Verifying Non-blocking Data
Structures with Manual

Memory Management

Von der
Carl-Friedrich-Gauf3-Fakultat

der Technischen Universitat Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation
von

Sebastian Wolff
geboren am 22.03.1990

in Torgau
Eingereicht am: 03. Méarz 2021
Disputation am: 25. Juni 2021
1. Referent: Prof. Roland Meyer
2. Referent: Prof. Rupak Majumdar
3. Referent: Prof. Constantin Enea

2021

19 In practice, who is going to make the one thing that
does everything when you can make a hundred things that

do each thing perfectly. 99 — Neil deGrasse Tyson [2018]

Abstract

Verification of concurrent data structures is one of the most challenging tasks in software
verification. The topic has received considerable attention over the course of the last decade.
Nevertheless, human-driven techniques remain cumbersome and notoriously difficult while
automated approaches suffer from limited applicability. This is particularly true in the absence
of garbage collection. The intricacy of non-blocking manual memory management (manual
memory reclamation) paired with the complexity of concurrent data structures has so far made

automated verification prohibitive.

We tackle the challenge of automated verification of non-blocking data structures which manually
manage their memory. To that end, we contribute several insights that greatly simplify the
verification task. The guiding theme of those simplifications are semantic reductions. We show
that the verification of a data structure’s complicated target semantics can be conducted in a
simpler and smaller semantics which is more amenable to automatic techniques. Some of our
reductions rely on good conduct properties of the data structure. The properties we use are
derived from practice, for instance, by exploiting common programming patterns. Furthermore,

we also show how to automatically check for those properties under the smaller semantics.

The main contributions are: (i) A compositional verification approach that verifies the mem-
ory management and the data structure separately. The approach crucially relies on a novel
specification formalism for memory management implementations that over-approximates the
reclamation behavior. (ii) A notion of weak ownership that applies when memory is reclaimed
and reused. Weak ownership bridges the gab between techniques for garbage collection, which
can assume exclusive access to owned memory, and manual memory management, where dan-
gling pointers break such exclusivity guarantees. (iii) A notion of pointer races and harmful ABAs
the absence of which ensures that the memory management does not influence the operations of
the data structure, i.e., it behaves as if executed under garbage collection. Notably, we show that
a check for pointer races and harmful ABAs only needs to consider executions where at most a
single address is reused. (iv) A notion of strong pointer races the absence of which entails the
absence of ordinary pointer races and harmful ABAs. We devise a highly-efficient type check for
strong pointer races. This results in a light-weight analysis that first type checks a data structure
and then performs the actual verification under garbage collection using an off-the-shelf verifier.
(v) Experimental evaluations that substantiate the usefulness of the aforementioned contributions.
To the best of our knowledge, we are the first to fully automatically verify practical non-blocking

data structures with manual memory management.

Zusammenfassung

Verifikation nebenldufiger Datenstrukturen ist eine der herausforderndsten Aufgaben der Pro-
grammverifikation. Im Laufe des letzten Jahrzehnts wurde eine beachtliche Menge an Beitrigen
zu diesem Thema publiziert. Dennoch bleiben die zur Verfiigung stehenden manuellen Techniken
weiterhin mithsam und kompliziert in der Anwendung. Auch automatisierte Verifikationsver-
fahren sind weiterhin nur eingeschrankt anwendbar. Diese Schwichen sind besonders stark
ausgeprigt, wenn sich Programme nicht auf einen Garbage-Collector verlassen. Die Komplexitét
manueller Speicherverwaltung gepaart mit komplexen nicht-blockierenden Datenstrukturen

macht die automatisierte Programmuverifikation derzeit unmoglich.

Diese Arbeit betrachtet die automatisierte Verifikation nicht-blockierender Datenstrukturen,
welche nicht auf einen Garbage-Collector zuriickgreifen, sondern ihren Speicher manuell verwal-
ten. Dazu werden verschiedene Konzepte vorgestellt, die die Verifikation stark vereinfachen. Das
Leitmotiv dieser Vereinfachungen ist dabei die semantische Reduktion, welche die Verifikation
in einer leichteren Semantik erlaubt, ohne die eigentliche und zumeist wesentlich komplexe-
re Semantik zu betrachten. Einige dieser Reduktion beruhen auf einem Wohlverhalten des zu
verifizierenden Programms. Dabei wird das Wohlverhalten mit Bezug auf praxisnahe Eigen-
schaften definiert, wie sie z.B. von géngigen Programmiermustern vorgegeben werden. Ferner
wird gezeigt, dass die Wohlverhaltenseigenschaften ebenfalls unter der einfacheren Semantik

nachgewiesen werden kénnen.

Die Hauptresultate der vorliegenden Arbeit sind die Folgenden: (i) Ein kompositioneller Verifi-
kationsansatz, welcher Speicherverwaltung und Datenstruktur getrennt verifiziert. Der Ansatz
beruht auf einem neuartigen Spezifikationsformalismus, der das Speicherbereinigungsverhal-
ten der Speicherverwaltung iberapproximiert. (ii) Ein Begriff des Weak-Ownership, welcher
selbst dann Anwendung findet, wenn Speicher wiederverwendet wird. Weak-Ownership schlief3t
die konzeptionelle Liicke zwischen Verifikationstechniken fiir Garbage-Collection, bei denen
Ownership eines Speicherbereichs den alleinigen Zugriff des Ownership-haltenden Threads
garantiert, und manueller Speicherverwaltung, bei der hingende Zeiger diese Exklusivitét des
Zugriffes verletzen konnen. (iii) Ein Begriff des Pointer-Race und des Harmful-ABA, deren Ab-
wesenheit garantiert, dass die Speicherverwaltung keinen Einfluss auf die Datenstruktur austibt
und somit die Datenstruktur unter der Annahme von Garbage-Collection verifiziert werden
kann. Bemerkenswerterweise geniigt es diese Abwesenheit in einer Semantik zu priifen, die

hochstens eine fixe Speicherzelle realloziert. (iv) Ein Begriff des Strong-Pointer-Race, dessen

vii

viii

Abwesenheit garantiert, dass weder ein Pointer-Race noch ein Harmful-ABA vorhanden sind. Um
zu priifen, ob ein Programm Strong-Pointer-Races enthalt, prasentieren wir ein hocheffizientes
Typsystem. Somit erhalten wir eine leichtgewichtige Analyse, welche als erstes einen Typcheck
durchfithrt und dann die tatséchlich zu tberpriifende Eigenschaft unter der Annahme eines
Garbage-Collectors und mit Hilfe existierender Tools nachweist. (v) Experimentelle Evaluationen
der genannten Techniken, um deren Nutzen fiir die Verifikation nachzuweisen. Die vorgestellten
Techniken sind, nach bestem Wissen, die Ersten, die nicht-blockierende Datenstrukturen mit in

der Praxis gingigen Speicherverwaltungen vollstindig automatisch verifizieren kénnen.

Acknowledgements

First and foremost, I would like to thank my supervisor Roland Meyer for accepting me as his
PhD student and guiding me through the sometimes rough and bewildering waters that are
research. I am grateful for his interest in the topic, his support of my research, and his constant

indomitable will to push our results beyond practicability to theoretic elegance and simplicity.
I sincerely thank Rupak Majumdar and Constantin Enea for accepting to review this thesis.

I am deeply indebted to my parents, Evelin and Martin, for their constant support. Without them,

I would have had none of the opportunities that lead to this work.

Last but not least, I thank all my partners in crime when it came to extracurricular activities, in
order of appearance: Thomas Lottermann, Manuel Dossinger, Sebastian Henningsen, Frederik
Walk, Simon Birnbach, Jana Lampe, Adrian Leva, Sarah Dossinger, Michael Hohenstein, Marvin
Huber, Sebastian Schumb, Stefan Templin, Phillip Schon, Sven Kautz, Peter Chini, Sebastian
Muskalla, Florian Furbach, Emanuele D’Osualdo, Prakash Saivasan, Elisabeth Neumann, Soren

van der Wall, Mike Becker, Thomas Haas, Elaine Anklam, and Johannes Mohr.

ix

Preface

Parts of this thesis have already appeared in one of the following peer-reviewed publications:

[1] Frédéric Haziza, Lukas Holik, Roland Meyer, and Sebastian Wolff. 2016. Pointer Race
Freedom. In: VMCAI LNCS vol. 9583. Springer. £ D0I:10.1007/978-3-662-49122-5_19
Relevant for: Chapter 6.

[2] Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data structures from memory
reclamation for static analysis. In. PACMPL 3 (POPL). ¢ DOI:10.1145/3290371
Relevant for: Chapters 1 to 5 and 7.

[3] Roland Meyer and Sebastian Wolff. 2020. Pointer life cycle types for lock-free data structures
with memory reclamation. In: PACMPL 4 (POPL). ¢ D0I:10.1145/3371136
Relevant for: Chapters 1, 3, 8 and 9.

Further publications related to this thesis:

[4] Lukas Holik, Roland Meyer, and Tomas Vojnar, and Sebastian Wolff. 2017. Effect Summaries
for Thread-Modular Analysis - Sound Analysis Despite an Unsound Heuristic. In: SAS, LNCS
vol. 10422. Springer. £ D0I:10.1007/978-3-319-66706-5_9

[5] Roland Meyer and Sebastian Wolff. 2018. Reasoning About Weak Semantics via Strong Seman-

tics. In: Principled Software Development, Springer. > D0I:10.1007/978-3-319-98047-8_18
Technical reports of [1-4] are available as:
[6] Frédéric Haziza, Lukas Holik, Roland Meyer, and Sebastian Wolff. 2015. Pointer Race
Freedom. In: CoRR abs/1511.00184. £ arxiv.org/abs/1511.00184
[7] Lukas Holik, Roland Meyer, and Tomas Vojnar, and Sebastian Wolff. 2017. Effect Summaries

for Thread-Modular Analysis. In: CoRR abs/1705.03701. & arxiv.org/abs/1705.03701

[8] Roland Meyer and Sebastian Wolff. 2018. Decoupling lock-free data structures from memory
reclamation for static analysis. In: CoRR abs/1810.10807. £ arxiv.org/abs/1810.10807
Relevant for: Appendices B and C.

[9] Roland Meyer and Sebastian Wolff. 2019. Pointer life cycle types for lock-free data structures
with memory reclamation. In: CoRR abs/1910.11714. £ arxiv.org/abs/1910.11714

Relevant for: Appendices A to C.

A web page accompanying this thesis is available at: £ https://wol££09.github.io/phd/

Xi

https://doi.org/10.1007/978-3-662-49122-5_19
https://doi.org/10.1145/3290371
https://doi.org/10.1145/3371136
https://doi.org/10.1007/978-3-319-66706-5_9
https://doi.org/10.1007/978-3-319-98047-8_18
https://arxiv.org/abs/1511.00184
https://arxiv.org/abs/1705.03701
https://arxiv.org/abs/1810.10807
https://arxiv.org/abs/1910.11714
https://wolff09.github.io/phd/

Contents

Introduction

Contribution 1: SMR Specifications and Compositional Verification
Contribution 2: Ownership for Manual Memory Reclamation
Contribution 3: Avoiding Reallocations
Contribution 4: Verification under Garbage Collection

Outlook e

Preliminaries

Non-blocking Data Structures

2.1 Linearizability
2.2 Fine-grained Synchronization
2.3 Manual Memory Reclamation
231 FreeLists e
2.3.2 Epoch-Based Reclamation
233 HazardPointers L
2.4 Data Structure Implementations L.
241 Stacks
242 QUEUES. . . . o e e e
243 Sets. e

Model of Computation

3.1 Memory,or Heapsand Stacks
3.2 Syntax of Programs
3.3 Semantics of Commands
3.4 Semantics of Programs L L

Thread-Modular Analysis

Contributions

Compositional Verification

5.1 SMRAutomata e

—

N N g W

11
11
13
14
16
18
20
23
24
26
28

37
37
38
38
39

43

45

47

xiii

8

5.2 SMR Specifications
5.3 Verification Relative to SMR Automata

Ownership and Reclamation

6.1 Reclamation breaks Ownership
6.2 Regaining Ownership L
6.3 Evaluation
6.3.1 Integrating Safe Memory Reclamation
6.3.2 Linearizability Experiments

Pointer Races

7.1 Similarity of Computations L L
7.2 Preserving Similarity
7.3 Detecting ABAs
74 ReductionResult. o
7.5 Evaluation
7.51 Soundnesschecks. o
7.5.2 Linearizability Experiments
7.53 Verifying SMR Implementations

Strong Pointer Races

8.1 Annotations
8.2 Avoiding All Reallocations
8.3 A Type System to Prove Strong Pointer Race Freedom
83.1 Guarantees
83.2 Types
833 TypeRules.
834 Soundness
84 Example
8.4.1 Type Transformer Relation
842 Angels
843 Typing e
844 Annotations L
84.5 HazardPointers
8.5 Invariant Checking
8.6 Typelnference
8.7 Avoiding Strong PointerRaces
8.8 Evaluation

55
55
60
61
62
62

65
65
69
73
76
78
78
79
81

Il Discussion

9 Related Work

9.1
9.2
9.3

DataStructures
Memory Reclamation L
Reasoning and Verification
9.3.1 Memory Safety
93.2 Typestate
933 ProgramLogics
9.3.4 Linearizability
93,5 Moverness e

10 Future Work

11 Conclusion

Bibliography

Appendices

A Additional Material

A1 Compositionality

A.2 Hazard Pointer Specification L o

A.3 Relaxation of Strong Pointer Races

B Meta Theory

B.1
B.2
B.3
B.4
B.5

Formal Definitions

Compositionality

Ownership .

Reductions .

Type System

C Proof of Meta Theory

Ci1
C.2
C3
C4

Compositionality

Ownership .

Reductions .

Type System

113

115
115
116
116
117
118
118
119
120

121

125

127

147

149
149
151
152

155
155
162
163
163
167

171
171
181
182
237

XV

xvi

List of Figures and Tables

2.2 Pseudo implementations for compare-and-swap. 13
23 Asimplecounter 15
2.4 Implementation of free lists (FL) 16
25 Asimplecounterwith FL Lo Lo 17
2.6 AsimplecounterwithEBR 18
2.7 Implementation of epoch-based reclamation (EBR) 19
2.8 Implementation of hazard pointers (HP) 21
29 AsimplecounterwithHP 22
2.10 Node type for singly-linked data structures 23
2.11 Treiber’sstack 25
2.12 Optimized version of Treiber’sstack 25
2.13 Michael&Scott’squeue 26
214 DGLMqueue 27
2.15 Singly-linked setinsertion L L L. 28
2.16 Vechev&Yahav's 2CASset 30
217 ORVYYsseto 31
2.18 Vechev&Yahav’'s CASset i 33
2.19 Michael'sset 34
220 Harris’set o e 35
3.1 Semanticsofcommands. Lo L Lo 39
3.2 SOS rules for the standard semantics 40
5.1 Typical system design and the interaction among components 47
5.4 SMR automata Op,g, OFpr, and (/)Il}p 50
59 SMRsemantics Lo 53
6.2 Spurious views encountered during thread-modular interference 57
6.4 Unsound ownership reasoning due to reallocations 59
6.8 Experiments for verifying data structures using FL (state space exploration) . . 63
7.24 Experiments for verifying data structures using SMR (state space exploration) . 80
7.25 Experiments for verifying SMR implementations (state space exploration) 82

xvii

xviii

8.1

8.2

8.12
8.13
8.17
8.18
8.19
8.20
8.23
8.25
8.27
8.29

A5

Memory lifecycle 83

Encoding of correctness of annotations 86
Type rules for primitive commands 93
Type rules for statements L L L 94
EBR-specifictypes L 98
Angel annotations in Michael&Scott’s queue withEBR 99
A typing of Michael&Scott’s queue withEBR 100
A typing of Michael&Scott’s queue with HP 102
Source-to-source translation of annotations L L0 L. 104
Constraint system @(X, P,Y) for type inference 106
Making a program more atomic to avoid strong pointer races 108

Experiments for verifying data structures using SMR (type systems approach) . 112

SMR automaton (’)1‘3}, 153

Introduction

Software is ubiquitous. Today, it is the driving force behind controlling and managing all sorts
of systems ranging from microwave ovens to critical infrastructure. While one may survive
unscathed a cold meal as the result of defective oven software, quite the opposite is true for
defects in medical equipment and transportation. Famously, and even more so tragically, a
computer-aided radiation therapy device from the early 1980s, the Therac-25, suffered from
a software defect [Leveson and Turner 1993]. The result: massive radiation overdoses which
resulted in at least six patients dying. Fast forward several decades and software is much more
widely spread in safety-critical systems. Yet, defects still endanger and claim the lives of people.
In the 2000s, Toyota replaced with software the physical connection between the acceleration
pedal and engine in some of their cars. The software malfunctioned [Barr 2013; CBS News 2010;
Yoshida 2013a,b]. The result: around ninety passengers were killed in car accidents as the car
would accelerate uncontrollably. In 2019, a software defect in e-scooters was reported, locking
the wheels at potentially high velocities [Carson 2019]. The result: several injured riders. The

list of software defects causing economic loss and human damage goes on [Charette 2005].

