic configurations disjunctively and
can be normalized by Lemma 1. However, the meet is not preserved under these
transformations. We write M1 ⊓M2 to mean

d
(M1 ∪M2).

The discussion yields the following definition of the pre image:

pre♯t(P) ≜
l

{(p, Jg |upK
♯

t(G)) | (q ,G) ∈ P ∧ p−−−−−→∆,g,up q} ⊓
(
t = 0 ? P : ∅

)
pre♯e(P) ≜

l
{(p, Jg |upK

♯

0(G)) | (q ,G) ∈ P ∧ p−−−−→e,g,up q} ,

capturing precisely the forced reachability in A, as stated by the next lemma.

Lemma 6. cf |= pre♯s(P) iff for all cf ′, cf−→s cf ′ implies cf ′ |= P .

Example 7. We apply pre♯ to P = {(p4, 49 ≤ clk ≤ 52)} for A∆ from Figure 2.
Computing pre♯1(P) highlights the need for the meet. The ∆-loop on p4 does not
give (p4, 48 ≤ clk ≤ 51) as precondition. Instead, it is (p4, 48 ≤ clk < 49) which
is the result of {(p4, 48 ≤ clk ≤ 51)} ⊓ {(p4, clk ≥ 54 ∨ clk < 49)}. Indeed, A∆

reaches a non-P configuration via the resetting transition to p5 if clk = 49. ⊓⊔

The weakest precondition wp(s, R) denotes all configurations that either
step to R under s or have no step at all. Technically, the weakest precondition
repeatedly applies the pre image for all decompositions of time progressions. For
termination, we again rely on the widening ∇. Since the pre image sequence
is ⊑-decreasing, we turn it into an increasing sequence by taking complements.
More precisely, we use the widening ∇(P1, · · · ,Pm) ≜ ¬∇(¬P1, · · ·,¬Pm). The
weakest precondition is defined by:

wpt(P) ≜ ∇
(
∀t1, · · ·, ti. t = t1 + · · ·+ ti =⇒ pre♯t1 ◦ · · · ◦ pre

♯
ti(P)

)
i∈N

wpe(P) ≜ pre♯e(P) wpw .s(P) ≜ wpw ◦wps(P) wp(w , P) ≜ wpw (P) .

Note that wpt applies to ordinary time progressions t as well as symbolic time
progressions u appearing in proof templates. The weakest precondition is sound.

Lemma 7. If P ⊑ wp(w , R), then |= {P }w {R }.

Concise Hoare Proofs The developed theory allows for an efficient way to
produce concise Hoare proofs. We first apply strongest postconditions to generate
an initial proof. Then, starting from the back, we apply weakest preconditions
and interpolation [9] to simplify the initial proof. We make this precise.

Combining Lemmas 2 and 5 gives an effective way of finding faults in traces
w = s1 . . . sn and extracting a witness: iteratively compute the strongest postcon-
dition for increasing prefixes of w and check if the result is unsatisfiable. That is,
compute P = sp(s1. · · · .sk, Init) and check if P = false. If so, then ŵ = s1 . . . sk
is a witness for fault sk. Otherwise, continue with the prefix s1 . . . sk.sk+1 which
can reuse the previously computed P : sp(s1 . . . sk.sk+1, Init) = sp(sk+1, P). As
per Lemma 5, the approach gives rise to the valid Hoare proof

{ Init } s1 · · · {Pi } si+1 {Pi+1 } · · · sk { false } with Pi+1 = sp(Pi, si+1) .



Model-based Fault Classification for Automotive Software 15

It is well-known that strongest postconditions produce unnecessarily complex
proofs [34]. To alleviate this weakness, we use interpolation [9]. For two formulas
F and G with F =⇒ G , an interpolant is a formula I with F =⇒ I and I =⇒ G .
The interpolant for conditions P and R with P ⊑ R, denoted I (P ,R), results
from interpolating the symbolic configurations in P with the corresponding ones
in R. Interpolants exist in first-order predicate logic [9,32].

From the above sp - generated proof we construct an interpolated proof

{ Init } s1 · · · { I (Pi,Ri) } si+1 { I (Pi+1,Ri+1) } · · · sk { false }

using wp as follows. Assume we already constructed, starting from the back, the
interpolants I (Pk,Rk) through I (Pi+1,Ri+1). Now, the goal is to obtain an in-
terpolant I so that { I } si+1 { I (Pi+1,Ri+1) } is valid. The weakest precondition
for the latest interpolant yields Ri = wp(si, I (Pi+1,Ri+1)). This gives a valid
Hoare triple |= {Ri } si+1 { I (Pi+1,Ri+1) }. Our goal is to interpolate Pi and Ri.
If Pi ⊑ Ri, we can interpolate Pi and Ri to obtain I = I (Pi,Ri).4 Otherwise,
we simply choose I = Ri. By Lemma 7 together with I ⊑ Ri, we know that
|= { I } si+1 { I (Pi+1,Ri+1) } is valid. Overall, this constructs a valid proof.

