
182

Embedding Hindsight Reasoning in Separation Logic

ROLAND MEYER, TU Braunschweig, Germany

THOMAS WIES, New York University, USA

SEBASTIAN WOLFF, New York University, USA

Automatically proving linearizability of concurrent data structures remains a key challenge for verification.

We present temporal interpolation as a new proof principle to guide automated proof search using hindsight

arguments within concurrent separation logic. Temporal interpolation offers an easy-to-automate alterna-

tive to prophecy variables and has the advantage of structuring proofs into easy-to-discharge hypotheses.

Additionally, we advance hindsight theory by integrating it into a program logic, bringing formal rigor and

complementary proof machinery. We substantiate the usefulness of temporal interpolation by implementing it

in a tool and using it to automatically verify the Logical Ordering tree. The proof is challenging due to future-

dependent linearization points and complex structure overlays. It is the first formal proof of this data structure.

Interestingly, our formalization revealed an unknown bug and an existing informal proof as erroneous.
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1 INTRODUCTION
We are concerned with automatically proving linearizability, the standard correctness criterion for

concurrent data structures [Herlihy and Wing 1990]. A concurrent data structure is linearizable

subject to a sequential specification of its methods, if each method takes effect in a single atomic

step of its concurrent execution, the method’s linearization point, and satisfies the sequential

specification in this step.

Concurrent separation logics [Bell et al. 2010; Delbianco et al. 2017; Elmas et al. 2010; Fu et al.

2010; Gotsman et al. 2013; Gu et al. 2018; Hemed et al. 2015; Parkinson et al. 2007; Sergey et al.

2015; Vafeiadis and Parkinson 2007] provide a powerful toolbox of deductive reasoning techniques

to verify complex concurrent data structures. However, the proof construction heavily relies on the

proof author’s creativity and expertise in wielding the available tools effectively. For instance, in

order to construct the inductive invariant of the data structure, the proof author may have to devise

proof-specific resource algebras to express ghost state that captures the key aspects of the computa-

tion history. This hinders proof automation due to the vast complexity of the proof space that needs

to be explored. Similarly, the proofs may make use of prophecy variables [Abadi and Lamport 1991]

to predict future-dependent linearization points [Jung et al. 2020; Liang and Feng 2013; Vafeiadis

2008]. Constructing such proofs involves backward reasoning, which is difficult to automate [Boua-

jjani et al. 2017]. It stands to reason that there is a need for guiding principles that help to structure

the proof and that provide effective strategies for automated tools to prune the search space.
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Hindsight theory [Feldman et al. 2018, 2020; Lev-Ari et al. 2015; O’Hearn et al. 2010] provides

such a guiding principle, which we refer to as temporal interpolation. One proves lemmas of the form:

if there existed a past state that satisfied property 𝑝 and the current state satisfies 𝑞, then there must

have existed an intermediate state that satisfied 𝑜 . Such lemmas can then be applied, e.g., to prove the

existence of a future-dependent linearization point in hindsight. Hindsight is 20/20, the arguments

only involve forward reasoning, which is easier to automate than, say, prophecy-based arguments.

One limitation of the existing hindsight theory is that it has only explored the general idea of

temporal interpolation very narrowly. Concretely, it has been used only to prove hindsight lemmas

about concurrent traversals of data structures. These are variations of statements of the form “if
the current node 𝑥 of the traversal was reachable from the root at some point in the past (𝑝), and 𝑦
is the successor of 𝑥 in the present state (𝑞), then 𝑦 was reachable from the root at some point in the
past (𝑜)”. We show that temporal interpolation applies more broadly in other contexts as well.

Another limitation is that the proof and application of these hindsight lemmas has so far been

confined to meta-level linearizability arguments. As a consequence, existing hindsight proofs can

lack the rigor enforced by a program logic. We show that this has resulted in at least one incorrect

hindsight-based proof in the past [Feldman et al. 2020].

Contributions. Building on [Meyer et al. 2022a], we present a concurrent separation logic that

integrates temporal interpolation as a general proof rule. The logic offers the best of both worlds: it

enables the intuitive reasoning of hindsight theory within the rigorous framework of a formal proof

system. As in [Meyer et al. 2022a], the logic’s semantic foundation is based on computations rather

than states, which it exposes at the syntactic level in the form of a lightweight temporal operator.

This operator provides a uniform mechanism for tracking history information. This reduces the

need for introducing proof-specific auxiliary ghost state and helps to prune the space of possible

proofs to consider for automatic proof construction. At the same time, the logic offers all advantages

of separation logic, including the ability to reason locally about state mutation and concurrency

via the frame rule, and to introduce ghost state if and when needed.

The key innovation over [Meyer et al. 2022a] is a new proof rule that enables general hindsight

reasoning via temporal interpolation. The proof rule postulates and then applies hypotheses

h(𝑝, 𝑞, 𝑜) that state the correctness of the temporal interpolation. These hypotheses are collected

by the main proof and then discharged in subproofs. This approach provides a proof-structuring

mechanism: the subproofs can use a coarse-grained abstraction of the program behavior, which often

simplifies the overall proof argument and aids automation. The nature of temporal interpolation as

a proof-structuring mechanism is made formally precise in our soundness proof by showing that

the proof rule can be eliminated from the logic.

To demonstrate the usefulness of our development, we have integrated temporal interpolation

into plankton [Meyer et al. 2022a], an automated verifier for concurrent search structures based on

separation logic. As a case study, we have used the extended tool [Meyer et al. 2023] to automatically

verify the logical-ordering (LO-)tree [Drachsler et al. 2014]. The proof exercises the full power

of our logic by combining a linearizability argument based on temporal interpolation with local

reasoning in separation logic. To our knowledge, there has been no formal proof of the LO-tree

prior to this work (either automated or mechanized). In fact, our efforts identified one previously

unreported bug in the original implementation of the data structure. Another bug was identified by

Feldman et al. [2020], who presented an informal hindsight-based proof. While the fix proposed by

Feldman et al. [2020] addresses the original bug, we show that it introduces a new linearizability

violation. This underscores the benefit of supporting hindsight proofs in a formal logic.

Limitations. Our focus is on automating linearizability proofs for concurrency library implementa-

tions. In particular, our program logic was not designed for modular verification of library clients
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1 struct C { var l: Int; var r: Int }

2 predicate counter(𝑐: C, 𝑛: Int) {

3 ∃ 𝑛𝑙 𝑛𝑟 ::

4 𝑐.l ↦→ 𝑛𝑙 ∗ 𝑐.r ↦→ 𝑛𝑟 ∧
5 𝑛 == 𝑛𝑙 + 𝑛𝑟

6 }

7

{
counter(𝑐, 𝑛)

}
8 method read(𝑐: C) {

9 val 𝑥 = 𝑐.l

10 val 𝑦 = 𝑐.r

11 return 𝑥 + 𝑦

12 }
{
𝑣. counter(𝑐, 𝑛) ∗ 𝑣 = 𝑛

}

13

{
counter(𝑐, 𝑛)

}
14 method inc(𝑐: C) {

15 if (nondet())

16 FAA(𝑐.l, 1)

17 else FAA(𝑐.r, 1)

18 }
{
counter(𝑐, 𝑛 + 1)

}
Fig. 1. Distributed counter object.

against the proved linearizability specifications. Moreover, plankton is not yet fully automated: the

user provides an invariant describing the properties of each node comprising the data structure

in the shared heap. Finally, the implementation of temporal interpolation in plankton is currently

geared towards reasoning about pure future-dependent linearization points (i.e., those that do

not modify the abstract state of the data structure). We leave the handling of impure cases in the

implementation as future work. Though, we note that these cases are not prevalent in the context

of concurrent search structures.

A companion technical report containing additional details is available as [Meyer et al. 2022b].

2 OVERVIEW
We illustrate our approach using the idealized distributed counter shown in Figure 1. A counter

object 𝑐 has an abstract state that tracks an integer value 𝑛 and supports two methods: inc(𝑐)

atomically increments 𝑛 by 1 and read(𝑐) returns 𝑛. The counter is distributed in the sense that 𝑛 is

the sum of two integer values stored in separate memory locations 𝑐.l and 𝑐.r. The implementation

of inc non-deterministically chooses one of the two locations and then atomically increments

it using a fetch-and-add (FAA) instruction. The implementation of read non-atomically reads the

values of the two memory locations and then returns their sum.

Our goal is to prove that the distributed counter is linearizable with respect to its sequential

specification, which is given in Figure 1 as Hoare annotations expressed in separation logic. The

specification uses the predicate counter(𝑐, 𝑛) to define the abstract state of the counter 𝑐 in terms

of the underlying memory representation. Here, a points-to predicate 𝑎 ↦→ 𝑣 expresses ownership

of the memory location at address 𝑎 and, moreover, that this location stores value 𝑣 . The operator

𝑝 ∗𝑞 is separating conjunction, which expresses that 𝑝 and 𝑞 hold over disjoint memory regions. In

the following, we assume an intuitionistic semantics of these predicates, i.e. 𝑝 ∗ true = 𝑝 .

To prove linearizability, we need to show that each method transforms its precondition to its

postcondition in a single atomic step. Due to interferences by concurrent inc methods, the counter

value may change throughout the execution of a method. Hence, the value 𝑛 in the precondition of

the specification does not refer to the counter’s initial abstract state when the method is invoked,

but rather to its abstract state at the linearization point. This semantics of the Hoare annotations

corresponds to that of logically atomic triples [da Rocha Pinto et al. 2014]. Note that the variable 𝑣

in the postcondition of read is bound to the method’s return value.

The linearization point of inc is when FAA is executed and the desired Hoare specification follows

immediately from the specification of FAA. So we focus on the more interesting case of read. The

read method does not change the value of the counter. Hence, it suffices to show that the returned

value 𝑥 + 𝑦 is equal to the counter value 𝑛 at the linearization point. The challenge is that the

linearization point depends on the future interferences of concurrent inc operations. In fact, it

may lie in a concurrently executing inc. For example, consider the scenario where at the point

when read executes Line 9, we have 𝑐.l = 𝑐.r = 0 and before it proceeds to Line 10, two concurrent

incs increment first 𝑐.l and then 𝑐.r to 1. That is, when read executes Line 9 we have 𝑛 = 0 and

when it executes Line 10 we have 𝑛 = 2, yet the return value is 1. Nevertheless, this execution of
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read is linearizable because there is a time point in between when 𝑛 = 1, namely right after the

linearization point of the first concurrently executing inc. Note that if the second inc incremented

𝑐.l instead of 𝑐.r, then the return value of read would be 0 and its linearization point would already

be when it reads 𝑐.l. This is why the linearization point of read is future-dependent.

Intuitively, the linearizability of read follows from the fact that the twomemory locations increase

monotonically by increments of 1. So if the counter has value 𝑛 at some point 𝑡 and value 𝑛′ > 𝑛 at

some later point 𝑡 ′, then for each value 𝑛′′ with 𝑛 ≤ 𝑛′′ ≤ 𝑛′ there is an intermediate state between

𝑡 and 𝑡 ′ where the value of the counter is 𝑛′′. We demonstrate how to formalize this intuitive

argument in our program logic. The logic enables temporal reasoning about computations using

past predicates, ⟐p, which express that the state predicate p held true at some prior state of the

computation. Our goal is to derive that⟐(counter(𝑐, 𝑥 + 𝑦)) is true after Line 10. This implies the

existence of a linearization point for read.

The proof proceeds in two parts. The first part proves the goal above but assumes the validity

of an auxiliary hypothesis that is derived during the proof. This hypothesis captures the intu-

itive reasoning used above to conclude the existence of an unobserved intermediate state due to

interferences by other threads. The second part of the proof discharges this hypothesis.

