
Effect Summaries for
Thread-Modular Analysis

Lukáš Holík1, Roland Meyer
2, Tomáš Vojnar1, and Sebastian Wolff

2

1 Brno University of Technology 2 TU Braunschweig

Goal

Automated verification of:

• lock-free data structures

➡ complex, low-level concurrency

• libraries

➡ (arbitrarily) many client threads

• explicit memory management

➡ subtle memory bugs (ABA)

Thread-Modular Verification [Flanagan et al. SPIN'03]

• View abstraction splits states into set of views

➡ capturing the system as seen by a single thread

➡ abstracting away correlation among threads

• State space exploration as fixed point

X = X [sequential(X) [interference(X)

Lets every view in perform
a step of its own thread.

Applies to views in possible
influence by other threads.

X X

Thread-Modular Interference

Learning approach [Vafeiadis VMCAI'10]

• Update patterns

➡ symbolic representation of modifications performed by the threads

➡ collected from sequential steps

• Interference

➡ apply update patterns to the views from

➡ requires matching to check applicability of update pattern

X

Thread-Modular Interference

Learning approach [Vafeiadis VMCAI'10]

• Update patterns

➡ symbolic representation of modifications performed by the threads

➡ collected from sequential steps

• Interference

➡ apply update patterns to the views from

➡ requires matching to check applicability of update pattern

successful, but only for GC

X

Thread-Modular Interference cont.

Merge-and-project approach [Abdulla et al. TACAS'13]

for every pair of views and from

1. a merged view is created

➡ requires matching to check compatibility

➡ relates thread-local state

2. the thread from executes a step

3. the result is projected to the thread of v1

v2v1 X

v2

Thread-Modular Interference cont.

Merge-and-project approach [Abdulla et al. TACAS'13]

for every pair of views and from

1. a merged view is created

➡ requires matching to check compatibility

➡ relates thread-local state

2. the thread from executes a step

3. the result is projected to the thread of

For explicit memory
management requires:

• two threads per view
[Abdulla et al. TACAS'13]

• tailored ownership
[Haziza et al. VMCAI'16]v1

v2v1 X

v2

Thread-Modular Interference cont.

Merge-and-project approach [Abdulla et al. TACAS'13]

for every pair of views and from

1. a merged view is created

➡ requires matching to check compatibility

➡ relates thread-local state

2. the thread from executes a step

3. the result is projected to the thread of

For explicit memory
management requires:

• two threads per view
[Abdulla et al. TACAS'13]

• tailored ownership
[Haziza et al. VMCAI'16]v1

v2v1 X

v2

successful, 
but scales poorly

Contribution

• Interference by an effect summary
➡ linear in
➡ no matching/merging

• Effect = update of the shared heap

• Effect summary
➡ stateless sequential program
➡ over-approximation of the effects of the program to be verified

X

Contribution

• Interference by an effect summary
➡ linear in
➡ no matching/merging

• Effect = update of the shared heap

• Effect summary
➡ stateless sequential program
➡ over-approximation of the effects of the program to be verified

Road Map:

• Statelessness

• Interference in more detail

• How to compute a summary

X

Statelessness

• Atomic execution

• Absence of local state

‣ starts with empty local state

➡ independent of execution history

➡ behavior determined solely by shared heap

‣ terminates with empty local state

➡ disposes local state

Statelessness

• Atomic execution

• Absence of local state

‣ starts with empty local state

➡ independent of execution history

➡ behavior determined solely by shared heap

‣ terminates with empty local state

➡ disposes local state

Q stateless

=)
1Y

Q = Q⇤

New Interference

• Thread-modular

• Interference by summary

‣ on every view in execute the summary

➡ corresponds to analyzing

‣ no matching/merging required

➡ summary has no state which needs to be related

X = X [sequential(X) [interference(X)

X

T k Q⇤

New Interference

• Thread-modular

• Interference by summary

‣ on every view in execute the summary

➡ corresponds to analyzing

‣ no matching/merging required

➡ summary has no state which needs to be related

X = X [sequential(X) [interference(X)

X

linear in X

T k Q⇤

Computing an Effect Summary

Copy-and-check blocks

➡ widespread programming pattern

➡ updates a shared value

1. copy the shared value

2. perform computation over it

3. update the shared value if unchanged since copy, 
retry otherwise

Computing an Effect Summary

Copy-and-check blocks

➡ widespread programming pattern

➡ updates a shared value

1. copy the shared value

2. perform computation over it

3. update the shared value if unchanged since copy, 
retry otherwise

Typical implementation
while (true)
 x = X;
 n = ...;
 if (CAS(X, x, n))
 break;

Computing an Effect Summary cont.

• Assuming atomicity of copy-and-check blocks

➡ potentially unsound

➡ a good heuristic (the programmers intent)

• Effect summary = choice over all copy-and-check blocks in the program

• Ensure soundness by a check on top of thread-modular fixed point

Soundness Check

• For every view in

(a) perform a sequential step for

(b) apply the summary to

• Check that

➡ effects from (a) are included in the effects from (b)

➡ in (b) summary disposes local state

v1

v1

X

v1

Soundness Check

• For every view in

(a) perform a sequential step for

(b) apply the summary to

• Check that

➡ effects from (a) are included in the effects from (b)

➡ in (b) summary disposes local state

v1

v1

X

Check works on top of potentially  
 unsound fixed point solution X

v1

Soundness Check

• For every view in

(a) perform a sequential step for

(b) apply the summary to

• Check that

➡ effects from (a) are included in the effects from (b)

➡ in (b) summary disposes local state

linear in Xv1

v1

X

Check works on top of potentially  
 unsound fixed point solution X

v1

Summary of our Approach

Guess&Check framework

1. guess effect summary of program

2. state space exploration

➡ thread-modular fixed point

➡ interference by summary

3. soundness check

Experiments

• Implemented C++ prototype

➡ Abdulla et al. [TACAS'13]

➡ Haziza et al. [VMCAI'16]

➡ guess&check analysis

• Check linearizability of lock-free data structures

• Analyses for GC and MM

• Open source

classical summaries

Coarse Stack 0.29s 0.03s

Coarse Queue 0.49s 0.05s

Treiber’s stack 1.99s 0.06s

Michael&Scott’s queue 11.0s 0.39s

DGLM queue 9.56s 0.37s

Experiments: GC

:10

:10

:33

:28

:25

classical summaries

Coarse Stack 1.89s 0.19s

Coarse Queue 2.34s 0.98s

Treiber’s stack 25.5s 1.64s

Michael&Scott’s queue 11700s 102s

DGLM queue false-positive violation

Experiments: MM

:10

:2

:15

:114

Explicit Memory Management

• Problem: explicit frees

➡ target memory unreachable from shared variables

➡ cannot be mimicked by stateless summary

• Solution: ownership transfer

➡ breaking reachability from shared variables grants ownership

➡ stateless summary can free immediately after gaining ownership

• Future work: relax statelessness

Thanks.