7 Application in Automotive Software

We implemented and tested our approach on benchmarks provided by our project
partner from the automotive industry. The implementation parses, classifies, and
annotates traces of ECUs running the Unified Diagnostic Services (UDS). We
turned a PRD with 350 pages of natural language specifying 23 services into a
PRD automaton of 12.5k states and 70k transitions. We evaluated our tool on
1000 traces which are processed within 24 minutes. Our tool is implemented in
C# and processes traces in the three stages explained below. It naturally supports
multi-threading for the localization, explanation, and classification since they are
agnostic to the (set of) other traces being analyzed.

Preprocessing Stage The first stage parses trace files and brings them into
a shape similar to Figure 1. UDS specify a request-response protocol for ECUs
communicating over a CAN bus. The traces are a recording of all messages seen
on the bus during a test run. We found the preprocessing more difficult than
expected, because the trace files have a non-standard format. These problems
stem from the fact that our industrial partner creates tests partly manually and
inserts natural language annotations. A useful type of annotation that we could
extract are the positions deemed erroneous by the test environment.

Modeling Stage The second stage creates the test model, a PRD automaton
as defined in §2. Modeling a natural language PRD is a non-trivial and time-
consuming process. To translate the PRD into an automaton, we developed an
API capable of programmatically describing services and their communication
4 One can show that the inclusion Pi ⊑ Ri is always satisfied in our setting where
∆-cycles are idempotent and the widenings ∇ and ∇ simply enumerate all necessary
decompositions of time progressions. Refer to [4] for a more general property.



16 M. Becker et al.

1-10 11-50 51-100 101-1k
0

20

40

#Events in Witness

#
W

it
ne

ss
es

1-10 11-50 51-100 101-1k
0

0.5

1

1.5

2

#Events in Witness

A
vg

(#
E

ve
nt

s)
in

E
xp

la
na

ti
on

Figure 5. Statistics on witnesses: number (left) and average explanation length (right).

requirements. The API supports a declarative formulation of the communication
requirements which it compiles down into an automaton. The compilation is
controlled by a set of parameters because the PRD prescribes different behavior
depending on the ECU version (and related static parameters). There are further
high-level modeling constructs such as regular expressions, as alluded to in §2
and seen in Figure 2.

Unfortunately, not all requirements from the PRD are restricted to the trace:
they may refer to events internal to the ECU that are not contained in the
trace files. While our API and PRD automata are capable of expressing these
requirements, the test environment is unable to detect them. To circumvent the
problem of missing information, we over-approximated our model using non-
determinism. That is, we simply allow our model to do any of the specified
behaviors for unobservable internal events. A downside of this is that errors
dependent on these events cannot be found during fault localization.

Analysis Stage The last stage performs fault localization (§3), explanation (§4),
and classification (§5). We carefully inspected 86 traces curated by our industrial
partner. The tests targeted one of the 23 services, yet they contain requests and
responses to a multitude of services responsible for setting up the ECU configu-
ration. The annotations of the test environment marked 100 faults, 95 of which
are also found by our fault localization. Our tool finds and explains another 10
undetected faults, which totals to 105 fault explanations. The five faults missed
by our localization are actually incorrect annotations by the test environment,
which we will explain in a moment.

Figure 5 gives the lengths of the found witnesses and the average lengths of
their explanations. The explanation lengths are closely tied to the kinds of faults
in the test set. In our set, long witnesses tend to have a long prefix unimportant
to the fault. This is reflected in the partitioning found by our classification.

The classification divides the faults into six partitions. We found that each
partition belongs to one of the following three error types: (i) ECU responds too
late (1+8); (ii) ECU fails to reset a variable upon restart (2); (iii) ECU responds
when it should not (2+1+91). Here, 1+8 means we have two partitions and
one with a single witness, one with eight equivalent witnesses. Each error type
consists of at most two relevant events. Unrelated events in-between those two



Model-based Fault Classification for Automotive Software 17

events are dropped by fault explanation. The relevant events are: (i) the request
and the late response, (ii) the response event which revealed that the variable
has not been reset, and (iii) the request and the incorrectly given response.