An outline of the first part of the proof is shown in Figure 2. Throughout the proof, variables that

do not occur in the program code such as 𝑛𝑙 are implicitly existentially quantified. The program

logic follows a thread-modular approach that mostly uses sequential Hoare-style reasoning. The

soundness of this reasoning is guaranteed by ensuring that each two consecutive atomic commands

are separated by an interference-free intermediate assertion. That is, concurrently executing threads

will not affect the truth value of this assertion. In the following, we elude the details of the

mechanism used to check interference freedom as it is orthogonal to our core contributions. The

details of this mechanism are presented in §3.

19

{
counter(𝑐, 𝑛)

}
20 method read(𝑐: C) {

21

{
𝑐.l ↦→ 𝑛𝑙 ∗𝑐.r ↦→ 𝑛𝑟

}
22 val 𝑥 = 𝑐.l

23

{
𝑐.l ↦→ 𝑛𝑙 ∗𝑐.r ↦→ 𝑛𝑟 ∧ 𝑥 = 𝑛𝑙

∧⟐(𝑐.l ↦→ 𝑛𝑙 ∗𝑐.r ↦→ 𝑛𝑟 )

}
24

{
𝑐.l ↦→ 𝑛′

𝑙
∗𝑐.r ↦→ 𝑛′

𝑟 ∧ 𝑥 = 𝑛𝑙

∧⟐(𝑐.l ↦→ 𝑛𝑙 ∗𝑐.r ↦→ 𝑛𝑟 ∧ 𝑛𝑟 ≤ 𝑛′
𝑟 )

}
25 val 𝑦 = 𝑐.r

26

{
𝑐.l ↦→ 𝑛′

𝑙
∗𝑐.r ↦→ 𝑛′

𝑟 ∧ 𝑥 = 𝑛𝑙 ∧ 𝑦 = 𝑛′
𝑟

∧⟐(𝑐.l ↦→ 𝑛𝑙 ∗𝑐.r ↦→ 𝑛𝑟 ∧ 𝑛𝑟 ≤ 𝑛′
𝑟 )

}
27 // Hypothesis: ∀𝑛𝑙 𝑛𝑟 𝑛′

𝑟 . { a } I∗ { b }
28 // a ≜ 𝑐.l ↦→ 𝑛𝑙 ∗𝑐.r ↦→ 𝑛𝑟 ∧ 𝑛𝑟 ≤ 𝑛′

𝑟

29 // b ≜ 𝑐.r ↦→ 𝑛′
𝑟 → _⟐(counter(𝑐, 𝑛𝑙 + 𝑛′

𝑟 ))

30

{
counter(𝑐, 𝑛′ ) ∧ 𝑥 = 𝑛𝑙 ∧ 𝑦 = 𝑛′

𝑟

∧⟐(counter(𝑐, 𝑛𝑙 + 𝑛′
𝑟 ) )

}
31

{
counter(𝑐, 𝑛′ ) ∧⟐(counter(𝑐, 𝑥 + 𝑦) )

}
32 return 𝑥 + 𝑦

33 }
{
𝑣. counter(𝑐, 𝑛) ∗ 𝑣 = 𝑛

}
Fig. 2. Proof outline for the read method.

The proof starts by unfolding the definition of

counter(𝑐, 𝑛) in the precondition, yielding the assertion

on Line 21. After reading 𝑐.l we know that 𝑥 is bound

to the old value 𝑛𝑙 of 𝑐.l. We also record the state of

the counter before the read command in a past predi-

cate⟐(𝑐.l ↦→ 𝑛𝑙 ∗ 𝑐.r ↦→ 𝑛𝑟 ), yielding the assertion on

Line 23. This assertion is not interference-free because

concurrent inc threads may change the values of 𝑐.r

and 𝑐.l. We therefore weaken the assertion by introduc-

ing fresh variables 𝑛′
𝑙
and 𝑛′𝑟 for these values. We leave

𝑛′
𝑙
unconstrained but preserve 𝑛𝑟 ≤ 𝑛′𝑟 , capturing that

concurrent threads can only increase 𝑐.r. Since 𝑛𝑟 ≤ 𝑛′𝑟
only concerns logical variables, we can push this fact

into the past predicate. The resulting interference-free

assertion is shown on Line 24.

We proceed similarly for the read of 𝑐.r resulting

in the assertion on Line 26. Again, this assertion is

not interference-free because concurrent threads may

change the value of 𝑐.r. We want to weaken this asser-

tion to the interference-free assertion on Line 31, which

implies our desired goal. Observe that Line 31 follows from Line 30 using equality reasoning. So

it remains to connect lines 26 and 30. First, observe that the predicate counter(𝑐, 𝑛′) is obtained
from 𝑐.l ↦→ 𝑛′

𝑙
∗ 𝑐.r ↦→ 𝑛′𝑟 by choosing 𝑛′ = 𝑛′

𝑙
+ 𝑛′𝑟 . To derive, ⟐(counter(𝑐, 𝑛𝑙 + 𝑛′𝑟 )), the proof

conjectures the validity of the hypothesis on Line 27. This hypothesis is a Hoare triple of the shape
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{ 𝑝 } I∗ {𝑞 → _⟐𝑜 }. Here, → is logical implication and _⟐𝑜 is syntactic sugar for 𝑜 ∨ ⟐𝑜 . The
variable I stands for a set of interferences that the overall proof infers as an auxiliary output of its

derivation. The set I consists of pairs (g, com) where com is any atomic command in the program

that affects the thread-local or shared program state, and g is the intermediate assertion preceding

com in the proof. In our example, the derived interferences all come from the inc method. They

comprise the set

I = {(𝑐.l ↦→ 𝑣, FAA(𝑐.l, 1)), (𝑐.r ↦→ 𝑣, FAA(𝑐.r, 1))} .

Each interference can be viewed as a guarded command that first assumes g and then executes com.

From these guarded commands, we build the new program I∗ which nondeterministically executes

the interferences in I an arbitrary number of times. That is, I∗ can be viewed as abstracting the

overall program. Thus, the hypothesis { 𝑝 } I∗ {𝑞 → _⟐𝑜 } states that if execution starts from a state

that satisfies 𝑝 and after any number of program steps it reaches a state that satisfies 𝑞, then 𝑜 must

have been true in some intermediate state. The temporal interpolation rule allows us to derive from

such a hypothesis that if the program is in a state s that satisfies⟐𝑝 ∧ 𝑞, then also _⟐𝑜 holds in s.
We use temporal interpolation to derive Line 30 from Line 26 using the hypothesis on Line 27.

The second part of the proof is then to establish the validity of the hypothesis. This part can

also be carried out in the logic, using the same thread-modular and local reasoning principles.

Effectively, the proof boils down to finding an invariant inv that is implied by 𝑝 , implies 𝑞 → _⟐𝑜 ,

and is preserved by each of the interferences. In our example, the following invariant does the trick:

inv ≜ ∃𝑛′′
𝑙
𝑛′′𝑟 . 𝑐 .l ↦→ 𝑛′′

𝑙
∗ 𝑐.r ↦→ 𝑛′′𝑟 ∧ 𝑛𝑙 ≤ 𝑛′′

𝑙
∧ 𝑛′′

𝑙
+ 𝑛′′𝑟 < 𝑛𝑙 + 𝑛′𝑟 ∨ _⟐(counter(𝑐, 𝑛𝑙 + 𝑛′𝑟 ))

Intuitively, the first disjunct of the invariant holds up to the linearization point and afterwards,

the second disjunct holds. Note that inv contains a past operator and is therefore a computation
predicate, not a state predicate.
We contrast the above proof with one based on prophecy reasoning in the style of [Jung et al.

2020]. Without temporal interpolation, the proof has to witness the linearization point of a read

thread 𝑡 at the exact moment where the relevant inc thread sets 𝑛 to 𝑛𝑙 +𝑛′𝑟 for the value 𝑛′𝑟 that will
be later read by 𝑡 . However,𝑛′𝑟 depends on howmany other inc threads will still increment r between

these two points. One can introduce a prophecy variable for 𝑡 that predicts the number of such

increments between the points when 𝑡 reads l and r. To establish the linearizability argument, the

prophecy variables and linearization obligations for the unboundedely many read threads need to be

shared with all inc threads that may execute concurrently. This involves a complex helping protocol
construction that governs the transfer of resources between threads. This construction is reflected

in the proof in the form of a more complex invariant capturing the shared state of the data structure.

3 PRELIMINARIES
We study concurrency libraries, i.e., a single program executed by a potentially unbounded number

of threads. We give a formal account of concurrency libraries and introduce a Hoare-style proof

system for verifying them. Our formalism is based on [Meyer et al. 2022a].

3.1 Programming Model
Along the lines of abstract separation logic [Calcagno et al. 2007; Dinsdale-Young et al. 2013; Jung

et al. 2018], the actual sets of states and commands are a parameter to our development.

States and Computations. We draw states from a separation algebra, a partial commutative monoid

(Σ, ∗, emp) with a set of units emp so that (i) each state s ∈ Σ has a unit 1 ∈ emp with s ∗ 1 = s, and
(ii) 1 ∗ 1′ is undefined for any two distinct units 1, 1′ ∈ emp. Definedness of s ∗ s′ is denoted s # s′.
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We work over a separation algebra with a certain structure. We expect states from (Σ, ∗, emp)
to be composed from a global and a local state. The global resp. local states are again drawn from

separation algebras (ΣG, ∗G, empG) resp. (ΣL, ∗L, empL). We require that (i) states in Σ are multiplied

elementwise, (g1, l1) ∗(g2, l2) ≜ (g1 ∗G g2, l1 ∗L l2) provided the resulting state is in Σ and undefined

otherwise, (ii) states Σ can be decomposed, (g1 ∗G g2, l1 ∗L l2) ∈ Σ implies (g1, l1) ∈ Σ, and (iii) units

emp are also composed, emp ≜ empG × empL. It is readily checked that this is a separation algebra.

The temporal interpolation principle we propose reasons over knowledge obtained at different

points in time during a computation. To formulate it, we lift the given separation algebra (Σ, ∗, emp)
to a separation algebra over computations (Σ+, ∗, Σ∗ .emp). A computation is a non-empty sequence

of states. We write 𝜎.𝜏 for the concatenation of two computations 𝜎 and 𝜏 . The multiplication of

two computations 𝜎.s, 𝜏 .t ∈ Σ+
is defined, 𝜎.s #𝜏 .t, if 𝜎 = 𝜏 and s # t. In this case, the multiplication

yields 𝜎.s ∗𝜏 .t ≜ 𝜎.(s ∗ t). The two computations share the same history, which is preserved by the

multiplication. In the current state, we use the composition given by the separation algebra. This

construction works in general, not just for our product separation algebra.

Lemma 3.1. If (Σ, ∗, emp) is a separation algebra, so is (Σ+, ∗, Σ∗ .emp).

Predicates. For clarity of the exposition, we refrain from introducing an assertion language that

needs to be interpreted but work on the semantic level. Given a separation algebra (Γ, ∗, emp), a
predicate is a set of elements from Γ. The predicates form a Boolean algebra (P(Γ),∪,∩, ⊆, ,∅, Γ)
with disjunction, conjunction, implication, negation, false, and true. We moreover have the standard

connectives separating conjunction ∗ and separating implication −∗:
p ∗ q ≜ {𝛾1 ∗𝛾2 | 𝛾1 ∈p ∧ 𝛾2 ∈q ∧ 𝛾1 #𝛾2 } and p −∗ q ≜ {𝛾 | {𝛾} ∗ p ⊆ q } .

