Make flows small again:
revisiting the flow framework

Roland Meyer!, Thomas Wies?, Sebastian Wolff? [TACAS'23]

1 TU Braunschweig, Germany
2 New York University, USA

Frame Rule

1 P} com {Q}

{PxF}com{QxF}

Frame Rule

1P} com {Q}
{PxF}com{QxF}

{x—btlz|=T{ax— T}

Usage

{x—bxFllzx|=7T{x—7xF}

Frame Rule

1P} com {Q}
{PxF}com{QxF}

(small axioms)

{x—btlz|=T{ax— T}

i {x—bxFllx|=7T{x—TxF}

Frame Rule

Usage

1P} com {Q}
{PxF}com{QxF}

(small axioms)
{x—bt|z|=7T{z—T7}
{x—bxFllx|=T{x—Tx F}

~

-

Frame Inference IS a key challenge for proof automation.

~

J

State

- Physical state
= heap graph
=cg r—T7(,x,L *x x+—9,y,z *

State

Physical state
= heap graph
-cg. r—/(l,r,L x x—5y,z x ... "

- (Ghost state

= Nfo for functional correctness

State

Physical state
= heap graph
=cg r—T7(,x,L *x x+—9,y,z *

- (Ghost state
= INfo for functional correctness
= e.g. traversals (search paths)

to show linearizabillity of data structures

State

Physical state
= heap graph
-cg. r—/(l,r,L x x—5y,z x ... "

- (Ghost state
= INfo for functional correctness
= e.g. traversals (search paths)

to show linearizabillity of data structures

State

Physical state
= heap graph
-cg. r—/(l,r,L x x—5y,z x ... "

- (Ghost state
= INfo for functional correctness
= e.g. traversals (search paths)

to show linearizabillity of data structures

State

Physical state
= heap graph
=cg r—T7(,x,L *x x+—9,y,z *

- (Ghost state

= Nnfo for functional correctness

= o.g. traversals (search paths) E) @

to show linearizabllity of data structures

State

- Physical state
= heap graph
=cg r—T7(,x,L *x x+—9,y,z *

- (Ghost state

= Nnfo for functional correctness

= o.g. traversals (search paths) E @ ©
to show linearizabllity of data structures

Goal: Frame Inference

« L
5
\ i r.key =7

Goal: Frame Inference

Goal: Frame Inference

Physical
Frame

Goal: Frame Inference

"

W/ Physical
CR r.key =7 Frame
Y / Y Y

Goal: Frame Inference

Goal: Frame Inference

"

y il

Goal: Frame Inference

Goal: automatically find frame.

Goal: Frame Inference

Goal: automatically find footprint.

Flow Framework

+ Ghost state for heap
graphs

+ Inspired by data-flow

analysis

- Formalizes iInductive

heap invariants

+ Frame-preserving

+ FInding footprints

Frame Inference Comparing Footprints

- Separation & flows -+ Check if update is

frame-preserving

updates + Efficient checks for
general graphs

algorithmically

Flow Framework

+ Ghost state for heap
graphs

+ Inspired by data-flow

analysis

- Formalizes iInductive

heap invariants

Frame Inference

- Separation & flows

+ Frame-preserving

updates

- FInding footprints

algorithmically

Comparing Footprints

-+ Check if update is

frame-preserving

- Efficient checks for

general graphs

Flow Framework

— Augment heap graph with ghost state in a dataflow-like fashion —

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

- Flow values from X
commutative monoid (M, +, 0) m € M@

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

- Flow values from X
commutative monoid (M, +, 0) m € M@

- Flow propagation via

X
continuous edge functions - M@f—‘:@ f(m)e M

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

- Flow values from X
commutative monoid (M, +, 0) m € M@

- Flow propagation via

X
continuous edge functions - M@f—‘:@ f(m)e M

- The flow:
‘eaSt fIXGd pOlﬂt, Wr-t Iﬂltla‘ Va‘ue € VL — > m € M

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

- Flow values from X
commutative monoid (M, +, 0) m € M@

- Flow propagation via

X
continuous edge functions - M@f—‘:@ f(m)eM

- The flow: X
‘eaSt fIXGd pOlﬂt, Wr-t Iﬂltla‘ Va‘ue € VL — > m € M
)