The above brief history of software defects calls for thorough software verification. It needs
to be checked that software is correct, that is, behaves as intended. A basic building block of
software are data structures. They are the backbone of virtually all programs across all areas
of application [Mehta and Sahni 2004]. Their importance in programming is best summarized

by Wirth [1978]:
“Algorithms + Data Structures = Programs.”

The question of how to store and access data is fundamentally mission-critical, so efficient
and correct data structure implementations are imperative. In times of highly concurrent
computing being available even on commodity hardware, concurrent implementations are
needed. In practice, the class of non-blocking data structures has been shown to be particularly
efficient [Harris 2001; Henzinger et al. 2013a; Ladan-Mozes and Shavit 2004; Michael 2002a; Wu
et al. 2016]. Using fine-grained synchronization and avoiding such synchronization whenever
possible results in unrivaled performance and scalability. Unfortunately, this use of fine-grained
synchronization is what makes non-blocking data structures also unrivaled in terms of complexity.
Indeed, bugs have been discovered in published non-blocking data structures [Doherty et al.

2004a; Michael and Scott 1995]. This confirms the need for verification. More specifically, this

2

confirms the need for formal proofs of correctness: the inherent non-determinism of concurrency

renders testing techniques unable to make defects acceptably improbable [Clarke 2008].

Data structure verification has received considerable attention over the past decade (Chapter 9
gives a detailed overview). Doherty et al. [2004b], for example, give a manual (mechanized) proof
of a non-blocking queue. Such proofs require a tremendous effort and a deep understanding of

the data structure and the verification technique. Or, as Clarke and Emerson [1981] put it:

“The task of [manual] proof construction can be quite tedious,

and a good deal of ingenuity may be required.”

Automated approaches remove this burden. Vafeiadis [2010a,b], for instance, verifies singly-

linked data structures fully automatically.

Surprisingly, many proofs presented in the literature, whether manual or automatic, are unfit
for practice. The reason for this is that most techniques are restricted to implementations that
rely on a garbage collector (GC) [Abdulla et al. 2016; Cao et al. 2017; Krebbers et al. 2018]. This
assumption, however, does not apply to all programming languages. Take C/C++ as an example.
It does not provide an automatic garbage collector that is running in the background. Instead,
it requires manual memory management (MM). That is, it is the programmer’s obligation to
avoid memory leaks by reclaiming memory that is no longer in use (using free or delete).
Hence, manual memory management is also referred to as manual memory reclamation. In
non-blocking data structures, this task is much harder than it may seem at first glance. The root
of the problem is that threads typically traverse the data structure without synchronization. This
leads to threads holding pointers to objects that have already been removed from the structure.
If objects are reclaimed immediately after the removal, those threads are in danger of accessing
deleted memory. Such accesses are considered unsafe (undefined behavior in C/C++ [ISO 2011])
and are a common cause for system crashes due to a segfault. The solution to this problem are
so-called safe memory reclamation (SMR) algorithms [Michael 2002b]. Their task is to provide
non-blocking means for deferring the reclamation/deletion until all unsynchronized threads have
finished their accesses. This is done by replacing explicit deletions with calls to a function retire
provided by the SMR algorithm which defers the deletion. To defer the deletion sufficiently
long, the SMR algorithm relies on feedback from the data structure. To that end, threads issue
protections of the memory that they are going to access. A protection requests the SMR algorithm
to defer the deletion of the protected memory until the protection is revoked. The exact form
of protections depends on the SMR algorithm. Coming up with efficient and practical SMR
implementations is difficult [Brown 2015; Cohen 2018; Nikolaev and Ravindran 2020] and an
active field of research (cf. Chapter 9).

The use of SMR algorithms to manage manually the memory of non-blocking data structures

hinders verification, both manual and automated. This is due to the high complexity of such

Chapter 1 Introduction

algorithms. As hinted before, an SMR implementation needs to be non-blocking in order not
to spoil the non-blocking guarantee of the data structure using it. In fact, SMR algorithms are
quite similar to non-blocking data structures implementation-wise. So far, this added complexity

could not be tamed in a principled way by automatic verifiers.

The present thesis tackles the challenge of automatically verifying non-blocking data structures
which use SMR. To make the verification tractable, we contribute several insights that greatly
simplify the verification task. The guiding theme of those simplifications are semantic reductions.
We show that the verification of a program’s complicated target semantics can be done in a
simpler and smaller semantics which is more amenable to automatic techniques. For instance, we
show that verifiers can ignore manual memory manual altogether and instead assume a garbage
collector (cf. Contribution 4 below). Our reductions typically rely on good conduct properties
of the program. The properties we rely on are derived from practice and exploit common
programming patterns, like avoiding dereferences of dangling pointers. Besides practically
motivated properties, we also show how to automatically check for those properties under the

smaller semantics. We summarize our contributions.

Contribution 1: SMR Specifications and Compositional Verification

We propose a compositional verification technique [de Roever et al. 2001]. We split up the single,
monolithic task of verifying a non-blocking data structure together with its SMR implementation
into two separate tasks: verifying the SMR implementation and verifying the data structure
implementation without the SMR implementation. At the heart of our approach is a specification
of the SMR behavior. Crucially, this specification has to capture the influence of the SMR
implementation on the data structure. Our main observation is that there is no influence. More
precisely, there is no direct influence. The SMR algorithm influences the data structure only
indirectly: the data structure retires to-be-reclaimed memory, the SMR algorithm eventually

reclaims the memory, and then the data structure can reuse the reclaimed memory.

In order to come up with an SMR specification, we exploit the above observation as follows.
We let the specification define when reclaiming retired memory is allowed. Then, the SMR
implementation is correct if the reclamations it performs are a subset of the reclamations allowed
by the specification. For verifying the data structure, we use the SMR specification to over-
approximate the reclamations of the SMR implementation. This way we over-approximate the
influence the SMR implementation has on the data structure, provided the SMR implementation

is correct. Hence, our approach is sound for solving the original verification task.

Towards lightweight SMR specifications, we rely on the insight that SMR implementations,
despite their complexity, implement rather simple temporal properties [Gotsman et al. 2013].

These temporal properties are incognizant of the actual SMR implementation. Instead, they

4

reason about those points in time when a call of an SMR API function is invoked or returns.
We exploit this by having SMR specifications judge when reclamation is allowed based on the
history of SMR function invocations and returns. Technically, we introduce SMR automata to
specify SMR implementations. SMR automata are similar to ordinary finite-state automata plus

more powerful acceptance criteria.

With SMR automata at hand, we are ready for compositional verification. Given an SMR au-
tomaton, we first check that the SMR implementation is correct wrt. that automaton. Second,
we verify the data structure. To that end, we strip away the SMR implementation and let the
SMR automaton execute the reclamation. More precisely, we non-deterministically delete those
parts of the memory which are allowed to be reclaimed according to the SMR automaton. The
verification result is sound since the SMR automaton over-approximates the influence the SMR

implementation can have on the data structure.

Contribution 2: Ownership for Manual Memory Reclamation

Data structures are typically implemented as part of concurrency libraries. Hence, we aim to
verify them for all possible future use cases. In particular, this means to verify them for an
arbitrary number of concurrent client threads, rather than a fixed number of clients. To do
so, thread-modular reasoning is employed [Berdine et al. 2008; Flanagan and Qadeer 2003b;
Jones 1983; Owicki and Gries 1976]: threads are verified individually, abstracting away from the
relation between threads. Intuitively, the technique splits up system states into partial states that
reflect a single thread’s perception of the overall state. To account for the interaction among
threads, the updates of each thread are recorded in a so-called interference set. Partial thread
states are then subject to spontaneous updates from that set. Applying an interference update,
however, suffers from imprecision. For example, parts of a thread’s partial state may be modified
despite being inaccessible to other threads in the original system state. Such spurious updates
arise since the relation between threads got lost due to the abstraction. The imprecision leads to

false alarms in practice.

To rule out false alarms, spurious interference updates need to be identified and discarded.
Ownership reasoning is a well-known and widely applied technique for that purpose [Castegren
and Wrigstad 2017; Dietl and Miiller 2013; Gotsman et al. 2007; O’Hearn 2004; Vafeiadis and
Parkinson 2007]. Under garbage collection, ownership refers to the fact that a thread has exclusive
access to parts of the memory. Here, exclusivity means that other threads can neither write
nor read the owned memory. Hence, ownership entails a strict separation of owned memory
when applying interference updates. The separation makes thread-modularity precise enough

for verification to be practical under GC.

Chapter 1 Introduction

When memory is managed manually, however, the strong exclusivity guarantees of the above
notion of ownership do not apply. The reason for this are dangling pointers. They can observe
another thread’s reallocation of previously reclaimed memory and subsequently access the
now owned memory. Altogether, this means that ownership reasoning as applied under GC is
unsound under MM. This inapplicability of well-performing GC techniques makes MM verifiers
imprecise and scale poorly [Abdulla et al. 2013; Vafeiadis 2010a,b].

We overcome the issue of lacking ownership that makes automated techniques under MM
imprecise. We reintroduce ownership in a weakened form: ownership may be broken by dangling
pointers but retains the strong exclusivity guarantees for non-dangling pointers. We substantiate
the claims of improved precision with experimental evidence. Interestingly, our experiments
reveal that it is less relevant whether or not dangling pointers challenge the exclusivity, that
is, read or write owned memory. It is the exclusivity wrt. non-dangling pointers that improves

existing analyses, both in terms of precision and scalability.

Contribution 3: Avoiding Reallocations

Although our compositional approach localizes the verification effort, it leaves the verification
tool with a hard task: verifying shared-memory programs with memory reuse. Even with
ownership reasoning, the task remains too hard for automated verification to be practical for
complex data structures or complex SMR algorithms. To overcome this problem, we suggest
verification under a simpler semantics, a semantics that tames the complexity of reasoning about
memory reuse. More specifically, we prove sound that it suffices to consider reusing a single
memory location only. The rational behind this result is the following. From the literature we
know that avoiding memory reuse altogether is not sound for verification [Michael and Scott
1996]. Put differently, correctness under garbage collection does not imply correctness under
manual memory management via SMR. The discrepancy becomes evident in the ABA problem.
An ABA is a scenario where a pointer to address a is changed to point to address b and back
to a again. Under MM, a thread might erroneously conclude that the pointer has never changed
if the intermediate value was not seen due to a certain interleaving. Typically, the root of the
problem is that address a is removed from the data structure, reclaimed, reallocated, and reenters
the data structure. Under GC, the exact same code does not suffer from this problem. A pointer

to address a prevents it from being reused.

From ABAs we learn that avoiding memory reuse does not allow for a sound analysis. Surprisingly,
it turns out that any discrepancy between GC and MM manifests as an ABA. So our goal is to
check with little overhead to a GC analysis whether or not the program under scrutiny suffers
from the ABA problem. If not, correctness under GC implies correctness under MM. Otherwise,

we reject the program and verification fails.

6

We propose a lightweight ABA check that requires reallocations of a single address only. Note
that a program is free from ABAs if it is free from first ABAs. Fixing the problematic address a
of such a first ABA allows us to avoid reuse of any address except a while retaining the ability to
detect the ABA. Intuitively, this is the case because the first ABA is the first time the program
reacts differently on a reused address than on a fresh address. Hence, replacing reallocations

with allocations of fresh addresses before the first ABA retains the behavior of the program.

We implemented the ABA check and a GC analysis in a tool to verify data structures and SMR
implementations. Our experiments confirm the usefulness of the reduction. To the best of our
knowledge, our tool is the first to automatically verify non-blocking data structures which use

intricate SMR algorithms.

Contribution 4: Verification under Garbage Collection

The above result comes with a promising generalization that we already hinted at: the actual
verification task can be conducted under garbage collection. This suggests the use off-the-shelf GC
verifiers. Soundness, however, requires the program to be free from ABAs. To check this requires
us to inspect memory deletions and reallocations of at least a single address. Deletions and
reallocations, in turn, prohibit the use of GC verifiers. Even worse: we need custom verifiers with
techniques tailored towards manual memory management, techniques that are still inefficient
and imprecise despite the effort that the research community puts forward [Abdulla et al. 2013;
Holik et al. 2017].

We seek to overcome the limited applicability of MM verifiers and their customization in order to
establish ABA freedom. To that end, we present a type system a successful type check of which
guarantees the absence of ABAs. The key insight behind the type system is that in every ABA at
least one dangling pointer participates. Indeed, for a pointer to observe that an address is retired,
reclaimed, and reused, the pointer has to continuously reference that address—the pointer is
dangling. If a dangling pointer is used, we let the type check fail. As a result, a successful type
check entails ABA freedom. In fact, a successful type check also guarantees memory safety in

the sense that all dereferences are safe.

The main challenge for the type system is to syntactically detect the semantic property of
whether or not a pointer is dangling. Due to the lack of synchronization in non-blocking data
structures, a pointer may become dangling without a thread noticing. Programmers are aware
of the problem. They use the protection mechanism of the SMR algorithm in such a way that
the deletion of retired objects is guaranteed to be deferred, effectively preventing pointers from
becoming dangling. To cope with this, our types integrate knowledge about the SMR algorithm.
More specifically, a pointer’s type at some program location over-approximates the reclamation

behavior of the SMR algorithm for the address held by the pointer, for all executions reaching the

Chapter 1 Introduction

program location. Consequently, types allow us to detect when a pointer may become dangling.
Technically, we assume we are given an SMR automaton specifying the SMR algorithm in use
and let types denote sets of states of the SMR automaton. A core aspect of our development
is that the actual SMR automaton is an input to our type system—it is not tailored towards a

specific SMR automaton.

In practice, a pure syntactic approach as the one described above lacks precision. To guide the
type check’s detection of dangling pointers, we exploit shape invariants [Jones and Muchnick
1979], i.e, invariants capturing the correlation of pointers and objects in memory at runtime. Type
systems, however, typically cannot detect such invariants. We embrace this weakness. A design
decision of our type system is that it does not track shape information nor alias information.
Instead, we rely on light-weight annotations to mark pointers referencing non-retired objects. To
relieve the programmer from arguing about annotations, we automatically prove their correctness
and place them in a guess-and-check manner [Flanagan and Leino 2001]. Surprisingly, we can

refute incorrect annotations under GC with off-the-shelf verifiers.