A predicate p is intuitionistic, if p ∗ Γ ⊆ p.
In our setting, we have the separation algebra of states (Σ, ∗, emp) and state predicates p, q, o ⊆ Σ.

We moreover have the separation algebra of computations (Σ+, ∗, emp+) and computation predicates
a, b, c ⊆ Σ+

. For our temporal interpolation principle developed in §4, it suffices to consider simple

computation predicates that reason about single states of the computation. These computation

predicates are derived from state predicates.

Definition 3.2. From state predicates p ⊆ Σ we construct (i) the now predicate _p ≜ Σ∗ .p and

(ii) the past predicate ⟐p ≜ Σ∗ .p.Σ+
and (iii) the weak past predicate _⟐p ≜ _p ∪⟐p.

Now predicates lift state predicates to hold in the last (the current) state of a computation. Past

predicates lift state predicates to hold at some time in the past of the computation. The precise

moment when the state predicate was true is not known, which means framing is not relevant for

past predicates, and lead us to define the multiplication of computations as an intersection in the

past. Intuitionism carries over from state to computation predicates.

Lemma 3.3. If p is intuitionistic, so is _p. Predicate ⟐p is intuitionistic.

The predicates are compatible with the separation logic operators as follows.

Lemma 3.4. _ (p ⊕ q) = _p ⊕ _q for all ⊕ ∈ {∩,∪, ∗,−∗}, _p = _p, false = _false, true = _true,
_p ⊆ _q iff p ⊆ q, ⟐(p ∩ q) ⊆ ⟐p ∩⟐q, ⟐(p ∪ q) = ⟐p ∪⟐q, and ⟐p ⊆ ⟐q iff p ⊆ q.

Commands. We assume a potentially infinite set of commands (COM, ⟦−⟧). The actual set is a

parameter and not relevant for our development. Commands com ∈ COM transform a pre state into a

post state which, due to non-determinism, need not be unique. This state transformer is given by

the interpretation ⟦com⟧ : Σ → P(Σ) of com. We lift the transformer to computations by appending

the post state: ⟦⟦com⟧⟧(𝜎.s) ≜ { 𝜎.s.s′ | s′ ∈ ⟦com⟧(s) }. The transformer extends to predicates in
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the usual way [Dijkstra 1976]: ⟦⟦com⟧⟧(a) ≜ ⋃
𝜎∈a ⟦⟦com⟧⟧(𝜎). We expect to have a neutral command

skip ∈ COM that is interpreted as the identity. To model failing commands, we follow [Calcagno

et al. 2007] and assume their post state to be abort, a dedicated top value in the lattice of predicates.

For the frame rule to be sound, we require the following locality:

∀a, b, c ⊆ Σ+. ⟦⟦com⟧⟧(a) ⊆ b implies ⟦⟦com⟧⟧(a ∗ c) ⊆ b ∗ c . (LocCom)

Note that (LocCom) requires the computation predicate c to perform a stuttering step when being

framed on the right-hand side of the latter inclusion. We call a computation predicate c ⊆ Σ+

frameable, if 𝜎.s ∈ c implies 𝜎.s.s ∈ c for all 𝜎.s ∈ Σ+
. Fortunately, all computation predicates that

are constructed by union, intersection, and separating conjunction from now and past predicates are

frameable. Unless otherwise stated, we will assume that all predicates we encounter are frameable.

Concurrency libraries. Concurrency libraries consist of an unbounded number of threads that all

execute the same program st. Different functions would be modeled by an initial non-deterministic

choice among the function bodies, which is supported in ourwhile language togetherwith sequential

composition and repetition:

st F com | st + st | st; st | st∗ .

A configuration cf = (𝛾, pc) of the library comprises a global computation 𝛾 ∈ Σ+
G and a program

counter pc. The program counter maps thread identifiers 𝑖 ∈ N to pairs pc(𝑖) = (_, st) containing
thread-𝑖-local information: a computation _ ∈ Σ+

L and a program fragment st the execution of which

remains. The transition rules among configurations are as expected: a step of thread 𝑖 changes the

shared and the thread-𝑖-local information according to the transformer of the executed command,

and leaves all other threads unchanged.

Towards a Hoare-style proof system, we call a configuration (𝛾, pc) initial wrt. computation

predicate a and program st, if all threads 𝑖 with pc(𝑖) = (_, st′) satisfy (𝛾, _) ∈ a and st′ = st.

Similarly, (𝛾, pc) is accepting wrt. b, if all terminated threads with pc(𝑖) = (_, skip) satisfy (𝛾, _) ∈ b.
Reachability is defined as usual. We refer to the initial, accepting, and reachable configurations by

Inita,st, Accb, and Reach(cf), respectively.
The correctness condition we would like to prove for concurrency libraries is whether all

configurations reachable from a-st-initial configurations are b-accepting, Reach(Inita,st) ⊆ Accb.
In this case, we say that a Hoare triple of the form { a } st { b } is valid, denoted by |= { a } st { b }.

3.2 Program Logic
We use a proof system to establish the validity of Hoare triples, Figure 3 below (ignore the marked

parts for now). The proof system is thread-modular [Berdine et al. 2008; Jones 1983] in nature, thus

verifies a single thread in isolation. To account for the actions of other threads which may affect

the isolated thread, we ensure interference freedom [Owicki and Gries 1976] of the overall proof.

Technically, the proof system establishes judgements P, I ⊩ { a } st { b } with the following

components: (i) a Hoare triple { a } st { b } for the isolated thread, (ii) a set P of intermediary

assertions used during the proof of the Hoare triple, and (iii) a set I of interferences that the isolated
thread is subject to. Recording the intermediary assertions allows us to separate the interference

freedom check from the derivation of the Hoare triple [Dinsdale-Young et al. 2013, Section 7.3]. We

denote the interference freedom of P under I by iI P. The resulting proof system is sound.

Theorem 3.5 (Meyer et al. [2022a]). P, I ⊩ { a }st { b } and iI P and a ∈ P imply |= { a }st { b }.

In our development, we will use the set of computations ⟦⟦st⟧⟧I (a) defined by extending each

computation in a by every sequence of states encountered when executing program st to completion
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while admitting interferences from I. The formal definition is the straightforward lift of ⟦⟦−⟧⟧ to

sequences of commands and interferences. A consequence of the soundness result is the following.

Lemma 3.6. If there is a set P with a ∈ P, iI P, and P, I ⊩ { a } st { b }, then ⟦⟦st⟧⟧I (a) ⊆ b.

Interference Freedom. The isolated thread is influenced by the actions of other, interfering threads.

We capture those actions as interferences (c, com), meaning that commay be executed by an interfering

thread from a configuration satisfying c. Observe that the global portion of c imposes restrictions

on when the interference may happen while the local portion of c supplies the local computation

the interfering thread needs for its execution. From the point of view of the isolated thread with

computation (𝛾, _), only the global portion 𝛾 changes, formally:

⟦⟦(c, com)⟧⟧(𝛾, _) ≜ { (𝛾 ′, _) | ∃_1, _2. (𝛾, _1) ∈ c ∧ (𝛾 ′, _2) ∈ ⟦⟦com⟧⟧(𝛾, _1) } .
The interference freedom check wrt. a set I of interferences then proceeds as follows. It takes a

computation predicate a and tests whether ⟦⟦(c, com)⟧⟧(a) ⊆ a for all (c, com) ∈ I. If this is the
case, the interference does not invalidate a and the predicate is interference-free. The interference

freedom check extends naturally to the set of predicates P. We write I ∗ b for the set of interferences
(a ∗ b, com) with (a, com) ∈ I. We also use the notation for sets of predicates P and write P ∗ b for the
set of predicates a ∗ b with a ∈ P. We also remark that past information is always interference-free,

because interferences append states and this does not change the past of the computation.

4 TEMPORAL INTERPOLATION
Temporal interpolation is a reasoning principle to derive information about intermediary states that

have not been observed in the program proof. Coming back to the example of a distributed counter,

if the counter value has been 𝑛1 in the past and is now 𝑛2 > 𝑛1, then we wish to derive that there

has been a moment in which the counter has been 𝑛 with 𝑛2 ≥ 𝑛 ≥ 𝑛1. Temporal interpolation will

allow us to do so, although an assertion with counter value 𝑛 is not interference-free and hence

will not be observable in the program proof. We can actually guarantee that the moment in which

the counter was 𝑛 is in between the past and the current state, but defer the timing aspect for

now. Another example of temporal interpolation is reachability in concurrent data structures, as

studied by the hindsight principle which inspired this work [Feldman et al. 2018, 2020; O’Hearn

et al. 2010]. If a node 𝑛1 has been reachable in the past, and the node now points to 𝑛2, then there

has been a moment in which the node was reachable and pointed to 𝑛2. Also this moment will not

be interference-free and hence cannot be recorded in the program proof (the set of predicates P).
To derive the intermediary information, temporal interpolation proves inclusions of the form

_⟐p ∩ _q ⊆ _⟐o . (1)

The inclusion indeed formulates an interpolation property for the set of computations: if state

predicate p has been true in the past of the computation and we now have q, then there has been a

moment in which o was true, and typically o will be p ∩ q. Unfortunately, the inclusion will rarely

hold in this generality. The first problem is that the set of computations leading from p to q is too

liberal. Rather than considering all sequences of states, we should only consider the ones generated

by the program at hand. The second problem is that even if we restrict the computations, we need

to prove the inclusion. Our technical contribution is to embed the above inclusion into a proof

system in which it can justifiably be used.

To restrict the set of computations leading from p to q, we introduce a new predicate that

reflects the influence of the program on the course of the computation. The observation behind

the definition of the predicate is that the set of interferences I which we collect during the proof

gives us precise information about the program behavior. An interference (a, com) ∈ I not only
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says that a command com is executable, it also records in predicate a the conditions under which
the command will be executed. Notably, these conditions refer to the shared as well as the local

state, meaning the interference captures the thread-local behavior as well. The new predicate thus

employs the set of interferences as an abstraction of the overall program behavior.

To make the idea formal, we transform interferences into programs as follows:

2com(a, com) ≜ atomic{ assume(a ∗ true); com } and 2stmt(I) ≜
(∑

(a,com) ∈I 2com(a, com)
)∗

.

We turn an interference (a, com) into an atomic block the execution of which is guarded by an

assumption. Recall that atomic blocks are not part of our programming constructs, but the above

expression will be treated as a single command with the expected semantics. The reason we need

a single command is that 2com(a, com) should abstract command com in the program, and that

command leads to a single state change. Also note that a is a predicate from the assertion language

that we deliberately use within an assumption. To be closer to programming practice, one can

weaken a to information about the current state that can be checked over the program variables. We

use a ∗ true rather than a to make sure the command satisfies (LocCom). We also call 2com(a, com) a
self-interference. Function 2stmt(−) lifts the construction to a set of interferences. The resulting

program repeatedly executes all self-interferences in random order.

The new predicate Gov(I) describes the set of I-governed computations, the computations in

which every state change is due to an interference or a self-interference:

Gov(I) ≜ ⟦⟦2stmt(I)⟧⟧I (Σ) .
We view here Σ as a set of computations that consist of a single state. With this definition, we

intend to replace Inclusion (1) by

_⟐p ∩ _q ∩ Gov(I) ⊆ _⟐o . (2)

This inclusion may or may not hold depending on the set of interferences. To prove the inclusion for

the set of interferences at hand, we define Hoare triples that take a set of interferences as a parameter.