There are two partitions with error type (i). This is because the late re-
sponse is given by another service and thus leads to different control flow in
the automaton. Indeed, there might be distinct root causes: different services
are likely controlled by different pieces of code. A similar reason produces three
partitions of error type (iii). Interestingly, the singleton partition for (i) is com-
pletely missed by the test environment (no fault was marked). This supports
our claim that the test environment only detects faults targeted by the tests and
ignores other faults. The other partition of (i) was detected by the test envi-
ronment by accident: in some traces, the ECU response is so late that the test
environment incorrectly marks the response as missing. These incorrect marks
represent no faults and are not considered by our localization. Instead, our lo-
calization actually detects the late responses and marks them correctly.

Our tool provides a partitioning file with direct links to the trace files. It
also modifies the trace files to highlight the events related to the fault (cf. §4)
and provides an intuitive explanation of the fault. As for the latter, the user is
informed about the difference between the observed and the automaton-expected
behavior. Our manual inspection showed no incorrect classification. That is, our
tool has never grouped together traces which test engineers would deem caused
by distinct faults. This is promising feedback because incorrect classification
is dreaded: a single missed flaw of an ECU can cause large costs. Overall, we
reduced the workload of manually inspecting 86 traces with 100 fault marks to
inspecting six representative faults that expose more misbehavior than marked
by the test environment.

8 Related Work

Fault Explanation Our work on fault explanation is related to minimizing unit
tests in [30]: tests are pruned by removing the commands that are not contained
in a backward slice from a failing instruction. With timing constraints, slicing
does not work (every command is relevant), which is why we have developed
our approach based on Hoare logic. The assertions provided by a Hoare proof
have the additional advantage of being able to prune even dependent commands
inside a slice (based on the relationship between intermediary assertions), which
leads to higher reduction rates. Similar to our approach is the fault localization
and explanation from [6,44]. That work also makes use of interpolation [33] and
is able to strip infixes from a trace despite dependencies. Our fault localization
can be understood as a generalization to a timed setting where every command
contributes to the progression of time and therefore is delicate to remove.

A popular fault explanation approach that can be found in several variants in
the literature [3,18,19,20,28,40,52] is Delta debugging: starting from a failing test,
produce a similar but passing test, and take the difference in commands as an



18 M. Becker et al.

explanation of the fault. In [18,19,20,40,52], the passing test is found by repeat-
edly testing the concrete system [19], which is impossible in our in-vitro setting.
In [3,18,28], a model checker resp. a solver is queried for a passing test resp. a
satisfiable subset of clauses. Our Hoare proof can be understood as building up
an alternative and valid execution. Different from a mere execution, however,
intermediary assertions provide valuable information about the program state
that we rely on when classifying tests.

The explanation from [26] divides a computation into fated and free segments,
the former being deterministic reactions to inputs and the latter being inputs
that, if controlled appropriately, avoid the fault and hence should be considered
responsible for it. The segments are computed via rather heavy game-theoretic
techniques, which would be difficult to generalize to timed systems. A more
practical variant can be found in [46,53]. These works modify tests in a way that
changes the evaluation of conditionals. Neither can we re-run tests in an in-vitro
setting, nor would we be able to influence the timing behavior.

There is a body of literatur on statistical approaches to finding program
points that are particularly prone to errors, see the surveys [47,50]. We need to
pinpoint the precise as possible cause of a bug, instead.

Fault Classification Previous works on test case classification follow the same
underlying principle [10,11,15,16,17,27,31,37,39]: devise a distance metric on test
cases that is used to group them. The metrics are based on properties like the
commonality/frequency of words in comments and variables in the code [11]
or the correlation of tests failing/passing in previous test runs [15]. Symbolic
execution has been used to derive more semantic properties based on the source
code location of faults [31] and the longest prefix a failing trace shares with some
passing trace [37]. The problem is that the suggested metrics are at best vague
surrogates for the underlying faults. Using a model-based approach, we compare
traces not against each other but against a ground truth (the PRD automaton).

Another related line of work is test case prioritization, test case selection,
and test suite minimization [50]. Although formulated differently, these prob-
lems share the task of choosing tests from a predefined pool. Experiments have
shown that manually chosen test suites outperform automatically selected ones
in their ability to expose bugs [51]. To increase the number of tests that can be
evaluated manually by an expert, the literature has proposed the use of cluster-
ing algorithms to group together tests with similar characteristics (so that the
expert only has to evaluate clusters). The clustering is computed from syntactic
information (a bitwise comparison of test executions). As argued before, we use
semantic information and compute the classification wrt. a ground truth.