We implemented a tool that performs a type check, checks annotations for correctness, and
invokes an existing GC verifier for the actual analysis. Our experiments confirm that the type
check is highly efficient. Furthermore, we confirm the practicality of discharging annotations
with an off-the-shelf verifier. To the best of our knowledge, our tool is the first to automatically

verify non-blocking set data structures which use SMR algorithms.

Outlook

The remainder of the thesis is structured in three parts.

Preliminaries are discussed in Part I. Chapter 2 gives a primer on non-blocking data structures
and their memory management. Chapter 3 makes precise the programming model, i.e., the
syntax and semantics of programs. Chapter 4 reviews an existing analysis for non-blocking data

structures that we reuse and expand.

The contributions are presented in detail in Part II. Chapter 5 introduces SMR automata and
a compositional verification approach. Chapter 6 lifts ownership to apply to manual memory
management. Chapter 7 presents an analysis that need not explore all reallocations. Chapter 8

reduces the verification to a type check and verification under GC.

The thesis is concluded in Part IIl. Chapter 9 discusses related work. Chapter 10 offers directions

for future work. Chapter 11 summarizes the results.

Part |

Preliminaries

10

2.1

Non-blocking Data Structures

The present thesis is concerned with the verification of high-performance concurrent data
structures, more specifically, with non-blocking implementations [Herlihy and Shavit 2008;
Michael and Scott 1996; Treiber 1986]. Non-blocking refers to the use of fine-grained, low-level
synchronization rather than traditional locking techniques. To avoid ambiguities, we clarify the
terminology. In the literature, there are three so-called progress guarantees [Herlihy and Shavit
2008, Section 3.7]: obstruction-freedom, lock-freedom, and wait-freedom. Obstruction-freedom is
the weakest guarantee and requires, intuitively, that at any given point any given thread can make
progress if it is executed in isolation, i.e., without interference from other threads. Lock-freedom
requires obstruction freedom and that there always is a thread that can make progress even in
the presence of interference. Wait-freedom is the strongest guarantee. It requires that all threads
can make progress at any given point in time. Since we are concerned with verification, we need
not distinguish between these progress guarantees. We stick with non-blocking to uniformly
refer to any of the above progress guarantees. While we follow this convention hereafter, note
that some works use the terms lock-free and non-blocking interchangeably [Agesen et al. 2000;
Cohen and Petrank 2015a; Greenwald 1999] or use the term lock-free to refer to the absence of

locks/mutexes [Barnes 1993; Michael and Scott 1996].

The remainder of this chapter gives a primer on non-blocking data structures—it is not strictly
necessary for the understanding of the contributions presented in Chapters 5 to 8 but details
the practical concepts that shaped them. The structure is as follows. Section 2.1 introduces the
correctness criterion for concurrent data structures that we aim to verify. Section 2.2 examines
low-level synchronization. Section 2.3 discusses memory management, a critical aspect in non-
blocking data structures. Section 2.4 gives non-blocking data structure implementations from

the literature which we use as benchmarks throughout this thesis.

Linearizability

We introduce linearizability [Herlihy and Wing 1990], the de-facto standard correctness criterion
for concurrent data structures [Zhu et al. 2015]. Intuitively, linearizability asks for each method of
a data structure to take effect instantaneously at some point—the linearization point—between the

method’s invocation and response. This makes linearizability appealing from a user’s perspective.

Section 2.1 Linearizability

11

12

It provides the illusion of atomicity, allowing the user to rely on a much simpler sequential
specification of the data structure. Such sequential specifications are called the abstract data
type (ADT) of the data structure. ADTs can be given as simple sequential programs or in more
general mathematical terms [Abdulla et al. 2013; Vafeiadis 2010b]. Our development does not
depend on the formalism used for describing ADTs. For verification, linearizability is appealing
as well. The composition of two linearizable components is linearizable again [Herlihy and

Shavit 2008, Section 3.5], allowing for the components to be verified individually.

For a formal definition of linearizability we need some definitions. An execution E is a sequence
of method invocation and response events evt. Invocations take the form evt = in:meth(t,7)
where meth is the invoked method, ¢ is the invoking thread, and v are the actual parameters.
Responses take the form evt = re:meth(t,0) where meth is the returning method, ¢ is the
executing thread, and v are the return values. An invocation and a response match if they refer to
the same method meth and are executed by the same thread ¢. An execution is complete if every
invocation has a matching response. A complete execution is sequential if every invocation is
immediately followed by a matching response. Two executions E and E' are equivalent if all
per-thread subsequences of E and E' coincide. More precisely, E and E'are equivalent if E|, = E |+

for all threads ¢, where E|; is the subsequence of all events of thread ¢ in E and similarly for E.

To achieve linearizability, we require that every execution E can be mapped to an equivalent
sequential execution S such that the real-time behavior is preserved, that is, the order of non-
overlapping method calls in E is preserved in S. More formally, we say that S preserves the
real-time behavior of E, if for all response events evt; that precede an invocation event evt,
in E, evt; precedes evt; in S. Additionally, we require that the sequential execution S is legal, i.e.,
contained in the set of executions produced by the ADT. For this exposition of linearizability, we

assume a procedure to check membership for that set.

Lastly, we need to take care of incomplete executions. As they might contain multiple invocations
with pending responses, they cannot be mapped to a sequential execution. A completion of E is a
complete execution E' that coincides with E up to invocations without matching responses being
removed or receiving a matching response at the end of E'. The following definition summarizes

the discussion.

Definition 2.1 (Linearizability [Herlihy and Wing 1990]). An execution E is linearizable
if there are executions E' and S such that: (i) Eisa completion of E, (ii) Eis equivalent to S,

(iii) S is sequential, (iv) S is legal, and (v) S preserves the real-time behavior of E.

Chapter 2 Non-blocking Data Structures

Figure 2.2: Standard, double-word, and two-word compare-and-swap (CAS) mock implemen-
tations for a placeholder type T. Modern processors implement CAS in hardware, like the
CMPXCHG instruction on x86 [Intel Corporation 2016].

1 bool CAS(T& dst, T cmp, T src) {1 // standard
2 atomic §

if (dst == cmp) { dst = src; return true; }

w

4 else §{ return false; %

5 %

6 bool CAS(T& dstl, T cmpl, T srcl, T& dst2, T cmp2, T src2) {§ // double-word / two-word

7 // double-word version assumes that 'dstl’ and 'dst2’ are subsequent words in memory
8 atomic {

9 if (dstl == cmpl && dst2 == cmp2) § dstl = srcl; dst2 = src2; return true; }

10 else §{ return false; %

11 %

2.2 Fine-grained Synchronization

Non-blocking implementations avoid traditional locking techniques in favor of fine-grained,
low-level synchronization primitives. Those primitives are fine-grained in that they operate over
a single or a small, fixed number of Words,1 rather than critical sections of mutual exclusion
which may operate over unboundedly many such words. Low-level synchronization primitives
typically correspond to atomic read-modify-write operations, implemented directly in hardware.

As such, fine-grained synchronization promises better performance than locking.

Compare-and-swap (CAS) [IBM 1983] is the most common synchronization primitive in non-
blocking data structures. Pseudo code for a placeholder type T is given in Figure 2.2. A stan-
dard CAS takes three arguments: &dst, cmp, and src. The first argument, &dst, is a reference to a
word in memory. The remaining arguments, cmp and src, are values. A CAS compares the word
referenced by &dst with cmp. If equal, the word referenced by &dst is replaced by src and true
is returned. Otherwise, no update is performed and false is returned. Double-word CAS is
a variant which operates over two words stored consecutively in memory instead of a single
word &dst. Another variant is two-word CAS. It is similar to double-word CAS, however, operates
over two arbitrary words. While the distinction between consecutive and arbitrary words may
seem unnecessarily cumbersome, it is important for data structure designers. Many modern
hardware architectures, like x86, support standard and double-word CAS, but do not implement

two-word CAS [Intel Corporation 2016, p. 3-181 ff.]. The more powerful two-word CAS and its

'A memory word is loosely defined as a unit of the underlying hardware architecture which it can transfer in a
single step [Stallings 2013, p. 14]. Modern commodity hardware usually has a word size of 32 or 64 bits [Arm
Limited 2020; Intel Corporation 2016].

Section 2.2 Fine-grained Synchronization

13

2.3

14

generalization to k-word CAS require slower software solutions, like RDCSS [Harris et al. 2002].

Hence, data structure designers avoid them. We write 2CAS to point out two-word CAS usages.

It is worth pointing out that locks can be implemented using CAS [Herlihy and Shavit 2008, Sec-
tion 7.2]. As a result, avoiding locks in favor of CAS does not necessarily make an implementation

non-blocking.

Besides CAS, load-link/store-conditional (LL/SC) [Jensen et al. 1987] is another common synchro-
nization primitive. It is available, for instance, on ARM processors [Arm Limited 2020, p. B2-166].
Intuitively, a load-link and subsequent store-conditional to the same address behaves like an
ordinary load-store pair with the difference that the store-conditional fails if the address has
been updated since the load-link was executed. Since LL/SC can be used to implement any of the
above CAS [Anderson and Moir 1995] and since it is less common in the data structure literature,

we restrict our presentation to CAS.

Manual Memory Reclamation

In the absence of a garbage collector, which runs in the background and automatically reclaims
unused memory, it is the programmer’s task to reclaim unused memory manually. In C/C++,
for instance, this is done using the primitives free or delete. While manual reclamation
tends to be rather simple when lock-based synchronization is used [Brown 2015; Nikolaev and
Ravindran 2020], it becomes substantially harder for fine-grained, non-blocking synchronization.
As discussed in Section 2.2, fine-grained synchronization relies on CAS and the like. This leads
to optimistic update patterns [Moir and Shavit 2004] where threads (i) create a local snapshot
of the current state of the data structure, (ii) compute an update based on the local snapshot,
and (iii) publish via CAS the update if the data structure has not changed since the snapshot
was taken or retry otherwise. Optimistic update patterns, in turn, lead to unsynchronized
readers. The mentioned local snapshot is typically created without regard for the updates of
other threads. For memory reclamation, this means that it is the reclaiming thread’s task to ensure
that deletions do not harm other threads. To that end, the reclaiming thread needs to ensure
that all unsynchronized readers of the to-be-deleted memory have finished their accesses. This,
however, requires an unexpectedly complicated machinery [Brown 2015; Cohen and Petrank

2015a; Fraser 2004; Michael 2002b].

We illustrate the problems with non-blocking manual memory reclamation on an example.
Therefore, consider the implementation of a simple counter from Figure 2.3. It consists of
a shared pointer variable Counter, Line 16, which points to an object storing a single int.
The Counter’s value is initialized to 0, Lines 19 and 20, by method init which we assume

is executed atomically once before the counter implementation is used. Method increment

Chapter 2 Non-blocking Data Structures

Figure 2.3: A simple counter with unsynchronized readers. The implementation is flawed
in that it leaks memory. Naively deleting the leaked memory in Line 29, however, is unsafe.

12 struct Container { 22 int increment() {

13 int data; 23 Container* inc = new Container();
14 % 24 while (true) {

15 25 Container* curr = Counter;

16 shared Containerx Counter; 26 int out = curr->data;

17 27 inc->data = out+1;

18 atomic init() { 28 if (CAS(Counter, curr, inc)) %
19 Counter = new Container(); 29 // delete curr;

20 Counter->data = 0; 30 return out;

21 % 31ttt

proceeds in the aforementioned optimistic manner. It reads out the current Counter into the local
pointer curr, Line 25. Next, it stores the incremented value of curr->data in a newly allocated
object inc, Line 27. Then, increment tries to install inc as the new Counter. This is done via
a CAS, Line 28, which ensures that Counter is still equal to curr. Observe that this CAS ensures
that inc indeed contains the incremented value of the current Counter. If the CAS succeeds,
the pre-increment value of the counter is returned, Line 30. Otherwise, increment restarts and

retries the procedure.

Despite its simplicity, the counter implementation is flawed. It leaks memory. The object
referenced by curr is not reclaimed after a successful CAS. The naive fix for this leak is to
uncomment the deletion from Line 29. This fix, however, is unsafe. Other threads might access
the counter concurrently. Since they do so without (read) synchronization, they will access the
to-be-deleted object without any precautions. In C/C++, for example, such use-after-free accesses

have undefined behavior and can result in a system crash due to a segfault [ISO 2011].

To avoid both memory leaks and unsafe operations, programmers employ so-called safe memory
reclamation (SMR). SMR algorithms provide means for deferring deletions until it is safe, that is,
until all concurrent readers have finished their accesses. To that end, SMR algorithms commonly
offer a function” retire to request the deferred deletion of an object, replacing ordinary deletion
via delete. As is standard for delete, no object must be retired multiple times in order to
avoid malicious double frees—all SMR implementations we are aware of rely on this. The actual
deferring mechanism varies vastly among SMR algorithms. It relies on feedback from the data

structure the form of which also varies among SMR algorithms.

It is worth pointing out that deferred deletion is the only viable solution for data structures to be

non-blocking when manually managing their memory. The alternative would be to integrate

? To avoid ambiguities, we refer to the operations offered by a data structure as methods and to the operations
offered by an SMR algorithm as functions.

Section 2.3 Manual Memory Reclamation

15

2.3.1

16

Figure 2.4: An implementation of free lists (FL) for a placeholder type T. Retired objects are
added to a (sequential) thread-local list. Objects from that list can be reused immediately.

2 threadlocal List<T%> freelist;

w

7 T* reuse() {

w

33 38 if (freelist.empty()) return NULL;
34 void retire(Tx pointer) { 39 Tx result = freelist.pop();

35 freeList.push(pointer); 40 return result;

36 % 41 %

into the dereference of a pointer a check for its integrity, i.e., a check if the referenced object
has not yet been deleted. Such a check, however, typically relies on reading out part of the data
structure (shared memory). Hence, it cannot be done atomically together with the dereference

when relying on fine-grained synchronization primitives.

In the remainder of this section we survey essential SMR algorithms that most other techniques
build upon or are derived from: free-lists (Section 2.3.1), epoch-based reclamation (Section 2.3.2),
and hazard pointers (Section 2.3.3). Traditional garbage collection is not among the techniques

as it is blocking [Cohen 2018]. See Chapter 9 for a broader overview of existing techniques.

Free Lists

The simplest approach to deferred deletion is indefinite deferral, i.e., avoiding memory recla-
mation altogether. To avoid leaks, retired objects are stored in a thread-local free list (FL) [IBM
1983; Treiber 1986]. The objects from that list can be reused in favor of allocating new memory.
Figure 2.4 gives an example implementation. Notably, the implementation relies on an initially

empty list, Line 32, which may be sequential as it is accessed by a single thread only.

To use FL with the counter implementation from above, we have to retire unused objects and, if
possible, reuse retired objects instead of allocating new ones. Moreover, we have to carefully
revise the CAS installing the new counter value (cf. Line 28). The possibility for memory being
reused immediately after its retirement allows for the infamous ABA problem [Michael and
Scott 1996]. Generally speaking, an ABA is a scenario where a pointer referencing address a is
changed to point to address b and changed back to point to a again. A thread might erroneously
conclude that the pointer has never changed if the intermediate value goes unnoticed due to
a certain interleaving. Typically, the root of the problem is that address a is removed from the
data structure, reused, and reenters the data structure. More specifically, an ABA may arise
in the counter implementation as follows. Let thread ¢ execute increment up to Line 28. That
is, t has read out the current Counter, say at address a, has read out its value out, and is about

to install out+1 as the new value of the counter. Assume ¢ is interrupted by another thread .