We justify the need for this parameterization in moment. A so-called hypothesis h has the form

X ⊩ { a } 2stmt(X) { b } .
Variable X will be evaluated by a set of interferences. The hypothesis is said to hold for I, denoted
by I✓ h, if we can prove the Hoare triple with X replaced by I: there is a set of predicates P with
a ⊆ a′ ∈ P so that P, I ⊩ { a′ } 2stmt(I) { b } is derivable and iI P. We elaborate on the weakening

of a to a′ further below. For a set of hypothesis H, we write I✓H to mean I✓ h for all h ∈ H.
The hypotheses we are interested in have the shape

X ⊩ { _p } 2stmt(X) { _q → _⟐o } .
Since the shape is fixed, we write the hypothesis as h(p, q, o). It states that from a computation

ending in p, every execution of the interferences and the self-interferences that leads to a state from

_q satisfies _⟐o. This is precisely the information that has been missing to justify Inclusion (2).

Lemma 4.1. If I✓ h(p, q, o), then _⟐p ∩ _q ∩ Gov(I) ⊆ _⟐o.

We incorporate temporal interpolation into the separation logic presented in §3 by means of the

new proof rule temporal-interpolation given in Figure 3. It draws a conclusion as in Equation (1)

at the expense of recording a hypothesis h(p, q, o). There are a few things worth noting. The rule

does not expect the predicate Gov(I) to be present in the premise. The soundness result will show

that any program proof can be strengthend to maintain the set of governed computations, and

we can therefore leave this set implicit. We draw the conclusion after a skip command, which

turns the weak past predicate _⟐o from the hypothesis into a proper past predicate ⟐o. This is
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com-ti

⟦⟦com⟧⟧(a) ⊆ b

{b}, { (a, com) },∅ ⊩ti { a } com { b }

temporal-interpolation

p, q intuitionistic I = { (a, skip) } H = { h(p, q, o) }
{ a ∩⟐o }, I,H ⊩ti { a ∩ _⟐p ∩ _q } skip { a ∩⟐o }

temporal-interpolation-unordered

p, q intuitionistic

I = { (a, skip) } H = { h(p, q, o), h(q, p, o) }
{ a ∩⟐o }, I,H ⊩ti { a ∩ _⟐p ∩ _⟐q } skip { a ∩⟐o }

conseqence-ti

P′, I′,H′ ⊩ti { a′ } st { b′ } a ⊆ a′

P′ ⊆ P I′ ⊆ I H′ ⊆ H b′ ⊆ b

P, I,H ⊩ti { a } st { b }
frame-ti

P, I,H ⊩ti { a } st { b }
P ∗ c, I ∗ c,H ⊩ti { a ∗ c } st { b ∗ c }

seq-ti

P1, I1,H1 ⊩ti { a } st1 { b } P2, I2,H2 ⊩ti { b } st2 { c }
{b} ∪ P1 ∪ P2, I1 ∪ I2,H1 ∪ H2 ⊩ti { a } st1; st2 { c }

loop-ti

P, I,H ⊩ti { a } st { a }
{a} ∪ P, I,H ⊩ti { a } st∗ { a }

choice-ti

P1, I1,H1 ⊩ti { a } st1 { b } P2, I2,H2 ⊩ti { a } st2 { b }
P1 ∪ P2, I1 ∪ I2,H1 ∪ H2 ⊩ti { a } st1 + st2 { b }

Fig. 3. Program logic from Meyer et al. [2022a] with our extension of hypotheses and temporal interpolation.
We denote the former by ⊩ and the latter by ⊩ti (the subscript is short for “temporal interpolation”).

needed to harmonize the implicit treatment of Gov(I) with framing. However, one can easily avoid

the skip by applying the rule to the preceding command. The state predicates p and q should be

intuitionistic. This is also related to framing. Rule temporal-interpolation-unordered is a variant

in which we do not know whether p or q has been observed first and we rely on both hyptheses.

The hypotheses spawned by temporal-interpolation have to be discharged against the full set of

interferences collected for the overall program. This is the reason why we work with hypotheses as

parameterized Hoare triples rather than ordinary Hoare triples: in the moment we interpolate, we do

not yet know the full set of interferences. Instead, we may only have a fraction of the program (and

hence the interferences) at hand. It is also the reason why the separation logic judgements given

in Figure 3 maintain a set H of hypotheses, and the rules are modified to join these sets. We are not

allowed to forget a hypothesis while building up the correctness judgement for the overall program.

We elaborate on why we weaken a to a′ in the definition of I✓ h. The purpose of temporal-
interpolation is to derive _⟐o from _⟐p ∩ _q. Typically, p occurs within a weak past predicate,

because it is not interference-free. This means no interference-free set of predicates P can prove

the hypothesis { _p } 2stmt(X) { _q → _⟐o }. A way out would be to prove the hypothesis for a

weaker predicate p ⊆ p′ and replace the predicate _⟐p in the main proof by _⟐p′. Unfortunately,
the predicates p that require temporal interpolation not only fail the interference freedom test, it

also seems to be impossible to weaken them to interference-free state predicates. All we can do is

weaken them by introducing past information. Consider the example of a distributed counter given

in §2. There, p is the predicate 𝑐.l ↦→ 𝑛𝑙 ∗ 𝑐.r ↦→ 𝑛𝑟 ∧ 𝑛𝑟 ≤ 𝑛′𝑟 . We weaken it to the invariant inv
defined as ∃𝑛′′

𝑙
𝑛′′𝑟 . 𝑐 .l ↦→ 𝑛′′

𝑙
∗ 𝑐.r ↦→ 𝑛′′𝑟 ∧ 𝑛𝑙 ≤ 𝑛′′

𝑙
∧ 𝑛′′

𝑙
+ 𝑛′′𝑟 < 𝑛𝑙 + 𝑛′𝑟 ∨ _⟐(counter(𝑐, 𝑛𝑙 + 𝑛′𝑟 )).

Although we have _p ⊆ inv, the invariant does not have the shape _p′. This means the invariant

does not lead to a hypothesis h(p′, q, o) as required for temporal interpolation. By weakening the

condition of when h(p, q, o) holds, we bridge the gap between _p and inv.
Hypotheses require an ordinary program proof, using amethod of choice. Yet, their shape suggests

an invariance-based proof strategy: since program 2stmt(I) repeats self-interferences 2com(a, com),
it suffices to find a predicate that is stable under these commands, contains the precondition, and

entails the postcondition. Call inv ⊆ Σ+
an inductive invariant for I if ⟦⟦2com(a, com)⟧⟧(inv) ⊆ inv

for all (a, com) ∈ I and iI inv. We say that inv proves h(p, q, o), if _p ⊆ inv and inv ∩ _q ⊆ _⟐o.

Lemma 4.2 (Strategy). Let inv be an inductive invariant for I proving h(p, q, o). Then I✓ h(p, q, o).
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4.1 Soundness
We show that every proof in the new program logic of Figure 3 gives rise to a proof in the program

logic of §3, provided the hypotheses hold for the overall set of interferences. Also successful

interference freedom checks will carry over. This means we can take full advantage of temporal

interpolation, trusting that a traditional program proof will exist which discharges all hypotheses

along the way. Temporal interpolation can therefore be understood as a way of structuring and

shortening traditional program proofs that involve temporal reasoning. Technically, soundness

shows that any derivation in the new program logic can be strengthened by an intersection with

Gov(I). This allows us to replace temporal-interpolation by conseqence-ti relying on Lemma 4.1.

Theorem 4.3 (Soundness). Consider a derivation P, I,H ⊩ti { a }st{ b } with a∈P, iI P, and I✓H.
Then P∩Gov(I), I ⊩ { a∩Gov(I) }st { b∩Gov(I) } with a∩Gov(I) ∈P∩Gov(I) and iI (P∩Gov(I)).

The difficulty in proving the theorem is the interplay between the intersection we intend to add

and the frame rule. Therefore, our first step is to eliminate the frame rule and show that whenever

a correctness statement can be derived, then it can be derived without frame-ti. Let ⊩ti,nf denote
the restriction of ⊩ti that avoids frame-ti.

Lemma 4.4 (frame-ti elimination). P, I,H ⊩ti { a } st { b } iff P, I,H ⊩ti,nf { a } st { b }.

At the heart of the lemma is the fact that the frame rule commutes with the remaining rules of the

program logic. This allows us to organize proofs in such a way that the frame rule is applied right

after com-ti. A combination of com-ti and frame-ti, in turn, can be captured by com-ti alone. The

difficult case is temporal-interpolation, for the proof of which we rely on the following identity.

Lemma 4.5. b ∗ c ∩⟐o = (b ∩⟐o) ∗ c.

With the previous result, the derivation that makes use of temporal interpolation can be assumed

to be frame-ti-free. We now show that also temporal-interpolation can be eliminated, provided

we strengthen the correctness statement by the governed computations.

Lemma 4.6. If P, I′,H ⊩ti,nf { a } st { b } is derivable, then for all I with I′ ⊆ I and I✓H we have
P ∩ Gov(I), I ⊩ { a ∩ Gov(I) } st { b ∩ Gov(I) }.

The previous lemmas allow us to prove Theorem 4.3. For interference freedom, note that the

governed computations are interference-free, iI Gov(I), and we have iI P by the assumption. The

intersection of two interference-free predicates is interference-free.

5 TEMPORAL INTERPOLATION FOR LINEARIZABILITY
We present an extension of our program logic from §4 to verify linearizability. The approach is akin

to atomic triples [da Rocha Pinto et al. 2014], except that we do not aim to support compositional

reasoning about clients against atomic specifications of libraries. Instead, we only focus on verifying

library implementations. We use update tokens that encode a method’s obligation to execute a

linearization point. Once the method executes a command that resembles the linearization point,

the update token is traded into a receipt token certifying successful linearization. This also prevents

the method from having further linearization points since tokens are not duplicable and thus

no more tokens can be traded. Here, we focus on concurrent search structures (CSS), however,

the approach applies more generally. Sequential specifications Ψ of concurrent search structure

methods op and key 𝑘 take the following form:

Ψ = { C. CSS(C) } op(𝑘) { 𝑣 . ∃C′ . CSS(C′) ∗UP(C, C′, 𝑘, 𝑣) } .
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com-lin-void

P, I,H ⊩ti { a } com { b }
a ⊆ CSS(C) b ⊆ CSS(C)
P, I,H ⊩linti { a } com { b }

com-lin-pure

a ⊆ ⟐
(
CSS(C) ∗UP(C, C, 𝑦, 𝑣)

)
P = RCT𝑣 ∗ a I = { (a, skip) } × (OBL ⇝ RCT𝑣)

P, I,H ⊩linti {OBL ∗ a } skip { RCT𝑣 ∗ a }
com-lin-impure

a ⊆ CSS(C) P, I,H ⊩ti { a } com { b } b ⊆ CSS(C′) ∩ UP(C, C′, 𝑦, 𝑣)
P ∗RCT𝑣, I × (OBL ⇝ RCT𝑣), H ⊩linti {OBL ∗ a } com { RCT𝑣 ∗ b }

Fig. 4. Proof rules for commands that ensure proper handling of the linearizability tokens OBL and RCT.

Here, C and C′
are the logical contents of the structure before and after the operation takes effect.

The predicate CSS(C) ties the physical state of the structure to C. How the method call op(𝑘)
changes the contents is prescribed by the relation UP(C, C′, 𝑘, 𝑣).

