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Usage

1P} com {Q}
{PxF}com{QxF}

(small axioms)
{x—bt|z|=7T{z—T7}
{x—bxFllx|=T{x—Tx F}
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Frame Inference IS a key challenge for proof automation.
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Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

- Flow values from X
commutative monoid (M, +, 0) m € M@

- Flow propagation via

X
continuous edge functions - M@f—‘:@ f(m)eM

- The flow: X
‘eaSt fIXGd pOlﬂt, Wr-t Iﬂltla‘ Va‘ue € VL — > m € M
)

& Exists if: < is w-cpo and +,sup commute
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Flow Framework
— Augment heap graph with ghost state in a gataflow-like fashion —

Flow values from
search path monoid (277125 1, &)

Flow propagation via

Ack = Am.m N (—oo, k)
Ask = Am.m N (k,o00)
- The flow: (=0, 5)

least fixed point, wrt. initial value

Sufficient information for functional correctness 7
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Separation

Flows graphs form a separation algebra | Composition 3k defined on\y\

= framing = "cutting the graph & flow" if inflow & outflow match.
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+ Footprint
. the region CB affected by an update

+ must be frame-preserving (not affect the frame):

Sl g SRR O

- Theorem:

Update {]33—» s frame-preserving if @ ano

have the same outflow, for all inflows.
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FINding Footprints

» Algorithm;
1. add physical footprint

2. compute outflow (for all inflows)
3. add nodes if pre/post outflow differs
4. repeat until fixed point

Not minimal.

lncomplete.

Works well In practice.
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Overview

. Question: does M, = M| and M, = M hold? L
5
Naive: compute fixed point (over functions), then check
8
- Challenges: ‘
M, U VM

1. fixed point might require "infinite” Kleene iteration
2. No restriction on graph structure

3. assertions denote (infinitely) many heap graphs

+ Goal: automated & efficient approach
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Avoliding Fixed Points

- QObservation for trees:

fixed point = concatenation of edge
functions along path

= Not true In general

- Require distributive edge functions:
f(m+n)=f(m)+ f(n)

= edges do not react on "additional flow"

= fixed point = sum over all paths

Infinite sum for cyclic graphs.
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Handling Cycles

+  Require decreasing edge functions
flm) < m

= traversing "gains” information

+ Require idempotent addition
m-+m = m

»>sn+m = miftn < m

= flow Information iIs "disjunctive’

- Combined: 3~ fi(M1,) = f(M,) <:

Y
Myf(My)
f 4 “fof(My)
"+ fofof(M,)
— f(My)

1 >0

Finite sum over all simple paths.
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* require distributive & decreasing & idempotent

= fixed point = sum over all simple paths J

Challenge 2: no restriction on graph structure

* Oour requirements target monoid and edge functions

= cnabled by choice of flow J

Challenge 3: assertions denote (infinitely) many heap graphs

= OUr requirements can be checked once upfront /

efficient algorithm
for computing
footprints/frames