Chapter 2 Non-blocking Data Structures

Figure 2.5: An adaption of the simple counter to reuse memory via FL. Tagged pointers are
used to avoid the ABA problem. Modifications wrt. Figure 2.3 are marked in bold font.

42 struct Container § 54 int increment() %
43 int data; 55 Containerx inc = reuse();
44 % 56 if (inc == NULL) inc = new Containex();
45 57 while (true) {
46 shared int Tag; 58 int tag = Tag;
47 shared Containerx Counter; 59 Containerx curr = Counter;
48 60 int out = curr->data;
49 atomic init() { 61 inc->data = out+1;
50 Tag = 0; 62 if (CAS(Tag, tag, tag+l,
51 Counter = new Container(); 63 Counter, curr, inc)) {
52 Counter->data = 0; 64 retire(currx);
53 % 65 return out;
6 + 1%

Let thread ¢’ increment the counter, installing value out+1 and retiring address a. If ' performs
another increment, it might reuse address a to install out+2. Now, the CAS of t succeeds although
the counter has been updated: ¢ erroneously decreases the counter’s value from out+2 to out+1

where an increase to out+3 was expected. It is readily checked that this violates linearizability.

Under garbage collection, the exact same code does not suffer from ABAs: a pointer referencing
address a would prevent it from being reused. To overcome the problem under manual memory
management, pointers are instrumented to carry an integer tag, or modification counter [IBM
1983; Michael and Scott 1996; Treiber 1986]. To avoid ABAs then, (i) updating a pointer also
increases the tag, and (ii) comparisons of pointers take their tags into account. The solution
is amenable for fine-grained synchronization: pointers and tags can be handled atomically
with double-word CAS [Michael 2002a] or by stealing unused bits of pointers to use as storage
for the tag [Herlihy and Shavit 2008, Section 9.8]. Consider Figure 2.5 for a modified counter

implementation using FL and tags.

A significant drawback of FL is the fact it does not support arbitrary reuse [Michael 2002b]. Once
allocated, memory always remains allocated for the process. Even worse, the use of tagged
pointers mandates that the memory must not be used outside the data structure as otherwise
tags might get corrupted and ABAs resurface. This may make FL unfavorable in practice. The

SMR algorithms discussed next address this issue.

Section 2.3 Manual Memory Reclamation

17

Figure 2.6: An adaption of the simple counter to reuse memory via EBR. Modifications wrt.
Figure 2.3 are marked in bold font.

67 struct Container { 77 int increment() {
68 int data; 78 leaveQ();
69 3% 79 Containerx inc = new Container();
70 80 while (true) {
71 shared Containerx Counter; 81 Containerx curr = Counter;
72 82 int out = curr->data;
73 atomic init() { 83 inc->data = out+1;
74 Counter = new Container(); 84 if (CAS(Counter, curr, inc)) %
75 Counter->data = 0; 85 retire(curr);
76 } 86 entexQ();
87 return out;
88 § 1%

2.3.2 Epoch-Based Reclamation

18

Epoch-based reclamation (EBR) [Fraser 2004; Harris 2001] implements a simple form of time-
stamping to identify when retired objects cannot be accessed anymore and their reclamation is
safe. To that end, EBR offers the two functions leaveQ and enterQ. Threads use the former to
announce that they are going to access the data structure and use the latter to announce that they
have finished the access. The function names, in particular the Q, refer to the fact that the threads
are quiescent [McKenney and Slingwine 1998] between enterQ and leaveQ, meaning they do
not modify the data structure. During the non-quiescent period, EBR guarantees that shared
reachable objects are not reclaimed, even if they are removed from the data structure and retired.

This makes EBR easy to apply, as illustrated by the counter implementation from Figure 2.6.

Technically, EBR relies on two assumptions to realize the aforementioned guarantee: (i) threads
do not have pointers to any object during their quiescent phase, and (ii) objects are retired only
after being removed from the data structure, i.e., after being made unreachable from the shared
variables. Those assumptions imply that no thread has or can acquire a pointer to a removed
object if every thread has been quiescent at some point since the removal. So it is safe to delete a
retired object if every thread has been quiescent at some point since the retire. To detect this,
EBR introduces epoch counters, a global one and one for each thread. Thread-local epochs are
single-writer multiple-reader counters. Whenever a thread invokes a method, it reads the global
epoch e and announces this value by setting its thread epoch to e. Then, it scans the epochs
announced by the other threads. If all agree on e, the global epoch is advanced to e + 1. The fact
that all threads must have announced the current epoch e for it to be updated to e + 1 means that
all threads have invoked a method after the epoch was changed from e — 1 to e. That is, all threads

have been in-between calls. Thus, deleting objects retired in the global epoch e — 1 becomes safe

Chapter 2 Non-blocking Data Structures

Figure 2.7: An implementation of epoch-based reclamation (EBR) for a placeholder type T.
The implementation supports dynamic thread joining and parting.

89 struct EbrRec { 120 void retire(Tx ptr) 1

90 EbrRecx next; 121 myEpoch->retired0.push(ptr);

91 bool used; 122 %

92 int epoch; 123

93 List<Tx> retired®, retiredl, retired2; 124 void leaveQ() {1

94 % 125 int epoch = GEpoch;

95 126 myEpoch->epoch = epoch;

96 shared int GEpoch; 127

97 shared EbrRecx LEpochs; 128 EbrRecx tmp = LEpochs;

98 threadlocal EbrRecx myEpoch; 129 while (tmp != NULL) {

99 130 if (!tmp->used) continue;

100 atomic init() { 131 if (epoch != tmp->epoch) return;
101 Epochs = NULL; 132 tmp = tmp->next;

102 GlobalEpoch = 0; 133 k3

103 ¥ 134

104 135 int nextEpoch = (epoch + 1) % 3;
105 void join() { 136 if (!CAS(GEpoch, epoch, nextEpoch)) 1
106 myEpoch = new EbrRec(); 137 return;

107 myEpoch->used = true; 138 I3

108 myEpoch->epoch = GEpoch; 139

109 140 myEpoch->epoch = nextEpoch;

110 while (true) { 141 for (T* ptr : myEpoch->retired2) {
111 EbrRecx recs = LEpochs; 142 delete ptr;

112 myEpoch->next = recs; 143 3

113 if (CAS(LEpochs, recs, myEpoch)) { 144 retired2.clear();

114 break; 145 retired2.swap(retiredl);

115 ¢+ % 146 retiredl.swap(retired0);

116 147 %

117 void part() { 148

118 myEpoch->used = false; 149 void enterQ() {

119 150 %

from the moment when the global epoch is updated from e to e + 1. To perform those deletions,
every thread keeps a list of retired objects for every epoch and stores objects passed to retire in
the list for the current thread-local epoch. For the actual deletion it is important to note that the
thread-local epoch may lack behind the global epoch by up to 1. As a consequence, a thread may
put a object retired during the global epoch e into its retired-list for epoch e — 1. So for a thread
during its local epoch e it is not safe to delete the objects in the retired-list for e — 1 because they
may have been retired during the global epoch e. It is only safe to delete the objects contained
in the retired-list for epochs e — 2 and smaller. Hence, it suffices to maintain three retired-lists.
Progressing to epoch e + 1 allows for deleting the objects from the local epoch e — 2 and to reuse

that retired-list for epoch e + 1.

Section 2.3 Manual Memory Reclamation

19

2.3.3

20

An example EBR implementation is given in Figure 2.7. The thread-local epochs and retired-lists
are stored in a singly-linked list of EbrRec objects rooted in the shared pointer LEpochs, Line 97.
For a proper initialization, we assume that every thread invokes join as part of its construction
and part during its tear down. Function retire simply places the to-be-deleted object in the
thread-local retired-list retire0, Line 121. Function leaveQ implements the epoch progression,
Lines 128 to 138, and deferred deletion process, Lines 140 to 146, as described above. Besides the
core EBR functionality, the implementation supports dynamic thread joining and parting. That is,
new threads may be created and existing threads may be destroyed while the implementation is
in use—there is no need for dedicated start up and tear down phases where all threads are present
that ever wish to participate. Joining threads allocate and publish a new epoch entry, Lines 106
to 114. Parting threads mark their epoch entry as inactive via the used flag of EbrRec, Line 118.
Inactive entries are skipped by leaveQ when scanning the epoch entry list for consensus with
the global epoch. This is crucial as otherwise epoch entries of parted threads would prevent
the global epoch from being progressed, thus preventing reclamation. Notably, inactive entries
are never removed and reclaimed as this would require means of safe memory reclamation. We
leave it to the reader to improve the implementation so that it reuses marked entries for joining

threads.

EBR improves on FL from Section 2.3.1 in many aspects. First of all, it allows for arbitrary
reuse. Second, it is easier to use than FL as it usually prevents the ABA problem (given proper
usage). Lastly, quite efficient implementations exist in practice [Brown 2015; Hart et al. 2007].
On the downside, EBR does not support thread failures, or more generally threads that stop
executing leaveQ without having called part. As noted above, this prevents reclamation’ because
the global epoch cannot be progressed anymore. Hazard pointers, which we discuss next, do not

suffer from this problem.

Hazard Pointers

The hazard pointer (HP) [Michael 2002b] method provides a protection mechanism for individual
objects. Protections signal that an object is still in use and that its deletion should be deferred.
To be precise, HP guarantees that the deletion of an object is deferred if it has been continuously
protected since before it was retired [Gotsman et al. 2013]. Figure 2.8 gives a simplified version of
the HP implementation due to Michael [2004]. The implementation equips every thread with
a fixed number of single-writer multiple-reader pointers, the eponymous hazard pointers. We

refer to the i-th hazard pointer of thread ¢ by hp,[i] and may drop the thread subscript if clear

? The literature may deem memory reclamation schemes blocking if they allow for an unbounded number of objects
awaiting reclamation [Balmau et al. 2016]. The reason for this is that an unbounded backlog of reclamation is
assumed to result in the system running out of memory, making subsequent allocations block/wait until memory
is reclaimed. The issue is irrelevant for the present thesis: we do not suggest how to construct non-blocking
data structures but verify the correctness of existing ones. EBR remains an essential technique as many SMR
algorithms are derived from it or are drop-in replacements for it (cf. Chapter 9).

Chapter 2 Non-blocking Data Structures

Figure 2.8: A simplified version of the hazard pointer (HP) implementation by Michael [2004]
for a placeholder type T and K hazard pointers per thread. The implementation supports
dynamic thread joining and parting.

151 struct HpRec {1 177 void protect(Tx ptr, int index) {
152 HpRec* next; 178 assert(0 <= index < K);
153 Array<Tx, K> hp; // O-indexed 179 myHP->hp[index] = ptr;
154 List<T*> retired; 180 %
155 % 181
156 182 void unprotect(int index) {
157 shared HpRecx HPtrs; 183 protect(NULL, index);
158 threadlocal HpRec* myHP; 184 %
159 185
160 atomic init() % 186 void retire(Tx ptr, int index) %
161 HPtrs = NULL; 187 myHP->retired.push(ptr);
162 % 188 if (%) reclaim();
163 189 %
164 void join() % 190
165 myHP = new HpRec(); 191 void reclaim() {
166 while (true) % 192 List<Tx> defer;
167 HpRecx recs = HPtrs; 193 HpRec* tmp = HPtrs;
168 myHP->next = recs; 194 while (tmp != NULL) {
169 if (CAS(HPtrs, recs, myHP)) £ 195 for (int 1 = 0; i < K; ++1i) {
170 break; 196 defer.push(tmp->hp[i]);
171 + % 197 1
172 198 tmp = tmp->next;
173 void part() { 199 1
174 for (int i =0; 1 < K; ++i) { 200
175 hp[i] = NULL; 201 for (T* ptr : myHP->retired) {
176+ % 202 if (defer.contains(ptr)) continue;
203 myHP->retired.remove (ptr);
204 delete ptr;
205 % %

from the context. Protections are issued by a call to function protect. It takes as parameters an
object and a hazard pointer index, and simply writes the object to the hazard pointer with the
given index, Line 179. Protections can be revoked by unprotect which takes a hazard pointer
index and resets the corresponding hazard pointer by writing NULL to it, Line 183. Protections are

respected as follows. Function retire stores the passed object into a thread-local list of retired

objects, Line 187. Moreover, it periodically tries to reclaim the objects from that list, Line 188.

To do so, it scans the hazard pointers of all threads, collecting all the objects that are currently
protected, Lines 192 to 199. Then, a retired object is reclaimed if it is not in the list of protected

objects, Lines 201 to 205. Similar to the EBR implementation from Section 2.3.2, HP supports

dynamic thread joining and parting. Again, parting threads do not reclaim internal HpRec objects.

Unlike for EBR, thread failures do not stop reclamation; failures may only prevent reclamation

of objects protected by crashed thread.

Section 2.3 Manual Memory Reclamation

21

22

Figure 2.9: An adaption of the simple counter to reuse memory via HP. A single hazard
pointer per thread is required. Modifications wrt. Figure 2.3 are marked in bold font.

206 struct Container { 216 int increment() {
207 int data; 217 Containerx inc = new Container();
208 ¥ 218 while (true) {
209 219 Containerx curr = Counter;
210 shared Containerx Counter; 220 protect(curr, 0);
211 221 if (curr != Counter) continue;
212 atomic init() { 222 int out = curr->data;
213 Counter = new Containexr(); 223 inc->data = out+1;
214 Counter->data = 0; 224 if (CAS(Counter, curr, inc)) %
215 % 225 retire(curx);
226 unprotect(0);
227 return out;
228 } } %

Figure 2.9 presents a version of the simple counter from Figure 2.3 adapted to reclaim memory
using HP with a single hazard pointer per thread. While the HP method is conceptually simple,
it may be non-trivial to detect whether or not an object has been protected successfully, i.e., if
an object has been protected before it was retired. In the counter implementation, we need to
protect curr because it is subsequently accessed. To that end, a protection is issued using hazard
pointer hp[0]. At this point, we cannot guarantee that a dereference of curr is safe. Between
reading out curr in Line 219 and protecting it in Line 220, an interfering thread might have
updated the counter and retired the object referenced by curr. Because the protection was not
yet announced, curr might have already been reclaimed. Line 221 checks that this is not the case.
It does so by ensuring that curr coincides with the shared Counter. It is worth pointing out that
this check relies on the invariant that Counter is never retired. Only after both Lines 220 and 221
have been executed, curr can be accessed safely. As we will see in Section 2.4, this procedure
for successfully protecting pointers is common in non-blocking data structures. Unfortunately,
we will also see that there are data structures that are fundamentally incompatible with this

procedure and the HP method in general [Brown 2015; Michael 2002b].

The alert reader readily realizes that the counter implementation using HP, more precisely the
protection check from Line 221, is prone to the ABA problem. Indeed, as noted above the object
referenced by curr could have been reclaimed. Consequently, it could have been reused and
installed as the shared Counter again. Those scenarios are not problematic since we just ensure
that curr contains the current value of Counter and that is has been protected successfully. Put
differently, Lines 219 to 221 appear as if they were executed atomically. Accesses to the content

of curr happen only later.

Chapter 2 Non-blocking Data Structures

2.4

Figure 2.10: Node type for singly-linked data structures. Member fields mark and next are
stored consecutively in memory, so both fields can be modified with a single double-word CAS.