The linearizability obligation is denoted by OBLΨ and the receipt token by RCTΨ,𝑣 , and we drop

Ψ if it is clear from the context. Receipts are parameterized in the result value of the operation to

reconcile the actual return value with the one prescribed by Ψ. For concurrent search structures,

the sequential specifications of the methods contains(k), insert(k), and delete(k) are as expected
and we denote their obligations by CTNk , INSk , and DELk (their receipts are just RCT𝑣).
To deal with the tokens in a proof, we lift the proof system ⊩ti from §4 to a new proof system

⊩linti which inherits all the rules of ⊩ti except for Rule com-ti. Rule com-ti is replaced by the three

new rules from Figure 4. The rules extract the tokens, invoke ⊩ti, and then add the tokens back.

However, in the process, they potentially transform the tokens if a linearization point is registered.

That is, the updates of tokens are handled by ⊩linti rather than ⊩ti. To do this, we lift the program
semantics ⟦⟦com⟧⟧ in a trivial way: the ghost component of the state is simply ignored. However, for

temporal interpolation to remain sound, we need to capture the effect of ghost state updates in the

interferences. So, we decorate commands com × (OBL ⇝ RCT𝑣). Then, decorating an interference

(a, com) decorates the command and adds the required token to the premise, (a, com) × (OBL ⇝
RCT𝑣) = (a ∗OBL, com × (OBL ⇝ RCT𝑣)). With this, we are ready for the proof rules of ⊩linti .
Rule com-lin-void deals with commands that do not alter the logical contents of the structure.

Consequently, they maintain the current obligation/receipt token. Rule com-lin-impure trades an

obligation for a receipt if the executed command is the linearization point, that is, if it updates the

logical contents of the structure according to the sequential specification. If a command changes

the logical contents but does not satisfy the specification or has no obligation token, the proof fails.

Rule com-lin-pure also trades an obligation for a receipt. However, the rule does so in hindsight.

That is, there is no need to perform the trade at the very moment the sequential specification is

satisfied, it can be done later if a past predicate can certify the existence of the linearization point.

It is this rule that sets our approach apart from atomic triples [da Rocha Pinto et al. 2014]. We

allow for this retrospective linearization only if the linearization point is pure, i.e., does not alter

the logical contents of the structure. The reason is this: such pure linearization points can be used

by arbitrarily many threads to linearize whereas impure linearization points require a one-to-one

correspondence to threads. The approach can be extended to support impure linearization points.

Theorem 5.1. If there are P, I,H with P, I,H ⊩linti {CSS(•) ∗OBLΨ } st { res. CSS(•) ∗RCTΨ,res }
and CSS(•) ∗OBLΨ ∈ P and iI P and I✓H, then st is linearizable wrt. Ψ.

6 CASE STUDY: THE LO-TREE
We substantiate the usefulness of the developed program logic by verifying the linearizability of a

challenging concurrent data structure: the the logical-ordering (LO-)tree [Drachsler et al. 2014].
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We identify and fix bugs in the original implementation from Drachsler et al. [2014] as well as in

the correction attempt by Feldman et al. [2020].

6.1 The LO-Tree in a Nutshell

Overview. The LO-tree [Drachsler et al. 2014] is a self-balancing binary search tree implementing a

set data type. Self-balancing refers to the tree periodically restructuring itself to maintain a low

height in order to speed up accesses. The restructuring mechanism in the LO-tree are standard tree

rotations. For an example rotation consider Figure 5. There, node 13 experiences a right rotation: its
left child 7 takes the position of node 13 and node 13 becomes the right child of 7. The formerly

right subtree of 7 becomes the left subtree of 13. The resulting tree is a binary search tree again.

13

7

5 9

17

∞

⇝

7

5 13

9 17

∞

Fig. 5. A right rotation of the node stor-
ing 13. While the tree layout changes,
the logical ordering remains unaffected.

In a concurrent setting, rotations pose a major challenge.

To avoid performance bottlenecks, one wishes to traverse the

tree without synchronization, e.g., without acquiring locks

that prevent rotations from happening. Without synchroniza-

tion, however, one cannot prevent traversals to go astray in

the presence of rotations. In Figure 5, if a tree traversal search-

ing for node 5 arrives at node 13 and node 13 experiences the

right rotation before the tree traversal continues, then the

tree traversal will never reach node 5 but end up at node 9.

For the implementation to be linearizable, it must detect this

and be able to find node 5 despite the rotation.

The LO-tree solves the problem by organizing the nodes

in a doubly-linked list, the eponymous logical ordering. In

fact, it is this list which dictates the contents of the LO-tree.

The tree structure is merely an overlay to that list which helps to speed up accesses. In Figure 5,

the logical ordering contains all nodes in ascending order while the tree overlay does not

yet contain node 17. Hence, the previous tree traversal, which arrives at node 9 on its way to node

5, can follow the logical ordering backward to find 5. Similarly, a tree traversal searching for 17

arrives at node 13 and then follows the logical ordering forward to find it.

Implementation. We link the above ideas to the implementation of the LO-tree in Figure 6 (ignore

the proof outline annotations for now). The nodes of the tree are represented by the struct type

Node. Each node stores an integer key and a Boolean mark as well as several pointers and locks. The

mark field is used to indicate that the node is being or has been removed from the tree. For the

doubly-linked logical ordering list each node stores a forward succ and a backward pred pointer.

To synchronize mutations of the list, there is a lock listLock. For the tree overlay, each node

stores pointers left and right to its children and a pointer parent to its parent. Tree mutations are

synchronized with a lock treeLock. There are two sentinel nodes min resp. max storing values −∞
resp. ∞. The initial logical ordering consists of these two nodes. The root of the tree is max.

The user-facing API of the LO-tree consists of the three methods of a concurrent search structure:

contains, insert, and delete. The methods return a Boolean indicating success of the operation.

Methods insert and remove use fine-grained locking to synchronize mutators. Both methods rely on

the helper method locate(k) which finds (and locks) the position in the logical ordering to which

value k belongs. This position can be thought of as the interval between two successive nodes 𝑥 and 𝑧,

𝑥 .succ = 𝑧, so that k is logically ordered between the two or in 𝑧, k ∈ (𝑥 .key, 𝑧 .key]. To arrive at

this location, a straightforward binary tree traversal is used, as implemented by traverse(k). Since
the traversal may yield 𝑥 or 𝑧 depending on the tree structure, the remaining node is determined

using pred/succ of the logical ordering. To account for the tree traversal going astray due to
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rotations, locate validates the found position. More precisely, it checks for k ∈ (𝑥 .key, 𝑧 .key] and
ensures that 𝑥 is unmarked, i.e., still part of the logical ordering. The validation happens after

locking listLock of 𝑥 so that the position cannot be invalidated by concurrent mutators.

Insertions of value k proceed as follows. They first locate the position 𝑥, 𝑧 in the logical ordering

where k should be inserted. The returned position also reveals whether k is already present in the

logical ordering. If so, the insertion fails and returns false. Otherwise, a new node 𝑦 is inserted in

between 𝑥 and 𝑧. The new node’s pred and succ are pointed to 𝑥 and 𝑧, respectively. Then, 𝑦 is

inserted into the logical ordering. It is first inserted into the forward ordering by pointing 𝑥 .succ

to 𝑦. Only after this, it is inserted into the backward ordering by pointing 𝑧 .pred to 𝑦. This order

deviates from the original version [Drachsler et al. 2014] for reasons we explain in §6.2. Finally,

𝑦 is inserted into the tree by a call to performTreeInsertion(𝑦,𝑝). This call expects the node 𝑝

that is the parent of x. The parent 𝑝 is determined before x is inserted into the logical ordering

by prepareTreeInsertion(𝑥,𝑧), which does not alter the logical ordering nor the tree but may

acquire locks. We do not got into the details of the tree modifications as they are orthogonal to our

linearizability proof. Finally, true is returned by insert.

Deletions of value k are similar to insertions. They locate the position 𝑥,𝑦 where k resides. If

𝑦 .key ≠ k, then k is not present and the deletion fails, returning false. Otherwise, it acquires 𝑦’s
listLock and reads𝑦’s successor 𝑧. To remove𝑦, it is marked by setting𝑦 .mark = true, unlinked from
the backward logical ordering by setting 𝑧 .pred = 𝑥 , and then unlinked from the forward logical or-

dering by setting 𝑥 .succ = 𝑧. Afterwards,𝑦 is removed from the tree using performTreeDeletion(𝑦)

which expects prepareTreeDeletion(𝑦) has been called before 𝑦 was marked. Similar to insertions,

prepareTreeDeletion does not alter the logical ordering nor the tree but may acquire locks. Again,

we elide performTreeDeletion and prepareTreeDeletion as they are unimportant for our discussion.

Unlike the above mutations, the contains(k)method is wait-free, in particular it does not acquire

locks. It traverses the tree, follows pred pointers, and finally follows succ pointers to check whether

there is an unmarked node containing k. In addition to the original version [Drachsler et al. 2014],

we need to follow pred pointers at least until the first unmarked node to guarantee that k is found

indeed, see §6.2.

6.2 Bugs and their Fixes
The original version of the LO-tree [Drachsler et al. 2014] has two bugs which we fixed in Figure 6.

Due to space constraints, we refer to the technical report [Meyer et al. 2022b] for more details.

Bug 1: Duplicate Values. A subtle quirk of the LO-tree is the fact that an insertion of value k may

be unaware of a concurrent deletion of k because the tree traversal of the insertion experienced a

rotation but still ended up in the right position for the insertion (the validation in locate succeeds).

Successful validation requires that the deletion already removed k from the logical ordering. So,

the insertion can proceed and insert k into the logical ordering and into the tree. If the deletion has

not yet removed the old marked version of k, then the tree contains two nodes with value k that

disagree on the mark bit. Hence, rotations influence the result of contains(k)—it is not linearizable.
Our implementation from Figure 6 fixes the above problem by adding Line 55: the logical ordering

is followed backward (pred fields) at least until an unmarked node is encountered. This ensures

that the final result is not confused by concurrent deletions. Other than that contains proceeds

as originally devised by Drachsler et al. [2014]. Interestingly, adding Line 55 renders the mark bit

check on Line 59 superfluous.