On the automatic side, [38] suggests the use of Hoare proofs to classify error
traces. Our approach follows this idea and goes beyond it with the proposal of
proof templates. Proof templates seem to be precisely the information needed
to classify tests that are subject to real-time constraints. Harder et al. suggest
to minimize test suites based on likely program invariants inferred from sample
values obtained in test runs [22]. Hoare triples are more precise than invariants,
even more so as we work with a ground truth rather than sample values.



Model-based Fault Classification for Automotive Software 19

Acknowledgements The results were obtained in the projects “Virtual Test
Analyzer I – III”, conducted in collaboration with IAV GmbH. The last author
is supported by a Junior Fellowship from the Simons Foundation (855328, SW).

Bibliography

[1] Abadi, M., Lamport, L.: An old-fashioned recipe for real time. In: REX
Workshop. LNCS, vol. 600, pp. 1–27. Springer (1991)

[2] Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235
(1994)

[3] Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing
errors in counterexample traces. In: POPL. pp. 97–105. ACM (2003)

[4] Becker, M., Meyer, R., Runge, T., Schaefer, I., van der Wall, S.,
Wolff, S.: Model-based fault classification for automotive software. CoRR
abs/2208.14290 (2022)

[5] Bringmann, E., Krämer, A.: Model-based testing of automotive systems. In:
ICST. pp. 485–493. IEEE (2008)

[6] Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization.
In: VMCAI. LNCS, vol. 7737, pp. 189–208. Springer (2013)

[7] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL. pp. 238–252. ACM (1977)

[8] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among
variables of a program. In: POPL. pp. 84–96. ACM Press (1978)

[9] Craig, W.: Linear reasoning. A new form of the herbrand-gentzen theorem.
J. Symb. Log. 22(3), 250–268 (1957)

[10] Dickinson, W., Leon, D., Podgurski, A.: Finding failures by cluster analysis
of execution profiles. In: ICSE. pp. 339–348. IEEE (2001)

[11] DiGiuseppe, N., Jones, J.A.: Concept-based failure clustering. In: SIGSOFT
FSE. p. 29. ACM (2012)

[12] Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation
via abductive inference. In: OOPSLA. pp. 443–456. ACM (2013)

[13] Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for esc/java.
In: FME. LNCS, vol. 2021, pp. 500–517. Springer (2001)

[14] Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random
testing. In: PLDI. pp. 213–223. ACM (2005)

[15] Golagha, M., Lehnhoff, C., Pretschner, A., Ilmberger, H.: Failure clustering
without coverage. In: ISSTA. pp. 134–145. ACM (2019)

[16] Golagha, M., Pretschner, A., Fisch, D., Nagy, R.: Reducing failure analysis
time: An industrial evaluation. In: ICSE-SEIP. pp. 293–302. IEEE (2017)

[17] Golagha, M., Raisuddin, A.M., Mittag, L., Hellhake, D., Pretschner, A.:
Aletheia: a failure diagnosis toolchain. In: ICSE (Companion Volume). pp.
13–16. ACM (2018)

[18] Groce, A.: Error explanation with distance metrics. In: TACAS. LNCS,
vol. 2988, pp. 108–122. Springer (2004)



20 M. Becker et al.

[19] Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In:
SPIN. LNCS, vol. 2648, pp. 121–135. Springer (2003)

[20] Guo, L., Roychoudhury, A., Wang, T.: Accurately choosing execution runs
for software fault localization. In: CC. LNCS, vol. 3923, pp. 80–95. Springer
(2006)

[21] Haase, V.: Real-time behavior of programs. IEEE Transactions on Software
Engineering SE-7(5), 494–501 (1981)

[22] Harder, M., Mellen, J., Ernst, M.D.: Improving test suites via operational
abstraction. In: ICSE. pp. 60–73. IEEE (2003)

[23] Haslbeck, M.P.L., Nipkow, T.: Hoare logics for time bounds - A study in
meta theory. In: TACAS (1). LNCS, vol. 10805, pp. 155–171. Springer (2018)

[24] Hooman, J.: Extending hoare logic to real-time. Formal Aspects Comput.
6(6A), 801–826 (1994)

[25] ISO: ISO 14229-1:2020 Road vehicles — Unified diagnostic services (UDS)
— Part 1: Application layer. Standard ISO 14229-1:2020, International Or-
ganization for Standardization, Geneva, CH (2020)