229 struct Node {

230 int data;
231 bool mark;
232 Nodex next;

234 Node(int value) { data = value; mark = false; next = NULL; % // constructor

Finally, we revisit the guarantee that the deletion of an object is deferred if it has been continuously
protected since before it was retired. It is imperative to make precise the notion of continuous
protections. A single hazard pointer’s protection is continuous. More involved data structures,
however, use multiple hazard pointers to protect a single object [Michael 2002a]. A common
pattern first issues a protection per hp[i] and later, in order to reuse hp[i], issues a protection
per hp[i + 1] and resets hp[i]. We say that the protection is transfered from hp[i] to hp[i + 1].
The order is important [Michael 2002a]: a protection can be transferred from hp[i] to hp[j] only
if i < j. This is because of the scanning process from method reclaim, Lines 192 to 199 in Fig-
ure 2.8. It reads out hazard pointers in ascending order. Hence, protections can go unrecognized
when attempting to transfer from hp[j] to hp[i] with i < j. To see this, consider a thread ¢
protecting an object o with hp,[1]. Assume that another thread t' executes function reclaim up
to the point where it scans hp,[0] but not hp,[1]. Now, let ¢ protect o per hp,[0] and reset hp,[1].
Then, t' misses the protection of o—it is not transferred from hp,[1] to hp,[0]. Altogether, this
means that a protection is continuous only if it is due to a single hazard pointer or due to transfers

among multiple hazard pointers.

Data Structure Implementations

We give an overview of the non-blocking data structures from the literature that are used as
benchmarks throughout this thesis. We focus on singly-linked stacks, queues, and sets with
manual memory management via the SMR algorithms discussed in Section 2.3. All implemen-
tations use objects of type Node from Figure 2.10 as internal representation. A Node contains a
single data value, field data, a boolean flag for marking purposes, field mark, and a pointer for
establishing the link structure, field next. Some implementations do not use the mark field; for

simplicity, we do not introduce another type without the mark field.

Section 2.4 Data Structure Implementations

23

2.4.1

24

Regarding the presentation, we do not give individual implementations for each SMR technique.
Instead, we mark with bold font the lines of code that are needed for SMR usage and prefix
them with F, E, or H if they are specific to FL, EBR, or HP, respectively. For FL, we simplify the
presentation further: we do not make explicit the use of tags and memory reuse. Instead, we
implicitly assume that all pointers are equipped with tags and that new tries to reuse memory

before allocating new one.

Stacks

Stack data structures are simple collections of data items with last-in-first-out behavior. Elements

are added to and removed from the top of the stack.

Treiber’s Stack. The earliest documented non-blocking data structure implementation is
the stack due to Treiber [1986], given in Figure 2.11. The implementation maintains a NULL-
terminated singly-linked list of nodes rooted in the shared top-of-stack pointer TosS. If the stack
is empty, ToS points to NULL. New nodes are pushed to the stack by creating a local copy top
of ToS, Line 244, linking the new node as a predecessor of top, Line 247, and installing node as
the new ToS via a CAS, Line 248. The CAS checks that the stack has not changed since top was
read out. This ensures that node, which coincides with the new value of ToS after the update,
links to the old value of ToS. Existing values are popped as follows. First, a local copy top
of ToS is created, Line 257. If top equals NULL, then the implementation signals that the stack
is empty, Line 258. Otherwise, the implementation attempts to remove the top node. To that
end, a pointer next to the second node of the stack is read out, Line 261. Then, a CAS tries to
install next as the new value of ToS if the stack has not changed. In the case the CAS succeeds,

the value stored in the removed top node is returned. Otherwise, the implementation retries.

Treiber’s stack can be combined with SMR algorithms easily. Common to all SMR algorithms is
the need to retire popped elements, Line 264. The SMR specific modifications follow. FL requires
explicit reuse of retired nodes and tags to avoid the ABA problem—as stated above, we do not
make this explicit in the code, it is analogous to what we have seen in Figure 2.5. For EBR,
we need to add leaveQ and enterQ calls to the methods. For HP, we have to protect the top
pointer. Similarly to the counter from Figure 2.9, we do so by issuing protect for hp[0] and
ensure that the protected top coincides to ToS, Lines 245 and 246 in push as well as Lines 259
and 260 in pop [Michael 2002b]. It is an invariant of Treiber’s stack (and all data structures that
follow) that the shared reachable nodes are never retired. Hence, the protection is guaranteed to

be successful: we can safely access the pointer and avoid the ABA problem.

Chapter 2 Non-blocking Data Structures

Figure 2.11: Treiber’s non-blocking stack [Treiber 1986] with SMR. The extension to HP is
due to Michael [2002b].

236 shared Nodex ToS; 253 int pop() {

254 e leaveQ();
238 atomic init() § ToS = NULL; } 255 int output = EMPTY;

256 while (true) §

240 void push(int input) { 257 Nodex top = ToS;
241 e leaveQ(); 258 if (top == NULL) break; // empty

242 Nodex node = new Node(input); 259 n protect(top, 0);

243 while (true) %

260 H if (top != ToS) continue;
244 Nodex top = ToS; 261 Nodex next = top->next;
245 W protect(top, 0); 262 if (CAS(&ToS, top, next)) {
246 H if (top != ToS) continue; 263 output = top->data;
24 node->next = top; 264 FEH retire(top);
248 if (CAS(&ToS, top, node)) break; XE 11
249 1

266 W unprotect(0);

250 W unprotect(0); 267 e entexQ();

251 e entexrQ(); 268 return output;

252 % 29 1

Figure 2.12: Optimized version of Treiber’s non-blocking stack with HP [Michael 2002b].
Compared to the original version, Figure 2.11, the push operation does not take any precau-
tions wrt. memory reclamation and the ABA problem. Yet the implementation is correct.

270 shared Nodex ToS; 283 int pop() 1
271 284 int output = EMPTY;
272 atomic init() { ToS = NULL; } 285 while (true) {
273 286 Nodex top = ToS;
274 void push(int input) { 287 if (top == NULL) break; // empty
275 // no SMR needed 288 H protect(top, 0);
276 Node* node = new Node(input); 289 H if (top != ToS) continue;
277 while (true) % 290 Nodex next = top->next;
278 Node* top = ToS; 291 if (CAS(&ToS, top, next)) {
279 node->next = top; 292 output = top->data;
280 if (CAS(&ToS, top, node)) 293 H retire(top);
281 break 294 11
282 ¢ %} 295 W unprotect(0);
296 return output;
297 %

Optimized Treiber’s Stack. Michael [2002b] proposed an optimized version of Treiber’s
stack with HP, given in Figure 2.12. The implementation avoids protections in the push method
altogether. This results in an ABA: when installing node as the new value of ToS with the CAS
from Line 280 (Line 248 in the original version) the stack might have changed. More precisely,
interfering threads may have inserted or deleted elements. Interestingly, this does not void the

correctness of the implementation. It suffices that the newly added node is linked to ToS.

Section 2.4 Data Structure Implementations

25

Figure 2.13: Michael&Scott’s non-blocking queue [Michael and Scott 1996] with SMR. The
extension to HP is due to Michael [2002b].

298 shared Nodex Head, Tail; 322 int dequeue() {
299 323 e leaveQ();

300 atomic init() { Head=Tail=new Node(_); } 324 int output = EMPTY;

301 325 while (true) {

302 void enqueue(int input) { 326 Nodex head = Head;

303 e leaveQ(); 327 W protect(head, 0);

304 Nodex node = new Node(input); 328 W if (head != Head) continue;

305 while (true) % 329 Nodex tail = Tail;

306 Nodex tail = Tail; 330 Nodex next = head->next;

307 H protect(tail, 0); 331 W protect(next, 1);

308 H if (tail != Tail) continue; 332 if (head != Head) continue;

309 Nodex next = tail->next; 333 if (next == NULL) break; // empty
310 if (tail != Tail) continue; 334 if (head == tail) {

311 if (next != NULL) { 335 CAS(&Tail, tail, next); continue;
312 CAS(&Tail, tail, next); 336 t else {

313 continue; 337 output = next->data;

314 1 338 if (CAS(&Head, head, next)) $
315 if (CAS(&tail->next, next, node)) { 339 FEH retire(head);

316 CAS(&Tail, tail, node); 340 break;

317 break; 341 555

318 1t 342 W unprotect(0); unprotect(1);

319 u unprotect(0); 343 e entexQ();

320 e entexQ(); 344 return output;

321 % 345 %

2.4.2 Queues

26

Queue data structures are collections of data items with first-in-first-out behavior. New elements

are added to the end (tail) and existing elements are removed from the front (head) of a queue.

Michael&Scott’s Queue. Figure 2.13 gives the well-known implementation due to Michael and
Scott [1996]. It is a practical example in that it is used for Java’s ConcurrentLinkedQueue [Oracle
2020] and C++ Boost’s Lockfree: : queue [Blechmann 2011], for instance. The queue is organized
as a NULL-terminated singly-linked list of nodes. The first node in the list is a dummy node, its
content is not logically part of the queue. The enqueue method appends new nodes to the end of
the list. To do so, an enqueuer first moves Tail to the last node as it may lack behind, Line 312.
Then, the new node is appended by pointing Tail->next to it, Line 315. Last, the enqueuer tries
to move Tail to the new node, Line 316. This can fail as another thread may have moved Tail
already to avoid waiting for the enqueuer. The dequeue method removes the first node from
the list. Since the first node is a dummy node, dequeue reads out the data value of the second

node in the list, Line 337, and then moves the Head to that node, Line 338. Additionally, dequeue

Chapter 2 Non-blocking Data Structures

Figure 2.14: The DGLM non-blocking queue [Doherty et al. 2004b] with SMR. It is similar
to Michael&Scott’s non-blocking queue but allows the Head to overtake the Tail.

346 shared Nodex Head, Tail; 370 int dequeue() {

347 371 e leaveQ;

348 atomic init() { Head=Tail=new Node(_); } 372 int output = EMPTY;

349 373 while (true) {

350 void enqueue(int input) { 374 Nodex head = Head;

351 E leaveQ; 375 H protect(head, 0);

352 Nodex node = new Node(input); 376 H if (head != Head) continue;
353 while (true) { 377 Node* next = head->next;
354 Nodex tail = Tail; 378 H protect(next, 1);

355 H protect(tail, 0); 379 if (head != Head) continue;
356 H if (tail != Tail) continue; 380 if (next == NULL) break; // empty
357 Nodex next = tail->next; 381 output = next->data;

358 if (tail !'= Tail) continue; 382 if (CAS(&Head, head, next)) {
359 if (next != NULL) { 383 Node* tail = Tail;

360 CAS(&Tail, tail, next); 384 if (head == tail) {

361 continue; 385 CAS(Tail, tail, next);
362 3 386 b

363 if (CAS(&tail->next, next, node)) 387 FEH retire(head);

364 break 388 break;

365 ? 389 5 &

366 CAS(&Tail, tail,node); 390 W unprotect(0); unprotect(l);
367 W unprotect(0); 391 e entexQ;

368 e enterxQ; 392 return output;

369 ¥ 393 %

maintains the property that Head does not overtake Tail by moving Tail towards the end of the

list if necessary, Line 335.

Memory management can be added to Michael&Scott’s queue as follows. Dequeued nodes are
retired after they have been made unreachable from Head, Line 339. The modifications required
for FL and EBR are straight-forward, see Figure 2.13. Using HP requires more care [Michael 2002b,
2004]. We focus on the more involved dequeue method; the protections for enqueue are similar.
First, head is protected with hp[0], Line 327. As before, the success of the protection needs to
be ensured. This is done by checking that the shared Head still equals the local copy head. If so,
the subsequent dereference of head is safe, as required for acquiring pointer next to the first
non-dummy node of the queue, Line 330. Otherwise, the operation is restarted. Second, next
is protected with hp[1], Line 331. If head and Head coincide, Line 332, then the queue has not
changed and next is reachable from the shared pointer Head. This guarantees that next has not
been retired. That is, the protection of next is successful. It is worth pointing out that ensuring
the equality of next and head->next does not suffice: the fact that next is still linked to the
successfully protected head does not prevent updates to the queue, removing head and next, and

thus allows for next being retired.

Section 2.4 Data Structure Implementations

27

243

28

Figure 2.15: Example memory layout of a singly-linked set. A removal of node b must
ensure that the successor of b has not changed. Otherwise, an interfering insertion of node d
after b (dashed line) could be lost. A simple CAS(a->next, b, c) is prone to this problem.

[T e

Observe that dequeue reads out the to-be-returned data value next->value, Line 337, before the
actual dequeuing, Line 338. This is done because of FL. There, it is possible that immediately
after the CAS from Line 338 the node referenced by next is dequeued, retired, and reused. The
reuse leads to next->value being overwritten by an interferer before the dequeuing thread can
access the value that is supposed to be returned. Under garbage collection, EBR, and HP, the
implementation can be optimized: moving the data read after the CAS is correct because the reuse

of next is prevented.

DGLM Queue. Doherty et al. [2004b] proposed a variation of Michael&Scott’s implementation,
see Figure 2.14. Their dequeue method avoids congestion on the Tail pointer. It does so by
ignoring the Tail until an element has been dequeue. (Michael&Scott’s queue reads out Tail in
every iteration, no matter if an element is successfully dequeued or if the operation is restarted.)

As a consequence, Head may overtake Tail. If so, dequeue moves Tail forward.

Sets

Set data structures provide collections of unique data items with insertion, removal, and lookup
functionality. Singly-linked implementations typically maintain a sorted list. Sortedness poses a
major challenge: unlike in stacks and queues, insertions and removals may happen anywhere in
the list. To see why this is challenging, consider the list from Figure 2.15 containing subsequent
nodes a, b, and c. The removal of node b requires to update the next field of node a from b to c.
However, a simple CAS(a->next, b, ¢) is insufficient. Interfering threads might tamper with
the link between nodes b and c. An insertion, for instance, might add a new node d after b by
updating b->next to d (dashed line in Figure 2.15). Then, the above CAS would remove b but

would also remove d unintentionally.

Several solutions for the above problem have been proposed. We present some of them, sorted
by complexity in ascending order. Interestingly, however, this order opposes the chronological
order of publication. Some of the simpler algorithms were proposed later in the verification

literature to simplify the verification task.

Chapter 2 Non-blocking Data Structures

Vechev&Yahav’s 2CAS Set. As demonstrated by the above example, a removal needs to
check the consistency of two pointers atomically. Vechev and Yahav [2008] suggested to do
so with a two-word CAS. Their implementation is given in Figure 2.16. The backbone of the
implementation is the method locate. It is an internal helper that is not exposed to the clients
of the set. For a given data value, locate finds two adjacent nodes pred and curr such that the
value is either stored in curr or should be inserted between pred and curzr. To find those nodes,
the implementation traverses the singly-linked list from front to back. The operation restarts if a
traversed node has been removed by an interfering thread. This is the case if a node’s next field

is NULL, Line 454.

Lookups via contains check if a given value is in the set. This is done with locate and testing
whether or not curr contains the searched value, Line 457. Method insert uses locate to find
the appropriate insertion location. If a node with the to-be-inserted datum already exists, nothing
needs to be done, Line 418. Otherwise, a new node is linked in-between pred and curr, Lines 419
and 420. Method remove works similarly. To ensure a correct unlinking, two-word CAS is used,
Line 435. It unlinks curr only if curr->next has not changed. Moreover, the next field of the

unlinked curr is set to NULL, making interfering threads aware of the removal.