Bug 2: Insertion Order. Feldman et al. [2020] identified another bug in the insert method. In the

original version [Drachsler et al. 2014], new nodes are inserted first into the backward logical

ordering and then into the forward one (compared to Figure 6, Lines 89 and 91 are reversed). To see
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struct Node { int key; bool mark; Lock treeLock, listLock; Node* left, right, parent, pred, succ; }

val min = new Node { key = -∞; mark = false; }; val max = new Node { key = ∞; mark = false; }

min.pred, min.succ := max, max; max.pred, max.succ := min, min

LocInv(C,N , 𝑥, 𝑧 ) ≜ Inv(C,N ∪𝑥 ∪𝑧 ) ∗ key (𝑥 ) <k ≤ key (𝑧 )
∗ Locked(𝑥 ) ∗ k ∈KS(𝑧 ) ∗𝑧 = succ (𝑥 ) ∗ ¬mark (𝑥 )

LinkInv(C,N , 𝑥, 𝑦, 𝑧 ) ≜ Inv(C,N ∪ 𝑥 ∪ 𝑦 ∪ 𝑧 ) ∗ IS(𝑥 ) ≠ ∅
∗ Locked(𝑥 ) ∗ Locked(𝑦) ∗ 𝑦 = succ (𝑥 ) ∗𝑧 = succ (𝑦)
∗ ¬mark (𝑥 ) ∗ key (𝑥 ) <k=key (𝑦) <key (𝑧 )

SuccInv(C, C′,N ,M, x, v) ≜ Inv(C,N ∪ v) ∗ x = v

∩ ⟐
(‵Inv(C′,M ∪ v) ∗ k ∈ ‵IS(v)

)
40

{
∃C,N . Inv(C,N )

}
41 method traverse(k: Int): Node {

42 val 𝑦 = max

43 while (true) {
{
Inv(C,N ∪ 𝑦)

}
44 val 𝑐 = k < 𝑦.key ? 𝑦.left : 𝑦.right

45 if (𝑦.key == k || 𝑐 == NULL) return 𝑦

46

{
Inv(C,N ∪ 𝑐 )

}
𝑦 := 𝑐

47 } }

48

{
𝑦. ∃C,N . Inv(C,N ∪ 𝑦)

}
49

{
∃C,N . CTNk ∗ Inv(N ) ∗ − ∞ < k < ∞

}
50 method contains(k: Int): Bool {

51 val 𝑦 = traverse(k)
52

{
CTNk ∗ Inv(C,N ∪ v) ∗ 𝑦 = v

}
53 while (k < 𝑦.key) { val 𝑥 = 𝑦.pred; 𝑦 := 𝑥 }

54

{
CTNk ∗ Inv(C,N ∪ v) ∗ 𝑦 = v ∗ key (v) ≤ k

}
55 while (𝑦.mark) { val 𝑥 = 𝑦.pred; 𝑦 := 𝑥 }

56

{
CTNk ∗ SuccInv(C, C′,N ,M, 𝑦, v)

}
57 while (𝑦.key < k) { val 𝑧 = 𝑦.succ; 𝑦 := 𝑧 }

58

{
CTNk ∗ SuccInv(C, C′,N ,M, 𝑦, v) ∗ k ≤ key (v)

}
59 val res = 𝑦.key == k && !𝑦.mark

60

{CTNk ∗ Inv(C,N ) ∗ res = t
∗ ⟐

(‵Inv(C′,M ) ∗ t ⇔ k ∈ C′) }
61

{
RCTres ∗ Inv(C,N )

}
// hindsight

62 return res
63 }

64

{
res. ∃C,M . RCTres ∗ Inv(C,N )

}
65

{
∃C,N . Inv(C,N ) ∗ − ∞ < k < ∞

}
66 method locate(k: Int): Node * Node {

67 val 𝑦 = traverse(k)
68 val 𝑥 = 𝑦.key < k ? 𝑦 : 𝑦.pred

69 lock(𝑥.listLock)

70 val 𝑧 = 𝑥.succ

71

{
Inv(C,N ∪ 𝑥 ∪ 𝑧 ) ∗ Locked(𝑥 ) ∗𝑧 = succ (𝑥 )

}
72 if (𝑥.key < k <= 𝑧.key && !𝑥.mark) return 𝑥, 𝑧

73 unlock(𝑥.listLock); restart

74 }

75

{
𝑥, 𝑧. ∃C,N . LocInv(C,N , 𝑥, 𝑧 )

}

76

{
∃C,N . INSk ∗ Inv(C,N ) ∗ − ∞ < k < ∞

}
77 method insert(k: Int): Bool {

78 val 𝑥, 𝑧 = locate(k)
79 if (𝑧.key == k) {

80

{
INSk ∗ LocInv(C,N , 𝑥, 𝑧 ) ∗ k ∈ C

}
81

{
RCTfalse ∗ LocInv(C,N , 𝑥, 𝑧 )

}
82 unlock(𝑥.listLock); return false

83 }

84

{
INSk ∗ LocInv(C,N , 𝑥, 𝑧 ) ∗ key (𝑧 ) ≠ k ∉ C

}
85 val 𝑝 = prepareTreeInsertion(𝑥, 𝑧)

86 val 𝑦 = new Node { key := k; mark := false;

87 pred := 𝑥; succ := 𝑧; parent := 𝑝 }

88

{
INSk ∗ LocInv(C,N , 𝑥, 𝑧 ) ∗ TreeIns(𝑥, 𝑧 )
∗ key (𝑦) = k ∉ C

}
89 𝑥.succ := 𝑦 // logical insertion

90

{
RCTtrue ∗ LocInv(C,N , 𝑥, 𝑦) ∗ TreeIns(𝑥, 𝑧 ) ∗
key (𝑦) = k < key (𝑧 )

}
91 𝑧.pred := 𝑦

92 unlock(𝑥.listLock)

93

{
RCTtrue ∗ Inv(C,N ) ∗ TreeIns(𝑥, 𝑧 )

}
94 performTreeInsertion(𝑦, 𝑝); return true

95 }

96

{
res. ∃C,M . RCTres ∗ Inv(C,N )

}
97

{
∃C,N . DELk ∗ Inv(C,N ) ∗ − ∞ < k < ∞

}
98 method delete(k: Int): Bool {

99 val 𝑥, 𝑦 = locate(k)
100 if (𝑦.key != k) {

101

{
DELk ∗ LocInv(C,N , 𝑥, 𝑦) ∗ k ∉ C

}
102

{
RCTfalse ∗ LocInv(C,N , 𝑥, 𝑦)

}
103 unlock(𝑥.listLock); return false

104 }

105 lock(𝑦.listLock)

106 prepareTreeDeletion(𝑦)

107 val 𝑧 = 𝑦.succ

108

{
DELk ∗ LinkInv(C,N , 𝑥, 𝑦, 𝑧 ) ∗ k ∈ C ∗ TreeDel(𝑦)

}
109 𝑦.mark := true

110 𝑧.pred := 𝑥

111

{
DELk ∗ LinkInv(C,N , 𝑥, 𝑦, 𝑧 ) ∗ k ∈ C ∗ TreeDel(𝑦)

}
112 𝑥.succ := 𝑧 // logical deletion

113

{
RCTtrue ∗ LinkInv(C,N , 𝑥, 𝑦, 𝑧 ) ∗ k ∉ C
∗ TreeDel(𝑦)

}
114 unlock(𝑦.listLock); unlock(𝑥.listLock)

115

{
RCTtrue ∗ Inv(C,N ∪ 𝑦) ∗ TreeDel(𝑦)

}
116 performTreeDeletion(𝑦); return true

117 }

118

{
res. ∃C,M . RCTres ∗ Inv(C,N ∪ 𝑦)

}
Fig. 6. Implementation, bug fixes, and linearizability proof outline of the LO-tree [Drachsler et al. 2014]. The
proof of contains requires hindsight reasoning to handle the future-dependent linearization point, see §6.5.4.
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why this is problematic, assume an insertion of a new node 𝑦 with value k between nodes 𝑥 and 𝑧

already linked 𝑧 .pred to 𝑦 but 𝑥 .succ is still pointing to 𝑧. Then, contains(k) will find 𝑦 only if the

tree traversal takes it to nodes that appear after 𝑧 in the logical order. For earlier nodes, contains

will only follow succ fields which cannot yet reach𝑦. It is easy to see that this violates linearizability.

We fixed this bug by changing the order in which 𝑦 is linked into the logical ordering, cf. Lines 89

and 91. Feldman et al. [2020] apply the same fix. However, they also change insert to link new

nodes first into the tree overlay and then into the logical ordering (without modifying contains).

This violates linearizability: if a new node 𝑦 with value k is inserted into the tree but not yet into

the logical ordering, contains will find k if and only if it is not affected by concurrent rotations.
1

6.3 Local Reasoning Principle
While our program logic from §5 tells us how to establish linearizability, it leaves us with a hard

task: show that a command does or does not alter the contents of the structure. The contents is

defined inductively over the data structure graph. To localize the reasoning about this inductive

quantity, we build on the keyset framework [Krishna et al. 2020a, 2021; Shasha and Goodman 1988].

Suppose the global data structure graph consists of a set of nodes N . We will define a predicate

Inv(C,K,N ,M) that describes the resources and properties of a subregion M ⊆ N in the graph.

Here, C will be the logical contents of the subregion, which is the union of the logical contents C(x)
of all nodes x ∈ M . The set K is the keyset of the region M , which consists of all those keys that

could be in𝑀 . We require the invariant to guarantee C ⊆ K . The keyset will be defined inductively

over the graph structure as we explain below. We then define the invariant CSS(C) of the entire
structure as follows: CSS(C) ≜ ∃N . Inv(C, (−∞,∞),N ,N ).

To enable local reasoning, we aim for a definition of Inv that yields the following compositionality:

Inv(C,K,N ,M ⊎M′) ⇐⇒ ∃C1, C2,K1,K2. Inv(C1,K2,N ,M) ∗ Inv(C2,K2,N ,M′) ∗
C = C1 ⊎ C2 ∗ K = K1 ⊎ K2 .

That is, the predicate allows us to decompose the graph arbitrarily into disjoint subregions𝑀 and

𝑀 ′
and compose them back together. In particular, separating conjunction will guarantee that the

keysets (and hence the logical contents) of disjoint subregions will also be disjoint.

For proofs, this means that we can focus our reasoning on appropriate fragments Inv(C,K,N ,M)
with a small set M . When reasoning about updates we can focus on the fragment M that contains

only those nodes whose fields or keysets change. As wewill see, three nodes will suffice to handle the

LO-tree. Also, Inv enables a local-to-global lifting of the specification UP(C, C′, k, 𝑣) of our search
structure methods. For example, if we have identified a fragment of the form Inv(C,K,N , { x })
with k ∈ K , then k ∈ C = C(x) iff k is in the logical contents of the entire structure.

Flows. To obtain a definition of Invwith the desired properties, we build on the flow framework [Kr-

ishna et al. 2018, 2020b] which enables local reasoning about inductively-defined quantities of

graphs. We sketch the main ideas for our specific application of the flow framework to keysets.

Each node is augmented with a ghost quantity called inset. Intuitively, the inset of a node x is the

set IS(x) of all keys k, such that a thread searching for k will traverse x. That x is traversed means

that the search eventually considers x; the search may or may not continue from there. The keyset

KS(x) of x is the subset of IS(x) for which the traversal will terminate at x. For the LO-tree, the
inset is IS(min) = [−∞,∞] for the root node of the logical ordering and for the remaining nodes it

is obtained as a solution to the following recursive equation:

IS(x) =
⋃

y y .succ = x ? IS(y) ∩ (y .key, +∞] : ∅ .

1
This is a mistake in the proof of the LO-tree by Feldman et al. [2020]. We do not make any claims regarding the soundness

of their meta theory.
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We then define KS(x) = IS(x) ∩ [−∞, x .key]. The inset propagates via succ links only, because it

is the list of succ links that makes up the logical contents of the LO-tree, as alluded to in §6.1. With

this, we formally express the logical contents of node x by C(x) ≜ { x .key } ∩ KS(x).
To express insets in a separation algebra, the flow framework adds an additional ghost resource

component. The technical details are not relevant for our discussion. In our proofs, we use the sepa-

ration algebras proposed byMeyer et al. [2022a] and defer the interested reader there.What is impor-

tant here, is that the above definitions guarantee that the keysets of subregions are always disjoint.

6.4 The Structural Invariant
Weuse standard separation logic assertions to represent the semantic predicates used so far. In partic-

ular, we use (i) boxed assertions 𝐴 to denote that𝐴 refers to shared state [Vafeiadis 2008; Vafeiadis

and Parkinson 2007], (ii) fractional permissions [Boyland 2003] for points-to predicates ↦−−−→1/n to

allow reads but prevent interfering updates to lock-protected resources, and (iii) persistent points-

to [Vindum and Birkedal 2021] predicates ↦−−→□ to easily share knowledge about immutable fields.