& Exists if: < is w-cpo and +,sup commute

Flow Framework
— Augment heap graph with ghost state in a dataflow-like fashion —

- Flow values from

- Flow propagation via

- The flow:
least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a dataflow-like fashion —

+ Flow values from
search path monoid (277125 1, &)

- Flow propagation via

- The flow:
least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a dataflow-like fashion —

+ Flow values from
search path monoid (277125 1, &)

- Flow propagation via

- The flow:
least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

+ Flow values from
search path monoid (277125 1, &)

- Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow:

least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

+ Flow values from
search path monoid (277125 1, &)

- Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow:

least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

+ Flow values from
search path monoid (277125 1, &)

- Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow:

least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

+ Flow values from
search path monoid (277125 1, &)

- Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow:

least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

+ Flow values from
search path monoid (277125 1, &)

- Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow:

least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

Flow values from
search path monoid (277125 1, &)

Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow:

least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

Flow values from
search path monoid (277125 1, &)

Flow propagation via

Ak = dm.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow:

least fixed point, wrt. initial value

Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

Flow values from
search path monoid (277125 1, &)

Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow: (=0, 5)

least fixed point, wrt. initial value

Sufficient information for functional correctness 7

Flow Framework

+ Ghost state for heap
graphs

- Inspired by data-flow

analysis

- Formalizes inductive

heap invariants

+ Frame-preserving

+ FInding footprints

Frame Inference Comparing Footprints

- Separation & flows -+ Check if update is

frame-preserving

updates + Efficient checks for
general graphs

algorithmically

Separation

- Flows graphs form a separation algebra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algelbra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algelbra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algelbra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algelbra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algelbra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algelbra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algelbra

= framing = "cutting the graph & flow"

Separation

Flows graphs form a separation algebra | Composition 3k defined on\y\

= framing = "cutting the graph & flow" if inflow & outflow match.

Frame-preserving Updates

+ Footprint
. the region CB affected by an update

Frame-preserving Updates

+ Footprint
. the region CB affected by an update

+ must be frame-preserving (not affect the frame):

Sl g SRR O

Frame-preserving Updates

+ Footprint
. the region CB affected by an update

+ must be frame-preserving (not affect the frame):

Sl g SRR O

- Theorem:

Update {]33—» s frame-preserving if @ ano

have the same outflow, for all inflows.

FINnding Footprints

- Algorithm:
1. add physical footprint
. compute outflow (for all inflows)

. add nodes if pre/post outflow differs

N W DO

. repeat until fixed point

pre

."’P(_OO’ 77)
. . . X ___ "
FINnding Footprints (00, 77)
yaa
- Algorithm: (—50,5)Y Z(5.77)
1. add physical footprint
2. compute outflow (for all inflows)
3. add nodes if pre/post outflow differs DOSt
"‘I"(—oo,77)
4. repeat until fixed point X "
7 J—c0, 77
7 X

pre

."’P(_OO’ 77)
. . . X ___ "
FINnding Footprints (00, 77)
yaa
- Algorithm: (o0 5)Y Z(5.77)
1. add physical footprint
2. compute outflow (for all inflows)
3. add nodes if pre/post outflow differs DOSt
"‘I"(—oo,77)
4. repeat until fixed point X "
7 J—c0, 77
7 X

ore
FINding Footprints

» Algorithm;
1. add physical footprint

. compute outflow (for all inflows)

. add nodes if pre/post outflow differs DOSt

N W DO

. repeat until fixed point

ore
FINding Footprints

» Algorithm;
1. add physical footprint

. compute outflow (for all inflows)

. add nodes if pre/post outflow differs DOSt

N W DO

. repeat until fixed point

FINnding Footprints

- Algorithm:
1. add physical footprint
. compute outflow (for all inflows)

. add nodes if pre/post outflow differs

N W DO

. repeat until fixed point

FINding Footprints

» Algorithm;
1. add physical footprint

2. compute outflow (for all inflows)
3. add nodes if pre/post outflow differs
4. repeat until fixed point

Not minimal.

lncomplete.

Works well In practice.