In terms of memory management, the implementation can be adapted to use FL and EBR in
the standard way. For HP, protections are issued by locate and revoked by the corresponding
caller method, i.e., at the end of contains, insert, and remove. The protections in locate are
more involved than the ones we have seen so far. The reason for this is that unboundedly many
nodes may be traversed while threads have only a bounded number of hazard pointers at their
disposal. To that end, locate uses two hazard pointers to issue protections in a hand-over-hand
fashion [Bayer and Schkolnick 1977]. More specifically, the loop from Lines 449 to 456 assumes
that pointer curr is protected with hp[0]. The protection is transferred to hp[1]. Recall from
Section 2.3.3 that this transfer is recognized by HP. Then, curr is advanced to the successor node
and protected with hp[0]. The check in Line 454 guarantees that the protection is successful
as it ensures that curr has not been removed. For the first iteration of the loop, note that curr
points to Head. Thus, no protection is needed since the dummy node Head is always accessible

and never retired.

ORVYY Set. O’Hearn et al. [2010] presented a solution similar to Vechev&Yahav’s 2CAS
set. Instead of indicating removed nodes via setting next fields to NULL, they use the marking
technique by Prakash et al. [1994]. That is, they use the boolean mark bit of type Node and set it
to true upon removal. This signals to other threads that the node is being removed and that
its next field must not be changed. The implementation is given in Figure 2.17. We stick to the
original atomic update proposed by O’'Hearn et al. [2010], Lines 500 to 505. It can be implemented
by two-word CAS. While the two-word CAS remains impractical, the marking technique brings

us closer to practicality as it is essential for a standard/double-word CAS solution.

Section 2.4 Data Structure Implementations

29

30

Figure 2.16: Vechev&Yahav’s 2CAS set [Vechev and Yahav 2008, Figures 8 and 9] with SMR.
The implementation of remove relies on a two-word CAS, Line 435.

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426

shared Nodex Head, Tail;

atomic init() {
Head = new Node(-00);
Tail = new Node(o0);

Head->next = Tail;

bool contains(int value) f{
Nodex pred; Nodex curr; int found;
e leaveQ();
<pred, curr, found> = locate(value);

unprotect(0); unprotect(1);
entexQ();

return found == value;

m

bool insert(int value) {
Nodex pred; Nodex curr; int found;
Node* entry = new Node(value);
e leaveQ();
bool success = false;
while (!success) {
<pred, curr, found> = locate(value);
if (found == value) break;
entry->next = curr;
success = CAS(pred->next, curr, entry);
3
ren if (!success) retire(entry);
H unprotect(0); unprotect(1);
e entexrQ();

return success;

Chapter 2 Non-blocking Data Structures

427
428
429
430

438
439
440
441
442
443
444
445
446
447
448
449

450

bool remove(int value) {
Node*x pred; Nodex curr; int found;
e leaveQ();
bool success = false;
while (!success) {
<pred, curr, found> = locate(value);
if (found > value) break;
Node*x next = curr->next;
success = 2CAS(pred->next, curr, next,
curr->next, next, NULL);
¥
Fen if (success) retire(curr);
H unprotect(0); unprotect(1);
e enterQ();

return success;

<Nodex, Nodex, int> locate(int value) f{
Nodex pred; Nodex curr; int found;
assert(-00 < value < 00);
retry: // jump label
curr = Head;
do {

pred = curr;
H protect(pred, 1);
curr = pred->next;
H protect(curr, 0);
if (curr == NULL) goto retry;
found = curr->data;
t while (found < value);

return <pred, curr, found>;

Figure 2.17: The ORVYY set [O’Hearn et al. 2010] with SMR. The implementation of remove
relies on a two-word CAS, Lines 500 to 505.

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492

shared Nodex Head, Tail;

atomic init() {
Head = new Node(-00);
Tail = new Node(00);

Head->next = Tail;

bool contains(int value) {
Nodex pred; Nodex curr; int found;
e leaveQ();
<pred, curr, found> = locate(value);
H unprotect(0); unprotect(1);
e entexQ();

return found == value;

bool insert(int value) §
Nodex pred; Nodex curr; int found;
Node*x entry = new Node(value);
e leaveQ();
bool success = false;
while (!success) f{
<pred, curr, found> = locate(value);
if (found ==

entry->next =

value) break;
curr;

success = CAS(pred->mark, false, false,

pred->next, curr, entry);

5

ren if (!success) retire(entry);

H unprotect(0); unprotect(1);

e entexQ();

return success;

493
494
495
496
497
498
499
500
501

bool remove(int value) {
Node*x pred; Nodex curr; int found;
e leaveQ();
bool success = false;
while (!success) {
<pred, curr, found> = locate(value);
if (found > value) break;
atomic { if (!pred->mark
&& pred->next == curr) {
pred->next = curr->next;
curr->mark = true;
success =
i i

Fen if (success) retire(curr);

true;

H unprotect(0); unprotect(1);
e entexQ();

return success;

<Node*, Nodex, int> locate(int value) %
Nodex pred; Nodex curr; int found;

assert(-00 < value < ©09);

retry: // jump label
curr = Head;
do §

pred = curr;
H protect(pred, 1);
curr = pred->next;
H protect(curr, 0);
H if (pred->mark) goto retry;
found = curr->data;
t while (found < value);

return <pred, curr, found>;

Section 2.4 Data Structure Implementations

31

32

Vechev&Yahav’s CAS Set. Towards both practical and non-blocking implementations, Vechev
and Yahav [2008] showed that the aforementioned marking technique allows for removals with
double-word CAS (or standard single-word CAS if the mark is implemented using bit stealing).
Consider Figure 2.18 for the implementation. The removal of a node curr is performed in
two steps. First, a double-word CAS sets the mark flag, Line 570. As for the ORVYY set, this
prevents other threads from updating node curr. Then, another double-word CAS unlinks curr by
redirecting pred->next, Lines 573 and 574. The latter CAS goes through only if pred is unmarked,

ensuring that the removal does not interfere with concurrent removals of pred.

It is worth pointing out that the removal is considered successful only if curr is unlinked.
The operation is restarted if any of the above CAS instructions fail. While this does not spoil
correctness, it spoils the non-blocking property [Vechev and Yahav 2008]. Marking a node
prevents updates of its next field. Hence, insertions and removals are blocked until the node is
removed. Other threads cannot help to unlink the node since the unlinking (and not the marking)

constitutes a successful removal. The next implementation overcomes this problem.

Michael’s Set. The non-blocking implementation by Michael [2002a], a simplified version of
which is given in Figure 2.19, achieves lock-freedom as follows. The first step of the removal,
the marking, is considered the logical removal. The second step, the unlinking, is considered the
physical removal. If the first step succeeds, then the overall removal succeeds. To allow for other
threads making progress despite a node being marked, any thread may physically remove a
logically removed node. To be precise, method locate eagerly performs physical removals of all
logically removed nodes it encounters during its traversal, Lines 616 to 622, and method remove

may return if it logically removed but failed to physically remove a node.

Harris’s Set. Harris [2001] proposed a lazy version of the locate method for Micheal’s set:
instead of removing individually all logically removed nodes, sequences of subsequent logically
removed nodes are deleted. To that end, locate traverses over logically removed nodes to find the
last unmarked node before and the first unmarked node after a sequence of marked nodes. Then,
a single CAS can be used to physically remove the entire sequence. The implementation is given
in Figure 2.20. Notably, the implementation is incompatible with HP [Michael 2002b]: logically
removed nodes cannot be traversed with HP since one cannot guarantee that the protections
of marked nodes are successful. Similarly, FL cannot be used since the retirement of logically
removed nodes results in immediate reuse, potentially breaking the link structure while threads

are still traversing the removed nodes.

Chapter 2 Non-blocking Data Structures

shared Nodex Head, Tail;

atomic init() {
Head = new Node(-00);
Tail = new Node(00);

Head->next = Tail;

bool contains(int value) {
Nodex pred; Nodex curr; int found;
e leaveQ;
<pred, curr, found> = locate(value);
W unprotect(0); unprotect(1);
e enterQ;

return found == value;

bool insert(int value) §
Nodex pred; Nodex curr; int found;
Node*x entry = new Node(value);

e leaveQ();
bool success = false;

while (!success) f{
<pred, curr, found> = locate(value);
if (found == value) break;
entry->next = curr;

success = CAS(pred->mark, false, false,

pred->next, curr, entry);

3

ren if (!success) retire(entry);

H unprotect(0); unprotect(1);

e entexQ();

return success;

561

562

o
o

3

564

Figure 2.18: Vechev&Yahav’s CAS set [Vechev and Yahav 2008, Figure 2] with SMR.

bool remove(int value) {
Nodex pred; Nodex curr; int found;

e leaveQ();
bool success = false;

while (!success) §
<pred, curr, found> = locate(value);

if (found > value) break;

bool flag = curr->mark;

Node* next = curr->next;

if (!CAS(curr->mark, flag, true,

curr->next, next, next))

continue;

success = CAS(pred->mark, false, false,

pred->next, curr, next);

¥

ren if (success) retire(curr);

H unprotect(0); unprotect(1);

e entexQ();

return success;

<Nodex, Nodex, int> locate(int value) f{
Nodex pred; Nodex curr; int found;
assert(-00 < value < 00);

retry: // jump label

curr = Head;
do §
pred = curr;

H protect(pred, 1);
curr = pred->next;
H protect(curr, 0);
H if (pred->mark) goto retry;
found = curr->data;
1t while (found < value);

return <pred, curr, found>;

Section 2.4 Data Structure Implementations

33

34

Figure 2.19: Michael’s set [Michael 2002a] with SMR. The extension to HP is adapted from

the original implementation by Michael [2002a].

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

shared Nodex Head;

atomic init() {
Head = new Node(-00);

Iy

<Node*, Nodex, int> locate(int value) $
Nodex pred; Nodex curr; int found;
assert(-00 < value < 00);
retry: // jump label
curr = Head;
do {

pred = curr;
H protect(pred, 1);
curr = pred->next;
H protect(curr, 0);
if (pred->mark) goto retry;
if (pred->next != curr) goto retry;
found = curr->data;
if (curr->mark) {
Nodex next =
if (CAS(pred->mark, false, false

curr->next;

pred->next, curr, next)) i

HEF retire(currx);
goto retry;
Pt

t while (found < value);

return <pred, curr, found>;

bool contains(int value) $

Nodex pred; Nodex curr; int found;
e leaveQ();

<pred, curr, found> = locate(value);
H unprotect(0); unprotect(1);
e entexQ();

return found == value;

Chapter 2 Non-blocking Data Structures

636
637
638
639
640
641
642
643
644
645
646
647
648
649

650

655
656

657

660
661
662
663
664
665
666
667
668
669
670
671
672
673

bool insert(int value) {

Nodex pred; Nodex curr; int found;

Nodex entry = new Node(value);
e leaveQ();

bool success =

false;

while (!success) %

3

HEF

<pred, curr, found> = locate(value);

if (found == value) break;
entry->next = curr;
success = CAS(pred->mark, false, false,

pred->next, curr, entry);

if (!success) retire(entry);

H unprotect(0); unprotect(1);
e entexQ();

return success;

bool remove(int value) {

Nodex pred; Nodex curr; int found;
e leaveQ();

bool success =

false;

while (!success) §

3

<pred, curr, found> = locate(value);

if (found > value) break;
Node*x next = curr->next;
success = CAS(curr->mark, false, true

curr->next, next, next);

if (success) f{

FEH

3

if (!CAS(pred->mark, false, false
pred->next, curr, next))
locate(value);

else retire(curr);

W unprotect(0); unprotect(1);
e entexQ();

return success;

Figure 2.20: Harris’ set [Harris 2001] with EBR. The algorithm does not support the use of
HP and FL since locate traverses marked and potentially unlinked nodes.

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

717

shared Nodex Head, Tail;

atomic init() §
Head = new Node(-00);
Tail = new Node(00);

Head->next = Tail;

bool unlink(Nodex left, Nodex lnext,
Nodex right) {
if (lnext ==
if (CAS(left->mark, false,
left->next, lnext, right)) {
E while (1next != right) {
E retire(lnext);

right) return true;

false

E lnext = lnext->next;
E %
return true;
5

return false;

<Nodex, Nodex, int> locate(int value) f{
Nodex left; Nodex lnext;
assert(-00 < value < 00);
while (true) {

Nodex right =

int found;

Head;
bool rmark = Head->mark;
Nodex rnext = Head->next;
do §
if (!rmark) {
left = right;
lnext = rnext;
3
right =
if (right == Tail) break;

rnext;

rmark = right->mark;
rnext = right->next;
found = right->data;
¥ while (xmark || found < value);

if (unlink(left, lnext, right)
if (right == Tail ||
return <left, right, found>;

lright->mark)

i3

718

719

7

N

0

721

7

N

2
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

760
761
762

763

bool contains(int value) f§

Nodex left; Nodex right; int found;
e leaveQ();

<left, right, found> locate(value);
e entexrQ();

return found == value;
¥
bool insert(int value) {

Nodex left; Nodex right; int found;
Nodex entry = new Node(value);
e leaveQ();
bool success = false;
while (!success) {
<left, right, found> locate(value);
if (found ==
entry->next = right;
CAS(left->mark, false, false,
left->next, right, entry);

value) break;

success =

3

e if (!success) retire(entry);
e entexrQ();

return success;

bool remove(int value) {

Nodex left; Nodex right; Nodex rnext;
int found; bool success = false;
e leaveQ();
while (!success) {
<left, right, found> locate(value);
if (found !'= value) break;
if (right->mark) continue;
rnext = right->next;
success = CAS(right->mark, false, true,
right->next, rnext, rnext);
¥
if (success) 1
if (!CAS(left->mark, false, false
left->next, right, rnext))
locate(value);
E else retire(right);
¥
e entexQ();
return success;
Iy

Section 2.4 Data Structure Implementations

35

36

3.1

Model of Computation

We give a formal account of the programs that the reminder of this thesis reasons about. More
specifically, we introduce concurrent shared-memory programs that employ a library for safe

memory reclamation (SMR).

Hereafter, we use o for irrelevant terms and values to abbreviate the exposition.

Memory, or Heaps and Stacks

Programs operate over addresses from Adr that are assigned to pointer expressions PExp. Pointer
expressions are either pointer variables from PVar or pointer selectors a.next € PSel. The set

of shared pointer variables accessible by every thread is shared € PVar. Additionally, we allow

pointer expressions to hold the special value seg ¢ Adr denoting undefined/uninitialized pointers.

There is also an underlying data domain Dom to which data expressions DExp = DVar & DSel

evaluate. Data expressions are either data variables from DVar or data selectors a.data € DSel.

A generalization of our development to further selectors is straightforward—we stress that our
results do not rely and thus are not limited to singly-linked graph structures as the single pointer

selector next might suggest.

We do not distinguish between the stack and the heap. Instead, we refer to both as the memory.

It is a partial function that respects the typing:
m: (PExp + Adrw {seg}) @ (DExp + Dom) .

The initial memory is m,. Pointer variables p are uninitialized, m.(p) = seg. Data variables u

have a default value, m.(u) = 0. We modify the memory with updates up of the form [exp — v].

Applied to a memory m, the result is the memory m' = m[exp ~ v] defined by m'(exp) = v
and m'(exp') = m(exp') for all exp' # exp. Below, we define computations r which give rise to
sequences of updates. We write m, for the memory resulting from the initial memory m, when

applying the sequence of updates in 7.