We define a predicate N(x) for the shared resources of a node x. For simplicity, we assume that

proofs are implicitly existentially closed. This enables the naming convention where a use of 𝑓 (x)
in the outer proof context refers to the value of field f as defined within N(x). We define:

N(x) ≜ x .key ↦−−→□ key(x) ∗ pred (x) .key ↦−−→□ key(pred (x)) ∗ succ(x) .key ↦−−→□ key(succ(x))
∗ x .pred ↦−−→1 pred (x) ∗ x .succ ↦−−→1/2 succ(x) ∗ x .mark ↦−−→1/2 mark(x) ∗ x .in ↦−−→1 in(x)
∗ x .listLock ↦−−→1/2 llock(x) ∗ (llock(x) = 0 −∗ Guarded(x)) ∗ x .treeLock ↦−−→1 tlock(x)
∗ x .left ↦−−→1 left (x) ∗ x .right ↦−−→1 right (x) ∗ x .parent ↦−−→1 parent (x)

Guarded(x) ≜ x .listLock ↦−−→1/2 llock(x) ∗ x .succ ↦−−→1/2 succ(x) ∗ x .mark ↦−−→1/2 mark(x)
Field in is the ghost field storing the node’s inflow (cf. §6.3). We use fractional permissions for the

fields listLock, succ, and mark. The listLock protects succwhich is why N(x) has a full permission

for succ only if listLock is unlocked. Otherwise, there is half a permission, the other half is

transferred to the local state of the locking thread. The setup for mark is similar.

As noted above, the lock protects the resources Guarded(x) whose ownership is transferred

from the shared state to the local state of the thread acquiring the lock. To make this precise, we

define Locked(x) ≜ x .listLock ↦−−→1/2 1 ∗ Guarded(x) and obtain the following behavior of locks:

{N(x) } lock(x.listLock) {N(x) ∗ Locked(x) }
and {N(x) ∗ Locked(x) } unlock(x.listLock) {N(x) }

For the first Hoare triple, note that its pre condition does not require x .listLock to be unlocked,
llock(x) = 0. This is established by lock as it blocks until x .listLock can be acquired. The post

condition realizes the ownership transfer: Locked(x) contains the protected resources Guarded(x)
in the local state while maintaining the node’s shared resources N(x).

With the resources of individual nodes set up, we are ready to state the invariant of the LO-tree:

Inv(C,K,N ,M) ≜ SInv(C,K,N ,M) ∗ ∗x∈M
N(x) ∗ NInv(N ,M, x)

SInv(C,K,N ,M) ≜ min, max ∈ N ∗ nil ∉ N ∗ M ⊆ N ∗ C = C(M) ∗ K = KS(M)
NInv(N ,M, x) ≜ C(x) ⊆ KS(x) ∗ pred (x), succ(x) ∈ N ∗ left (x), right (x) ∈ N ∪{nil} (I1)

∗
(
x = min ⇒ ¬mark(x) ∗ key(x) = −∞

)
∗
(
x = max ⇒ ¬mark(x) ∗ key(x) = ∞

)
(I2)

∗
(
¬mark(x) ⇒ IS(x) ≠ ∅

)
∗
(
IS(x) ≠ ∅ ⇒ [key(x),∞] ⊆ IS(x)

)
∗ indegree-one(x) (I3)

∗ key(pred (x)) < key(x) < key(succ(x)) (I4)
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Fig. 7. Physical linking (Lines 89 and 91) and unlinking (Lines 110 and 112) of node 𝑦. The arrows resp.
indicate pred resp. succ pointers. The intervals on succ links denote the insets, the intervals on nodes

denote their keysets. Mark bits (𝑦 is marked prior to the unlinking) and acquired locks are not depicted.

The invariant follows the form and satisfies the properties laid out in §5 and §6.3. Its main part

is the node-x-local invariant NInv, which restricts the resources held by the overall invariant Inv.
The properties are as follows. (I1) The contents of a node are governed by its keyset. Moreover,

the invariant is closed under following pointer fields of x. Observe that we require the overall
invariant containing full N to be closed, not the fragment comprising M . (I2) Nodes min resp.

max are unmarked and store values −∞ resp. ∞. (I3) Unmarked nodes have a non-empty inset

which contains all values greater or equal to the node’s own value. Moreover, nodes receive inset

from at most one node, meaning that the succ list between min and max is a path. The abstract

predicate indegree-one(x) can be expressed using flows. (I4) Nodes are sorted in the sense that a

node’s predecessor (successor) stores a lesser (greater) key. It is worth pointing out that (I4) is a

node-x-local property indeed, because N(x) holds the required resources.

We may simply write Inv(C,M) instead of Inv(C,K,N ,M) if N is clear from the context.

6.5 Proof Outline
The proof outline can be found in Figure 6. While the proof for insert and delete requires mostly

standard reasoning, it reveals the interference that other threads are subjected to. The hindsight

reasoning for method contains is performed relative to this interference.

Using our proof system ⊩linti , we give a proof template of the LO-tree: we do not make any as-

sumptions about the operations manipulating the tree overlay other than them being memory-safe.

6.5.1 Locating Nodes. Recall from §6.1 that insert and delete use the helper locate to find the

position 𝑥, 𝑧 to which a given key k belongs. Node 𝑥 is the result of a tree traversal, Line 67. Since

we elide the mechanics of the tree overlay, we only know that the resulting pointer is non-nil—this
little information suffices. Next, 𝑥 is locked, Line 69. This provides us with the protected resources,

Guarded(𝑥). They guarantee that 𝑥 .succ and 𝑥 .mark cannot change due to interference. Reading

𝑥 .succ, Line 70, binds 𝑧 to succ(𝑥). Hence, the validation of position 𝑥, 𝑧 on Line 72 results in

the interference-free knowledge that 𝑥 is unmarked, 𝑧 is the successor of 𝑥 , and that k indeed

belongs in-between 𝑥 and 𝑧, k ∈ (key(𝑥), key(𝑧)]. This together with the obtained resources forms

the predicate LocInv(N , 𝑥, 𝑧), formally defined in Figure 6, and is the post condition of locate

on Line 75. Later, we will use the fact that LocInv(N , 𝑥, 𝑧) implies k ∈ KS(𝑧). To see this, invoke

invariant (I3) for the unmarked 𝑥 . We get [key(𝑥),∞] ⊆ IS(𝑥). The keys (key(𝑥),∞] distributes
via 𝑥 .succ as inset to 𝑧 according to §6.3. Hence, k ∈ KS(𝑧) = (key(𝑥), key(𝑧)].

6.5.2 Insertions. An Insertion of key k first calls locate to find the position 𝑥, 𝑧 to which k belongs.

The position reveals if k is already contained because k ∈ KS(𝑧) as inferred above. If key(𝑧) = k,
then k ∈ C(𝑧) and thus k ∈ C. That is, if the conditional in Line 79 succeeds, the specification of an

unsuccessful insertion is met. We trade the obligation INSk for the receipt RCTfalse .
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Otherwise, k is inserted into the structure. To do that, a new node 𝑦 containing k is allocated

in Line 86. The pred and succ fields are set to 𝑥 and 𝑧, respectively. It remains to link 𝑦 into the

logical ordering, as depicted in Figure 7. First, Line 89 redirects 𝑥 .succ to 𝑦. This is the linearization

point: 𝑦 receives the inset (key(𝑥),∞] from 𝑥 so that we get C(𝑦) = { k }. Hence, the update turns
C into C ∪ { k } so that INSk can be traded for RCTtrue. Next, Line 91 redirects 𝑧 .pred to 𝑦. The
command has no effect on the logical contents C which is why we need no INSk to proceed. It is

readily checked that the update maintains the node-local invariants of the nodes 𝑥,𝑦, 𝑧.

Our proof outline does not consider the methods for inserting the new node 𝑦 into the tree

overlay. We simply assume that prepareTreeInsertion in Line 85 produces an interference-free

predicate TreeIns(𝑥, 𝑧) that is maintained by the updates of the logical ordering in Lines 89 and 91

and consumed by the later performTreeInsertion in Line 94.

6.5.3 Deletions. Deletions are similar to insertions (see Figure 7). We omit the details.

6.5.4 Contains. The proof in Figure 6 uses implicitly existentially quantified symbolic variables

v, u, t to share knowledge between now and past predicates. We cannot use program variables

for this purpose because their values change during computation, meaning they may be valuated

differently in now and past predicates. To further avoid confusion between now and past states, we

write
‵𝑒 to replace in expression 𝑒 all symbolic variables like v .mark with ‵v .mark. We think of

‵𝑒

as the old version and use it under past operators. For example, in _Inv(C, { v }) ∗⟐‵Inv(C′, { v })
we would use IS(v) resp. ‵IS(v) to clearly refer to the inset of v in the current resp. past state. The

proof of contains(k) has these five stages:

119

{
CTNk ∗ SuccInv(C, C′,N ,M, 𝑦, v)

}
120 while (𝑦.key < k) {
121 val 𝑧 = 𝑦.succ

122

{
CTNk ∗ SuccInv(C, C′,N ,M, 𝑦, v)
∗ key (v) < k ∗𝑧 = u = succ (v)

}
123 // h(p, q, p ∩ q) with
124 // p ≜ Inv(C′,M∪v) ∗ IS(v) ≠ ∅
125 // q ≜ Inv(C,N ∪v) ∗ succ (v) =u ∗ key (v) <k
126 skip

127

{
CTNk ∗ SuccInv(C, C′,N ,M, 𝑧, v)

}
128 𝑦 := 𝑧

129 }

130

{
CTNk ∗ SuccInv(C, C′,N ,M, 𝑦, v) ∗ k ≤ key (v)

}
Fig. 8. Detailed proof outline and temporal in-
terpolation for Lines 56 to 58.

(1) The tree traversal, Line 51, finds a starting node

𝑦 for traversing the logical ordering. The only guar-

antee for 𝑦 is that it is non-nil, Line 52.
(2) The logical ordering is traversed by following

pred fields as long as k is less than the key in the

traversed node, Line 53. The resulting node 𝑦 is non-

nil by (I1). Moreover, we obtain the interference-free

fact k ≥ 𝑦 .key, Line 54.

(3) The traversal continues to follow pred pointers

until an unmarked node is reached, Line 55. By invari-

ant (I1), the resulting node 𝑦 is non-nil. That 𝑦 is un-

marked means that its inset is at least [key(𝑦),∞] by
invariant (I3). Moreover, k ≥ 𝑦 .key from the previous

stage is preserved due to (I4). Together, this implies

that k is in 𝑦’s inset. This fact is not interference-free

because 𝑦 is not locked. To preserve it, we turn it into a past predicate, Line 56.

(4) The traversal follows succ pointers as long as k is greater than the key in the traversed node,

Line 57. Using temporal interpolation (details below), we conclude that also the reached node 𝑦 had

k in its inset at some point. Note that this together with k ≤ 𝑦 .key from Line 58 means k ∈ KS(𝑦)
in some past state. So k was in the structure at this past state iff k = key(𝑦).

(5) Using temporal interpolation (details below), we derive from the past contents and the current

key field of 𝑦 whether or not k has been logically contained, Line 60. This past state is, in fact, the

linearization point. We retrospectively linearize, Line 61, before returning.

We turn to the details of the temporal interpolation that goes into stages (4) and (5).

Temporal Interpolation in Stage (4). The proof outline for the loop from Line 57 is given in

Figure 8. The temporal interpolation needed here is this: that𝑦 had flow in the past and its succ field

currently points to 𝑧 and its key field currently is less than k means that all three facts were true
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simultaneously at some point. Intuitively, this is the case because𝑦 has a non-empty inset whenever

𝑦 .succ is changed and because key(𝑦) is never changed. Technically, we show the hypothesis

h(p, q, p ∩ q) on Line 123 with

p ≜ Inv(C′,M ∪ v) ∗ IS(v) ≠ ∅ and q ≜ Inv(C,N ∪ v) ∗ succ(v) = u ∗ key(v) < k .