[26] Jin, H., Ravi, K., Somenzi, F.: Fate and free will in error traces. In: TACAS.
LNCS, vol. 2280, pp. 445–459. Springer (2002)

[27] Jordan, C.V., Hauer, F., Foth, P., Pretschner, A.: Time-series-based clus-
tering for failure analysis in hardware-in-the-loop setups: An automotive
case study. In: ISSRE Workshops. pp. 67–72. IEEE (2020)

[28] Jose, M., Majumdar, R.: Cause clue clauses: error localization using maxi-
mum satisfiability. In: PLDI. pp. 437–446. ACM (2011)

[29] King, J.C.: Symbolic execution and program testing. CACM 19(7), 385–394
(1976)

[30] Leitner, A., Oriol, M., Zeller, A., Ciupa, I., Meyer, B.: Efficient unit test
case minimization. In: ASE. pp. 417–420. ACM (2007)

[31] Liu, C., Han, J.: Failure proximity: a fault localization-based approach. In:
SIGSOFT FSE. pp. 46–56. ACM (2006)

[32] Lyndon, R.: An interpolation theorem in the predicate calculus. Pacific
Journal of Mathematics 9, 129–142 (1959)

[33] McMillan, K.L.: Interpolation and sat-based model checking. In: CAV.
LNCS, vol. 2725, pp. 1–13. Springer (2003)

[34] McMillan, K.L.: Interpolation and model checking. In: Handbook of Model
Checking, pp. 421–446. Springer (2018)

[35] de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. LNCS,
vol. 4963, pp. 337–340. Springer (2008)

[36] Pan, R., Bagherzadeh, M., Ghaleb, T.A., Briand, L.C.: Test case selection
and prioritization using machine learning: a systematic literature review.
Empir. Softw. Eng. 27(2), 29 (2022)

[37] Pham, V., Khurana, S., Roy, S., Roychoudhury, A.: Bucketing failing tests
via symbolic analysis. In: FASE. LNCS, vol. 10202, pp. 43–59. Springer
(2017)

[38] Podelski, A., Schäf, M., Wies, T.: Classifying bugs with interpolants. In:
TAP@STAF. LNCS, vol. 9762, pp. 151–168. Springer (2016)



Model-based Fault Classification for Automotive Software 21

[39] Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang,
B.: Automated support for classifying software failure reports. In: ICSE.
pp. 465–477. IEEE (2003)

[40] Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries.
In: ASE. pp. 30–39. IEEE (2003)

[41] Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of
the effects of minimization on the fault detection capabilities of test suites.
In: ICSM. pp. 34–43. IEEE (1998)

[42] Schäuffele, J., Zurawka, T.: Automotive Software Engineering - Grundlagen,
Prozesse, Methoden und Werkzeuge effizient einsetzen (6. Aufl.). Vieweg
(2016)

[43] Schneider, F.B., Bloom, B., Marzullo, K.: Putting time into proof outlines.
In: REX Workshop. LNCS, vol. 600, pp. 618–639. Springer (1991)

[44] Schwartz-Narbonne, D., Oh, C., Schäf, M., Wies, T.: VERMEER: A tool
for tracing and explaining faulty C programs. In: ICSE (2). pp. 737–740.
IEEE (2015)

[45] Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012)

[46] Wang, T., Roychoudhury, A.: Automated path generation for software fault
localization. In: ASE. pp. 347–351. ACM (2005)

[47] Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software
fault localization. IEEE Trans. Software Eng. 42(8), 707–740 (2016)

[48] Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of test set
minimization on fault detection effectiveness. Softw. Pract. Exp. 28(4), 347–
369 (1998)

[49] Wong, W.E., Horgan, J.R., Mathur, A.P., Pasquini, A.: Test set size mini-
mization and fault detection effectiveness: A case study in a space applica-
tion. J. Syst. Softw. 48(2), 79–89 (1999)

[50] Yoo, S., Harman, M.: Regression testing minimization, selection and prior-
itization: a survey. Softw. Test. Verification Reliab. 22(2), 67–120 (2012)

[51] Yoo, S., Harman, M., Tonella, P., Susi, A.: Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge. In: IS-
STA. pp. 201–212. ACM (2009)

[52] Zeller, A.: Isolating cause-effect chains from computer programs. In: SIG-
SOFT FSE. pp. 1–10. ACM (2002)

[53] Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated pred-
icate switching. In: ICSE. pp. 272–281. ACM (2006)


	Model-based Fault Classification  for Automotive Software 