Section 3.1 Memory, or Heaps and Stacks

37

3.2

3.3

38

Syntax of Programs

We define a core language for concurrent shared-memory programs that rely on an SMR library.
Programs P using SMR implementation R, written P(R), are comprised of statements stmt which

are defined by the following grammar:

stmt = stmt; stmt | stmt @® stmt | stmt” | beginAtomic; stmt; endAtomic | com

com = p:=q | p:=qnext | pnext:=q | u:=op(u) | u:=gqdata | p.data:=u

| assume cond | p :=malloc | free(p) | in:func(¥) | re:func | skip | env(a)

cond :== p=q | p+q | pred(u)

We assume a strict typing that distinguishes between data variables u, u' € DVar and pointer
variables p, g € PVar. Functions take pointer and data variables as parameters, r € PVar U DVar.
Notation 7 is short for ry, . . ., r,, and similarly for u. The language includes sequential composition,
non-deterministic choice, Kleene iteration, and atomic blocks. The primitive commands include
assignments, memory accesses, assumptions, memory allocations and deallocations, and non-
nested SMR function invocations and responses. Additionally, there are non-deterministic
updates of unallocated addresses a. We assume that those updates are not part of the program

itself but performed by the environment.

Semantics of Commands

We define a semantics where program P(R) is executed by a possibly unbounded number of
concurrently operating threads. Formally, the standard semantics' of P(R) is the set [P(R) Ix
of computations. It is defined relative to two sets Y € X S Adr of addresses allowed to be
reallocated and freed, respectively. A computation is a sequence 7 of actions act that are of
the form act = (¢, com, up). The action indicates that thread t executes command com which
results in the memory update up. To make the semantics precise, let fresh, S Adr be the set
of addresses which have never been allocated in 7 and let freed, S Adr be the set of addresses
which have been freed since their last allocation. Then, the definition of the standard semantics
is by induction. The empty computation is always contained, € € [P(R)]x. An action act can
be appended to a computation 7 € [P(R)]%, denoted by r.act € [P(R) I, if act respects the
control flow of P(R) and one of the rules from Figure 3.1 applies. The semantics of commands is
standard. Note that we assume a sequentially consistent memory model [Lamport 1979]. That is,
memory reads always obtain the latest value written. Weaker memory models are beyond the

scope of this thesis.

'In Chapter 5 we will define a non-standard semantics that is beneficial for verification, see Figure 5.9.

Chapter 3 Model of Computation

3.4

(Skip)

(Assign1)
(Assign2)
(Assign3)
(Assign4)
(Assign5)
(Assign6)
(Assume)

(Malloc)

(Free)
(Call)
(Return)
(Atomic)

(Env)

Figure 3.1: Semantics of commands.

If act = (t, skip, @).

If act = (t, p.next := g, [a.next — b]) then m,(p) = a and m,(q) = b.

If act = (t,p :=q,[p ~ m.(q)]).

If act = (t, p := gq.next, [p = m (a.next)]) with m,(q) = a € Adr.
If act =

If act = (t, p.data := u, [a.data = m (u)]) with m (p) = a € Adr.
If act = (t,u := q.data, [u — m,(a.data)]) with m,(q) = a € Adr.

(
(
(
(t,u:=op(ul,...,up), [uw d]) withd = op(m.(u)), ..., m.(u,)).
(
(
(

If act = (t, assume exp 2 exp, @) then m,(exp) 2 m,(exp).

If act = (t, p := malloc, [p = a,a.next — seg,a.data — d]) then address a is
allocatable, that is, a € fresh,_ or a € freed_ N'Y.

If act = (t, free(p), @) then m,(p) € X.
If act = (t, in: func(r), @), then m,(r) € Adr @ Dom for every rinT.

If act =

(
(

If act = (t, re:func, @).
(t, beginAtomic, @) or act = (t, endAtomic, @).
(

If act = (L, env(a), [a.next +— seg, a.data - d]) with a € fresh_ U freed,.

The above definition of the standard semantics focuses on how commands interact with the

memory. What it means for an action to respect the control flow is made precise next. We

separate the two aspects since the methods we propose in Chapters 5 to 8 exploit the semantics

of commands rather than the structure and control flow of programs.

Semantics of Programs

We give a small-step operational semantics (SOS) for programs [Plotkin 1981]. To than end, we

define a transition relation =3 among pairs (pc, 7) of control locations pc and computations .

Intuitively, =3 produces the reachable control locations together with the computation that led

there. A control location pc is a map from threads t to statements st. We understand st as the

code that remains to be executed by ¢. For the SOS rules, we extend ordinary statements to:

st u= stmt | inatomic st | st; o st, | await func

Section 3.4 Semantics of Programs 39

Figure 3.2: SOS rules for the standard semantics, [P(R)]];}2

(a) Control-flow relation <™ for ordinary statements and atomic blocks.

(sos-sTD-coM) (sos-sTD-SEQ1) (s0s-sTD-SEQ2) (s0s-STD-CHOICE)
I q
st 20N sty ie{1,2}
com . . skip I skip
com — skip skip; st — st sty; sty = sty; sty sty © st; — st;
(sos-sTp-LOOP1) (s0s-sSTD-LOOP2) (sos-sTD-ATOMIC3)
* ski * ski * - . - dAtomi "
stt = skip st 220 o st inatomic endAtomic S22 skip
(sos-sTp-ATOMIC1) (SOS-sTD-ATOMIC2)
I
st L0 ot
. R . beginAtomic com_ . 5 !
beginAtomic; st; endAtomic ——— inatomic st inatomic st — inatomic st

com
=

(b) Control-flow relation for managing the explicit call stack.

(sos-STD-CALL) (sOS-STD-RETURN)
intfunc(r) I re:func I
St ——— st St ——— st
. in:func(r) 1 . . reifunc I .
st o skip ———= st o R.func; await func st o await func ——— st o skip
(s0s-sTD-Ds) (s0S-STD-SMR)
! . 1 .
st; 20 sty in:e # com # re:e sty 2 sty in:e # com # re:e
I 1
sty o st 2 st; o sty sty o st, N sty o sty

(c) SOS transition relation =3.

(s0S-STD-PAR)

(SOS-STD-ENV) st Lom o act € Act(r, t, com)
act € Act(r, L, env(a)) Bttt A locked(pc(t’))
(pe 1) =3 (pc, 7.act) (pe[t = st],) =3 (pc[t — st'], r.act)

40 Chapter 3 Model of Computation

in order to make explicit the execution of atomic blocks and the call stack of functions. The com-
mands that appear in the actions of computations remain unchanged. The transition relation =3
is based on a control-flow relation =™ among statements st. More precisely, st — st' indicates
that performing a step of st executes command com after which st' remains to be executed. For-
mally, =3 and £™ are the smallest relations that satisfies the rules from Figure 3.2. The first set of
rules, Figure 3.2a, addresses ordinary statements stmt and atomic blocks. The rules are standard.
The second set of rules, Figure 3.2b, manages the explicit call stack st; o st,. Here, st; is the caller,
i.e., code of the data structure P, and st, is the callee, i.e., code of an invoked SMR function from R
or skip if no function is invoked at the moment. Rule (sos-sTp-cALL) looks up the code of the
invoked function, R.func, and appends command await func. We use await func to synchronize
the callee with the caller, Rule (sos-sTD-RETURN). This ensures that invocations in: func(7)
receive a matching response re: func. Rules (sos-sTD-Ds) and (s0s-sTD-sMR) handle the
cases where the call stack is irrelevant, falling back to the rules from Figure 3.2a. In fact, method
invocations are asynchronous as we do not impose an order in which the caller and the callee
execute. Our development is oblivious to this fact. Lastly, the third set of rules, Figure 3.2c,
defines the SOS transition relation. To turn commands com executed by threads t into actions,
we write Act(z, t, com) to obtain the set of actions act = (t, com, up) such that r.act satisfies the
semantics of commands defined in Section 3.3 above. Rule (sos-sTD-ENV) updates unallocated
memory non-deterministically, simulating the environment. Rule (sos-sTD-PAR) executes a

step of thread ¢ if no other thread is currently within an atomic block, as defined by:

true

locked(inatomic st) :

locked(sty; sty) = locked(st;)

locked(st; o sty) := locked(st;) V locked(st;)

false otherwise .

locked(st) :

Now, we say that a computation 7 respects the control flow of a program P(R) if there is a control

location pc that witnesses 7, that is, if:
(Peimip€) =37 (pe,7) with pe;. = At P o skip .

Here, =3 " is the reflexive transitive closure of =3. The initial control location pc, .. maps every

init
thread to execute P. Since memories do not consider threads when valuating variables, we need

]

to rename the local variables in P. The ¢-renamed version of P is P*). For simplicity, we omitted
this renaming when calling functions, Rule (sos-sTD-cALL). Instead, we assume that P[t] also
renames functions and that R contains an appropriately ¢-renamed function copy. Later, it will

be convenient to access the witnesses of 7:

ctri() = {pe| (peye) 3 (pe) }.

Section 3.4 Semantics of Programs

41

42 Chapter 3 Model of Computation

Thread-Modular Analysis

Proving a data structure correct for an arbitrary number of client threads requires a thread-
modular analysis [Berdine et al. 2008; Jones 1983; Owicki and Gries 1976]. Such an analysis
abstracts a system state into so-called views, partial configurations reflecting a single thread’s
perception of the system state. A view includes a thread’s control location and, in the case of
shared-memory programs, the memory reachable from the shared and thread-local variables. An
analysis then saturates a set V of reachable views. This is done by computing the least solution

to the recursive equation
V = VUseq(V)Uint(V).

Function seq computes a sequential step, the views obtained from letting each thread execute an
action on its own views. Function int accounts for interference among threads. It updates the
memory of views by actions from other threads. We follow the analysis proposed by Abdulla
et al. [2013, 2017]. There, int is computed by combining two views, letting one thread perform an
action, and projecting the result to the other thread. More precisely, computing int(V) requires
for every pair of views vy, v; € V to (i) compute a combined view w of v; and v,, (ii) perform
for w a sequential step for the thread of v,, and (iii) project the result of the sequential step to the
perception of the thread from v;. This process is required only for views v; and v, that match, i.e.,
agree on the shared memory both views have in common. Otherwise, the views are guaranteed
to reflect different system states so that interference is not needed for an exhaustive state space

exploration.

To check for linearizability, we assume that the program under scrutiny is annotated with
linearization points. Whether or not the sequence of emitted linearization is legal, we verify
with the ADTs used by Abdulla et al. [2013, 2017]. They capture sequential stack, queue, and set
ADTs in form of automata. The state of this specification-checking automaton is stored in the

views. If they signal a specification violation by reaching a final state, verification fails.

To arrive at views of finite size, we apply a memory abstract. The abstraction we use tracks
reachability predicates among the objects referenced by the local and shared pointer variables.
The reachability predicates encode equality, reachability in one step, reachability in two or more
steps, and unreachability. Here, a step refers to following an object’s next field. We do not go
into the details of the memory abstraction as it is orthogonal to the results presented in the

present thesis. For more details, we refer the reader to [Abdulla et al. 2013, 2017].

43

We stress that the analysis by Abdulla et al. [2013, 2017]—at the time of writing—is the most
promising for fully automatically verifying non-blocking data structures with manual memory

reclamation.

44 Chapter 4 Thread-Modular Analysis

Part 11

Contributions

45

46

Compositional Verification

Verification of non-blocking data structures with manual memory management via an SMR
algorithm is prohibitive with state-of-the-art techniques. The reason for this is the complexity
that is added to the verification task by SMR implementations. As seen in Chapter 2, data

structures and SMR implementations are equally complex.

To allow for verification nevertheless, we exploit the design of data structures and SMR algorithms.
Typically, data structures use SMR algorithms through a well-defined API which does not expose
the implementation details of the SMR algorithm. The resulting system design is depicted in
Figure 5.1. This encapsulation suggests a verification approach for data structures where we
replace the SMR implementation with a simpler one. For a sound approach, we have to ensure
that the replacement over-approximates the behaviors of the original SMR implementation. This
way, we can separate the verification of the data structure from the SMR implementation. More
specifically, we (i) introduce a means for specifying SMR implementations, then (ii) verify the
SMR implementation R against its specification, and (iii) verify the data structure P relative to
the SMR specification rather than the SMR implementation. If both verification tasks succeed,

then the data structure using the SMR implementation, P(R), is correct.

Towards our result, we first introduce SMR automata for specifying SMR algorithms. Then, we

discuss the two new verification tasks and show that they imply the desired correctness.

Figure 5.1: Typical system design and the interaction among components. Non-blocking
data structures perform their reclamation through an SMR algorithm. The SMR algorithm
does not influence the data structure directly, only indirectly through the Allocator.

11
Non-blocking Data Structure] ma_toc 5

API Allocator

SMR algorithm free

-
Y

(

-

47

5.1

48

SMR Automata

An SMR automaton O consists of a finite set of locations, a finite set of variables, and a finite set
of transitions. There is a dedicated initial location and some accepting locations. Transitions are
of the form [2729, I' with locations 1,I', event f(7), and guard ¢. Events f(F) consist of a type f
and parameters 7 = rq,...,r,. The guard is a Boolean formula over equalities of variables and
the parameters 7. An SMR automaton state s is a tuple (I, ¢) where [is a location and ¢ maps
variables to values. Such a state is initial if / is initial, and similarly accepting if / is accepting.
Then, (I, ¢) —> 1@ (I', ¢) is an SMR automaton step, if | =29, fFL9, ! is a transition and o(g[r ~ 7))
evaluates to true. With ¢(g[7 — 7]) we mean g where the formal parameters 7 are replaced

with the actual values o and where the variables are replaced by their ¢-mapped values. Initially,

the valuation ¢ is chosen non-deterministically; it is not changed by steps.

A history h = fi(9;) ... f,(v,) is a sequence of events. If there are steps s A, M»s',

then we write s 2 s'. If s' is accepting, we say that h is accepted by s. We use SMR automata to
characterize bad behavior. So we say h is in the specification of s, denoted by h € S(s), if it is
not accepted by s. Then, the specification of O, denoted by S(Q), is the set of histories that are
not accepted by any initial state of O. Formally, we define:

S(s)={h| Vs. sBhs'" = s notfinal } and S(0O) - ﬂ{S s) | s initial } .

The cross-product @; X O, denotes an SMR automaton with S(O; x O,) = S(O;) N S(O,).

To simplify our development, we assume that SMR automata are complete and deterministic in

the sense that each state has a unique post state for all possible events.

Assumption 5.2 (Well-formedness). SMR automata O satisfy the following: (i) for all s;

and all A there is s, with s; L sy, and (ii) if s; LI sy and s; 1 s3, then sy = s3.

Hereafter, it will be useful to check specification inclusions of the form S(s) € S(s') for SMR
automata O. To accomplish this efficiently, we compute a simulation relation [Milner 1971] <o
among the locations of O which entails the desired inclusion. Technically, <¢ is the largest
relation such that for all locations l; <¢ I, the following conditions are met: (i) if [; is not
accepting, then I, is not accepting, and (ii) for all transitions /4 9, I} and I, L’g’) Iy with g A g'
satisfiable we have I] <¢ I,. Relation <o can be computed by a greatest fixed point in the
standard way [Baier and Katoen 2008, Section 7.6; Cleaveland and Steffen 1991; Henzinger
et al. 1995]. As for ordinary finite-state automata, the simulation relation is stronger than the
specification inclusion [Baier and Katoen 2008, Section 7.4]. However, we found the simulation

easier to implement and sufficient in practice.

Proposition 5.3.If | <o I', then S((1, ¢)) € S((I', ¢)) for all ¢.