The symbolic variables v resp. u are bound to𝑦 resp. 𝑥 by the outer proof context; we use v/u instead
of 𝑦/𝑥 as they are logically pure and thus do not change their valuation. To prove the hypothesis,

we establish P, I ⊩ { a } 2stmt(I) { _q → _⟐ (p ∩ q) } and iI P for some set P of predicates with
_p ⊆ a ∈ P (cf. §4). We cannot simply use a = _p because p is not interference-free. Instead, we use

a ≜ _q → _⟐ (p ∩ q). It is easy to see that a is weaker than _p, _p ⊆ a. Note that a is the invariant
that the hypothesis proof strategy from Lemma 4.2 asks for.

Next, we show that a is interference-free, i.e., ⟦⟦(c, com)⟧⟧(a) ⊆ a for all interferences (c, com) ∈ I
of the LO-tree. For an interference (c, com) to invalidate a it must change the truth of q in the current
state. If the truth of q is changed to false, then a is vacuously true. Otherwise, the interference

changes succ(v) to u (key(v) is not changed by any interference). This means com stems from

Line 89 in insert or Line 112 in delete. In both cases we know from the proof (Figures 6 and 7) that

v has a non-empty inset after the interfering update. Concretely, this means ⟦⟦(c, com)⟧⟧(a) ⊆ _p.
Because we already established _p ⊆ a, we obtain the interference-freedom of a, as required.

It remains to show that a is invariant under the self-interferences 2stmt(I). To see this, observe

that a concerns only the global state, not the local state. Hence, the self-interferences invalidate a iff
the interferences of other threads do so. Since the latter is not the case, nothing needs to be shown.

With the hypothesis proved, we obtain ⟐(p ∩ q) from Rule temporal-interpolation. The rule is

applied to a command which we make explicit in the form of skip on Line 126. One can avoid this

skip by applying the rule together with the previous command. Finally, we invoke invariant (I3)

under the past predicate to obtain [‵key(v),∞] ⊆ ‵IS(v). By definition, this means that
‵succ(v) = u

receives
‵IS(v) \ (‵key(v),∞]. Because ‵key(v) < k, this means k ∈ ‵IS(u). Altogether, we arrive at

the desired assertion on Line 127, namely ⟐(‵Inv(C′,M ∪ u) ∗ k ∈ ‵IS(u)).
Temporal Interpolation in Stage (5)We proceed in two steps. First, we prove that h(p, q, p∩q) holds

for arbitrary p and q ≜ key(v) = t. As before, we use Lemma 4.2 with invariant a ≜ _q → _⟐ (p ∩ q).
Since key(v) is immutable, a is immediately stable under (self-)interferences. This justifies to move

facts about the key freely between now and past states.

Towards the assertion on Line 60, assume key(v) = k. We move this fact into the past predicate

from Line 58 using the above argument. The result is: ⟐(‵Inv(C′,M) ∗ k ∈ ‵IS(v) ∗ k = ‵key(v)).
This means that k was contained in the structure in the past:⟐(‵Inv(C′,M) ∗ k ∈ ‵C(v) ⊆ C′). This
conclusion uses the fact that k ∈ ‵IS(v) ∗ k = ‵key(v) implies k ∈ ‵KS(v). The case for key(v) ≠ k
is similar. Overall, rewriting both cases into one yields the desired assertion, Line 60. Finally, this

allows us to retrospectively linearize as the past predicate witnesses a past state where k was resp.

was not in the structure as reflected by the return value. This concludes the linearizability proof.

6.6 Proof Automation
We substantiate our claims that temporal interpolation and the resulting proof system for lin-

earizability aid automated proof construction. To this end, we adapted the plankton tool [Meyer

et al. 2022a]. plankton is a verifyer for non-blocking data structures that constructs proofs in the

program logic from §3 extended by rules for linearizability akin to those from §5. To be more

precise, plankton takes as input the implementation under scrutiny together with a candidate node

invariant, like NInv(N ,M, x) from §6.4. It then performs an exhaustive proof search.

We extended plankton to use our new proof rules from Figures 3 and 4, in particular Rule temporal-

interpolation. Our implementation [Meyer et al. 2023] applies temporal interpolation only for
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Table 1. Runtime comparison of our novel temporal interpolation proof rule with the tool from Meyer et al.
[2022a]. The experiments were conducted on an Apple M1 Pro.

Benchmark Meyer et al. [2022a] This Paper Factor

Fine-Grained set 44𝑠 ✓ 45𝑠 ✓ ×1.02
Lazy set 1𝑚 21𝑠 ✓ 2𝑚 13𝑠 ✓ ×1.65
FEMRS tree (no maintenance) 2𝑚 22𝑠 ✓ 3𝑚 50𝑠 ✓ ×1.62
Vechev&Yahav 2CAS set 1𝑚 09𝑠 ✓ 1𝑚 15𝑠 ✓ ×1.08
Vechev&Yahav CAS set 0𝑚 52𝑠 ✓ 2𝑚 20𝑠 ✓ ×2.70
ORVYY set 0𝑚 54𝑠 ✓ 1𝑚 36𝑠 ✓ ×1.79
Michael set 3𝑚 06𝑠 ✓ 6𝑚 53𝑠 ✓ ×2.22
Michael set (wait-free search) 3𝑚 42𝑠 ✓ 6𝑚 53𝑠 ✓ ×1.86
Harris set 18𝑚 14𝑠 ✓ 57𝑚 20𝑠 ✓ ×3.15
Harris set (wait-free search) 19𝑚 54𝑠 ✓ 43𝑚 00𝑠 ✓ ×2.16
LO-tree (maintenance stubs) — ✗ 16𝑚 43𝑠 ✓ —

hypotheses of the form h(p, q, p∩q) and only if it is able to discharge the hypothesis using Lemma 4.2

with invariant _q → _⟐(p ∩ q). This eager approach ensures that we do not pollute the proof

search with temporal interpolations that are doomed to fail because their hypotheses do not hold.

Note that this is possible despite a potentially incomplete interference set as plankton restarts

proof construction whenever a new interference is discovered. Altogether, our implementation

establishes linearizability results along Theorem 4.3.

We used our tool to verify automatically the LO-tree from Figure 6. Similarly to the presented

proof, we did not use the actual implementation of the helper functions modifying the tree overlay.

Instead, we used most general stubs, functions that change the tree overlay arbitrarily (leaving

the logical ordering list unchanged). The node invariant we specified is the one from §6.4. With

this, plankton is able to fully automatically construct a linearizability proof for the LO-tree within

twenty minutes (see Table 1). We stress that this includes fully automatic applications of temporal

interpolation, which are strictly necessary to prove the LO-tree linearizable.

We also compared our new version of plankton against the original version form Meyer et al.

[2022a]. See Table 1 for the results: temporal interpolation incurs a slow down of factor 3.15 in the

worst case and factor 2 on average.We believe that this slowdown is justified by the reasoning power

brought by temporal interpolation. We consider a more extensive evaluation of our implementation

future work. As of now, plankton’s proof construction is limited by orthogonal concerns (e.g.

imprecise joins, the handling of updates with non-local effects) that still limit its applicability.

7 RELATEDWORK
The hindsight principle [Feldman et al. 2018, 2020; Lev-Ari et al. 2015; O’Hearn et al. 2010] and

our temporal interpolation have relatives in classical program verification [Manna and Pnueli 1995;

Schneider 1997]. So-called causality formulas, in our notationwritten as _p → ⟐q, express that q is a
prerequisite for seeing p. Temporal interpolation is more general in that it may take past information

into account in order to infer the existence of an intermediary state. Yet, the past invariance proof

principle by Manna and Pnueli [1995, §4.1] inspired an application of temporal-interpolation in

the RDCSS proof [Meyer et al. 2022b, §F] to derive a contradiction in a case distinction. The careful

identification of verification conditions by Manna and Pnueli [1995] has also lead us to the definition

of hypotheses that can be proven in isolation. What sets our work apart is that we incorporate
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temporal interpolation into a modern program logic with powerful reasoning techniques [Jung

et al. 2018] such as framing [O’Hearn et al. 2001], atomic triples [da Rocha Pinto et al. 2014], and

general separation algebras [Calcagno et al. 2007], in particular flows [Krishna et al. 2018, 2020b].

There are first tools that automate linearizability proofs based on hindsight reasoning. The

poling tool [Zhu et al. 2015] implements the hindsight lemma in the formulation of O’Hearn et al.

[2010]. The plankton tool [Meyer et al. 2022a] automates a restricted form of hindsight reasoning

that can be expressed via state-independent variables shared between a past and the current state.

However, it did not support general temporal interpolation prior to our extension. Without this

extension, the tool would have been unable to verify the LO-tree and other structures that require

more complex hindsight reasoning.

We are not the first to study program logics defined over computations instead of states. History-

based local rely-guarantee [Fu et al. 2010; Gotsman et al. 2013] has an elaborate assertion language

whose temporal operators are carefully harmonized with the rules of the program logic. Our

approach builds on the logic proposed by Meyer et al. [2022a] from which it inherits the notion

of past predicates over computations. We introduce temporal interpolation by means of a new

proof rule. The soundness result shows that the proof rule can be eliminated, and hence is really

a mechanism for structuring complex proofs. This means that, in principle, all of our proofs can

also be expressed in the logic of Meyer et al. [2022a]. Doing so, however, requires one to repeat the

soundness arguments within each program proof anew. In particular, this (i) requires reasoning

about the governed computations explicitly and (ii) thwarts the use of the frame rule. Realistically,

this would make the proofs intractable, even manual ones. The conclusions [Meyer et al. 2022a]

can draw directly about the past of the computation are all based on immutability arguments,

and compared to what we propose here this is a very weak form of hindsight reasoning. Notably,

the version of plankton presented in [Meyer et al. 2022a] cannot handle the example from §2 nor

the LO-tree from §6. Comparing to other computation-based separation logics, we note that the

formalization of computations matters: definitions based on interleaving products [Bell et al. 2010]

or the union of sets of events [Delbianco et al. 2017; Sergey et al. 2015] seem to be less suited for

temporal interpolation.

Prophecies were introduced to separation logic by Vafeiadis [2008] and formalized by Zhang

et al. [2012] to structural prophecies that foresee the actions of one thread, a restriction overcome

by Jung et al. [2020]. Temporal interpolation conducts full subproofs in the presence of interferences.

However, it is in the nature of Owicki-Gries, and has been observed early on [Owicki and Gries

1976], that interferences may require auxiliary variables to increase precision. What seems to

make prophecies more difficult to use is the need to reason about the computation backward,

against the control flow [Bouajjani et al. 2017]. This is shared with simulation and refinement-

based proofs [Liang and Feng 2013; Turon et al. 2013], where backward reasoning is known to be

complete [Schellhorn et al. 2012].

Our proofs use standard techniques like boxed assertions [Vafeiadis 2008; Vafeiadis and Parkinson

2007], fractional permissions [Boyland 2003], and persistent points-to predicates [Vindum and

Birkedal 2021]. Combining these techniques is no contribution of ours. In fact, they were already

combined in the original plankton tool from Meyer et al. [2022a], although the use of fractional

permissions and persistent points-to predicates has not been discussed there (probably due to their

focus on lock-free implementations).
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