Flow Framework

+ Ghost state for heap

graphs

+ Inspired by data-flow

analysis

- Formalizes Inductive

heap Invariants

Frame Inference

- Separation & flows

+ Frame-preserving

updates

- FInding footprints

algorithmically

Comparing Footprints

-+ Check if update is

frame-preserving

- Efficient checks for

general graphs

Overview

Question: does MM, = M/ and M, = M/ hold?

Overview

Question: does MM, = M/ and M, = M/ hold?

Naive: compute fixed point (over functions), then check

Overview

. Question: does M, = M| and M, = M hold? L
5
Naive: compute fixed point (over functions), then check
8
- Challenges: ‘
M, U VM

1. fixed point might require "infinite” Kleene iteration
2. No restriction on graph structure

3. assertions denote (infinitely) many heap graphs

Overview

. Question: does M, = M| and M, = M hold? L
5
Naive: compute fixed point (over functions), then check
8
- Challenges: ‘
M, U VM

1. fixed point might require "infinite” Kleene iteration
2. No restriction on graph structure

3. assertions denote (infinitely) many heap graphs

+ Goal: automated & efficient approach

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

= Not true In general

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

= Not true In general

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

= Not true In general

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

= Not true In general

- Require distributive edge functions:
f(m+n)=f(m)+ f(n)

= edges do not react on "additional flow"

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

= Not true In general

- Require distributive edge functions:
f(m+n)=f(m)+ f(n)

= edges do not react on "additional flow"

Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

= Not true In general

- Require distributive edge functions:
f(m+n)=f(m)+ f(n)

= edges do not react on "additional flow"

= fixed point = sum over all paths

Infinite sum for cyclic graphs.

Handling Cycles

Handling Cycles

Handling Cycles

+ Require decreasing edge functions
flm) < m

= traversing "gains” information

Handling Cycles

+ Require decreasing edge functions
flm) < m

= traversing "gains” information

+ Require idempotent addition
m-+m = m

= n+m = mitn < m

= flow Information iIs "disjunctive’

Handling Cycles

+ Require decreasing edge functions
flm) < m

= traversing "gains” information

+ Require idempotent addition
m-+m = m

= n+m = mitn < m

= flow Information iIs "disjunctive’

= Combined: » ~f*(M,) = f(}M,)

1 >0

Handling Cycles

+ Require decreasing edge functions
flm) < m

= traversing "gains” information

+ Require idempotent addition
m-+m = m

»>sn+m = miftn < m

= flow Information iIs "disjunctive’

- Combined: 3~ fi(M1,) = f(M,) <:

Y
Myf(My)
f 4 “fof(My)
"+ fofof(M,)
— f(My)

1 >0

Finite sum over all simple paths.

Review Challenges

Review Challenges

Challenge 1: fixed point might require "infinite" Kleene iteration

* require distributive & decreasing & idempotent

= fixed point = sum over all simple paths /

Review Challenges

Challenge 1: fixed point might require "infinite" Kleene iteration

* require distributive & decreasing & idempotent

= fixed point = sum over all simple paths /

Challenge 2: no restriction on graph structure

* Oour requirements target monoid and edge functions

= cnabled by choice of flow J

Review Challenges

Challenge 1: fixed point might require "infinite" Kleene iteration

* require distributive & decreasing & idempotent

= fixed point = sum over all simple paths /

Challenge 2: no restriction on graph structure

* Oour requirements target monoid and edge functions

= cnabled by choice of flow J

Challenge 3: assertions denote (infinitely) many heap graphs

= OUr requirements can be checked once upfront J

Review Challenges

Challenge 1: fixed point might require "infinite" Kleene iteration

* require distributive & decreasing & idempotent

= fixed point = sum over all simple paths /

Challenge 2: no restriction on graph structure

* Oour requirements target monoid and edge functions

= enabled by choice of tlow J efficient algorithm
for computing

Challenge 3: assertions denote (infinitely) many heap graphs _
footprints/frames

= OUr requirements can be checked once upfront J

Review Challenges

Challenge 1: fixed point might require "infinite" Kleene iteration

* require distributive & decreasing & idempotent

= fixed point = sum over all simple paths J

Challenge 2: no restriction on graph structure

* Oour requirements target monoid and edge functions

= cnabled by choice of flow J

Challenge 3: assertions denote (infinitely) many heap graphs

= OUr requirements can be checked once upfront /

efficient algorithm
for computing
footprints/frames