Chapter 5 Compositional Verification

5.2 SMR Specifications

To use SMR automata for specifying SMR algorithms, we have to instantiate appropriately
the histories they observe. Our instantiation crucially relies on the fact that programmers of
non-blocking data structures rely solely on simple temporal properties that SMR algorithms
implement [Gotsman et al. 2013]. These properties are typically incognizant of the actual SMR
implementation. Instead, they allow reasoning about the implementation’s behavior based on the
temporal order of function invocations and responses. With respect to our programming model,
in and re actions provide the necessary means to deduce from the data structure computation

how the SMR implementation behaves.

We instantiate SMR automata for specifying SMR algorithms as follows. Let func,, ..., func, be
the API functions offered by the SMR algorithm. The event types are (i) in:func,, ..., in:func,,
(ii) re:func,, ..., re:func,, and (iii) free. The parameters to the events depend on the type of
the event. They are (i) the executing thread and the parameters to the call for type in:func;,
(i) the executing thread for type re:func;, and (iii) the parameters to the call for type free.
For simplicity, we consider the hazard pointer index passed to protect and unprotect a part
of the name/type. That is, we write protect;(p) and unprotecty() instead of protect(p, k)

and unprotect (k), respectively.

To give an example, consider the EBR specification Op,s, X Oppg from Figure 5.4. It consists of
two SMR automata. First, Oggg implements the temporal property that a retired address must not
be freed until all threads end their ongoing non-quiescent phase, i.e., until they invoke enterQ
for the first time after the retire. Second, Og,,, specifies that no address must be freed that
has not been retired yet. Further, Op,, specifies that no address must be freed twice unless
the address is retired in-between the frees. For the automaton to properly restrict the frees in
a program, the program should not perform double retires, that is, not retire an address again
before it is freed. The point is that SMR algorithms typically misbehave after a double retire
(perform double frees), which is not reflected in Opg, (it does not allow for double frees after a
double retire). Our verification techniques will establish this property. To make double retires

precise, let retired, S Adr be the addresses that have been retired in 7 but not freed since.

Definition 5.5 (Double Retire). Computation 7.(t, in:retire(p), up) performs a double

retire of address a if a € retired, and a = m,(p).

The specification of HP is a bit more involved. For two hazard pointers per thread, a first attempt
is the automaton Opgg,, X ng X (’)}Jp. Here, Oflp implements the HP-specific property that no
address must be freed if it has been protected continuously since before being retired. However,
the specification treats hazard pointers individually and thus misses transfers of protections

among multiple hazard pointers (cf. Section 2.3.3). To briefly reiterate the issue, if a thread

Section 5.2 SMR Specifications

49

Figure 5.4: SMR automata specifications for EBR resp. HP: Op,s, X Oggg resp. Opgse X Gm% X Gw%. The automata are negative specifications, they accept
those histories that violate the desired property. Two automata-local variables, z; resp. z,, are used to capture a thread resp. an address. For better legibility
we omit self-loops for every location and every event that is missing an outgoing transition from that location.

(a) SMR automaton Opg, specifies that address z, may be freed only if it has been retired and not been freed since.

| O | |
free(a), a =z,)\ free(a), a =z,
@A /Nm\; >(Ls
in:retire(t,a), a = z,

(b) SMR automaton Opgp specifies how EBR defers frees: a retired address z, may not be freed if it has been retired during a non-quiescent phase of thread z;.

| O
re:leaveQ(t), t = z; in:retire(t,a), a = z, free(a), a =z,
—> NL& > NL‘N

intenterQ(t), t = z;

(c) SMR automaton Gm% specifies how HP defers frees: a retired address z, may not be freed if it has been protected continuously by the k-th hazard pointer of thread z,
since before being retired.

Kk
Onp

in:protecti(t,a), t=z, Aa=1z re:protecty(t), t = z; in:retire(t,a), a = z
(L, o (1,) +(Lio) .,

It

free(a), a = z,

in:protecti(t,a), t=z; Aa# z,
intunprotecty(t), t = z

Chapter 5 Compositional Verification

50

protects an address first with its 0-th hazard pointer, later with its 1-st hazard pointer, and resets
the 0-th hazard pointer, then the address is continuously protected by some hazard pointer but
not by a single hazard pointer. The above specification would allow for a spurious free. To
come up with an appropriate specification that resolves the issue, we have to track all hazard
pointers of a thread simultaneously. Intuitively, we have to compute a more involved cross
product than Ofp X Ofp to account for transferring protections among hazard pointers. The
resulting SMR automaton is (9}01’;. Due to the size of the automaton (it consists of 16 states) we do
not present it here, it can be found in Appendix A.2. It is worth noting that Op X Ofp is useful
nevertheless: it is smaller than (9%11; and might thus speed up verification for data structures that

do not transfer hazard pointers.

The only SMR technique we are aware of that does not fit into the SMR automaton framework
out of the box is FL. Recall that FL does not free the memory it manages. Instead, it simply stores
the addresses that have been retired and redistributes them for threads to reuse. This resembles
a direct influence of the SMR algorithm on the client data structure, which cannot be encoded
with SMR automata as they do not support return values. In order to support FL, we adopt the
practice of Abdulla et al. [2013, 2017]. We assume that (i) retired addresses are freed immediately,
and that (ii) freed addresses may be accessed safely. With those assumptions, we can use Opg,

as a specification for FL.

While every SMR implementation has its own SMR automaton, the practically relevant SMR

automata are products of Op,,, with further SMR automata. Our development relies on this.

Assumption 5.6. SMR automata O are of the form O = Opy X Ogyr for some Ogyr.

With an SMR specification in form of an SMR automaton O at hand, our task is to check whether
or not a given SMR implementation R satisfies this specification. We do this by converting a
computation 7 of R into its induced history #H(7) and check inclusion in S(Q). The induced
history H(7) is a projection of 7 to in, re, and free commands. The projection replaces formal

parameters with actual values.

Definition 5.7 (Induced Histories). The history induced by a computation 7, denoted
by H(r), is:
H(e) =€
H(r(t, free(p), up)) = H(r) .free(m.(p))
H(z.(t, in: func(r), up)) = H(z).in: func(t, m, (7))
H(z.(t, re:func, up)) = H(r).re: func(t)
H(r.act) = H(r) otherwise.

Section 5.2 SMR Specifications

51

5.3

52

Then, 7 satisfies O if H(7) € S(O). SMR implementation R satisfies O if every possible usage
of R produces a computation satisfying . To generate those computations, we use a most

general client (MGC) for R which concurrently executes arbitrary sequences of SMR functions.

Definition 5.8 (SMR Correctness). An SMR implementation R is correct wrt. a specification

O, written R E O, if for all r € [MGC(R) ﬁj: we have H(r) € S(O).

From the above definition follows the first new verification task: prove that the SMR implemen-
tation R cannot possibly violate the specification O. Intuitively, this boils down to a reachability
analysis of accepting states in the cross-product of MGC(R) and O. Since we can understand R
as a non-blocking data structure itself, this task is similar to our next one, namely verifying the
data structure relative to O. We focus on this second task because it is harder than the first
one. The reason for this lies in that SMR implementations typically do not reclaim the memory
they use. This holds true even if the SMR implementation supports dynamic thread joining and
parting. The absence of reclamation greatly simplifies the analysis. Our experiments confirm this
intuition: in Chapter 7 we automatically verify the EBR and HP implementations from Chapter 2

against the corresponding SMR automaton specifications presented above.

Verification Relative to SMR Automata

The next task is to verify the data structure P(R) avoiding the complexity of R. We have
already established the correctness of R wrt. a specification O. Intuitively, we now replace
implementation R with its specification O. Because O is an SMR automaton, and not program
code like R, we cannot just execute O in place of R. Instead, we remove the SMR implementation
from P(R). The result is P(¢e) the computations of which correspond to the ones of P(R) with
the SMR implementation-specific actions between in and re being removed. To account for the
frees that R executes, we introduce environment steps. We non-deterministically check for every
address a whether or not O allows freeing it. If so, we free the address. Formally, the new SMR
semantics is O[P]x and corresponds to the standard semantics [P(€)]5 as defined in Section 3.3

except for an updated rule for frees from the environment.

(Free) Ifr € [[P(e)]]}z and a € Adr can be freed, i.e., a € X and H(r).free(a) € S(O),
then we have r.act € O[P]x with act = (t, free(a), @).

The new semantics considers O only when freeing memory, all other rules remain unaffected.
With this definition, O[P]x performs more frees than [P(R) I, provided R E O. In analogy
to P(R), we write P(O) to refer to P(¢) relative to O. Figure 5.9 gives the full SMR semantics.

With the semantics of data structures relative to an SMR specification rather than an SMR imple-

mentation set up, we can turn to the main result of this section. It states that the correctness of R

Chapter 5 Compositional Verification

Figure 5.9: Semantics of programs relative to an SMR automaton, O[[P]];z.

(a) SMR semantics of commands. We write act € Act(z, t, com) if one of the following rules applies.

(Skip) If act = (t, skip, @).
(Assign1) If act = (t, p.next := ¢, [a.next — b]) then m,(p) = aand m,(q) =

(Assign2) Ifact = (t,p :=q,[p - m.(q)]).

(Assign3) If act = (t, p := q.next, [p — m (a.next)]) with m,(q) = a € Adr.

(Assign4) If act op(ui, oouy), [u e d]) with d = op(me(uy),. .., me(up)).

(Assign5) If act

t, p.data := u, [a.data = m (u)]) with m,(p) = a € Adr.

(

(

(t,u:

(
(Assign6) If act = (t,u := g.data, [u = m (a.data)]) with m,(q) = a € Adr.
(Assume) If act = (t, assume exp 2 exp, @) then m,(exp) 2 m,(exp').

(Malloc) If act = (t, p := malloc, [p — a,a.next — seg, a.data — d]) then address a is

allocatable, that is, a € fresh_or a € freed_ NY.
(Free) If act = (t, free(a), @) then a € Adr N X and H(7).free(a) € S(O).
(Call) If act = (t, in: func(r), @), then m,(r) € Adr @ Dom for every r in 7.
(Return) If act = (t, re: func, @).
(Atomic) If act = (t, beginAtomic, @) or act = (t, endAtomic, @).
(

(Env) If act = (L, env(a), [a.next — seg, a.data — d]) then a € fresh_ U freed..

(b) SMR semantics of programs. We define a SOS transition relation -» relative to a control-flow

relation <, such that r € O[P]x, iff ctrl(z) # @ with ctrl(r) = {pc| (At. Pl €) -+ (pc, 1) }.

(sos-com) (sos-seQl) (sos-sEQ2) (SOS-CHOICE)
sty LM st ie{1,2}
: . ki ski
com =%, skip skip; st —=, st sty sty M sty; st st; @ sty —, st;
(sos-Loor1) (sos-LooP2) (sos-ATomIc3)
st Skip skip stt Skip st: st inatomic skip ShdAtomic oiip
(sos-aTomic1) (sos-aToMIC2)
com
st — st
beginAt . . . 1
beginAtomic; st; endAtomic DeginAtomic s natomic st inatomic st 2%, inatomic st
(sos-ENV) (sOS-FREE)
act € Act(r, L, env(a)) act € Act(r, L, free(a))
(pe,) -» (pc, T.act) (pe,) -» (pc, T.act)
(sos- PAR)

com

st <om f act € Act(r, t, com) Bttt A locked(pc(t'))

(pe[t - st],) -»> (peft — st'], r.act)

Section 5.3 Verification Relative to SMR Automata

54

wrt. O and the correctness of P(e) under O entail the correctness of the original program P(R).
Here, we focus on the verification of safety properties. It is known that this reduces to control
location reachability [Vardi 1987].1 So we can assume that there are dedicated bad control
locations in P the unreachability of which is equivalent to the correctness of P(R). If the bad
control locations are unreachable in a computation 7, we write good(7); the predicate naturally
extends to sets. For the overall result to hold, we require that the interaction between P and
R follows the one depicted in Figure 5.1 and seen on practical examples in Chapter 2. That is,
frees are the only influence that R has on P. In particular, this means that R does not modify
the memory accessed by P. We found this restriction satisfied by many SMR algorithms from
the literature. We believe that our development can be generalized to incorporate memory
modifications performed by the SMR algorithm. A proper investigation, however, is beyond

the scope of this thesis.

Theorem 5.10 (Compositionality). If R E O and good(O[P]4A%), then good([P(R)[43%).

Compositionality is a powerful tool for verification. It allows us to verify the data structure and
the SMR implementation independently of each other. Although this simplifies the verification,
reasoning about non-blocking programs operating on a shared memory remains hard. In Chap-
ters 6 to 8 we build upon the above result and propose sound verification techniques for OHP]]%;
that need not consider the full semantics but subsets thereof. Reductions to simpler semantics
are imperative as compositionality alone makes verification hardly tractable with state-of-the-art

techniques, as we will see in Section 6.3.

Besides verifying the actual correctness property of P, i.e., establishing good(O[PI4%), we will
also establish the absence of double retires, as required for a reasonable application of Ogg,,. As

expected, compositionality allows us to rely on the simpler SMR semantics.

Theorem 5.11. If R E O, then [P(R) A% is free from double retires if O[P[44 is.

! Bouajjani et al. [2015b] show that linearizability reduces to control location reachability as well.

Chapter 5 Compositional Verification

6.1

Ownership and Reclamation

Ownership reasoning is a well-known technique that is vital for thread-modular analyses: it
brings the necessary precision required for successful verification. Traditionally, it is assumed that
references to owned memory exist only within the owning thread. While this strong exclusivity
assumption is guaranteed to hold under garbage collection, it is unsound when memory is
reclaimed and reused. The reason for this are dangling pointers. They may observe how another
thread reclaims and reallocates, thus owns, some part of the memory. To overcome this problem,
we introduce a weaker notion of ownership. We relax the traditional exclusivity assumption for
dangling pointers, and for dangling pointers only. The resulting approach is sound and makes
thread-modular analyses sufficiently precise. Moreover, it comes with a relatively small overhead

compared to existing solutions.

The remainder of the chapter is structured as follows. Section 6.1 demonstrates both the need
for and the unsoundness of ownership reasoning for manual memory management. Section 6.2
introduces a novel notion of weak ownership and shows how it can be used to increase the
precision of thread-modular analyses. Section 6.3 evaluates our approach and compares it to

existing ones.

Reclamation breaks Ownership

Thread-modular analyses [Berdine et al. 2008; Jones 1983; Owicki and Gries 1976] verify each
thread individually. On the one hand, this yields an efficient analysis for programs with a fixed
number of threads as it avoids an explicit cross-product of all threads. On the other hand, it makes
verification for an arbitrary number of threads possible. The downside of thread-modularity is
its imprecision in computing thread interferences. Since threads are verified individually, the
relation among thread-local information gets lost. We discuss this problem and why its common

solution does not apply for manual memory management.

As we have seen in Chapter 4, thread-modular analyses abstract program configurations into
sets of views which capture a thread’s perception of the configuration. To compute the effect
that an interfering thread has on a victim thread, the views for the two threads are combined,
the interfering thread takes a step in the resulting view, which is then projected to the victim

thread. Combining two views is more problematic than one might think. As already noted, views

Section 6.1 Reclamation breaks Ownership

55

56

abstract away the relation among the interfering and victim threads. For an analysis to be sound,
it has to consider all possible relations among those two threads. This introduces imprecision

and may ultimately lead to false alarms. We illustrate the problem on an example.

Example 6.1. Consider the views from Figure 6.2 which arise during a thread-modular analysis
of Michael&Scott’s queue. The threads captured by views v; and v, from Figure 6.2a are t; and t,,
respectively. Thread t; is executing enqueue. It has already allocated a new node b, referenced by
its local pointer variable ¢, :node, and is about to execute the CAS from Line 315 in order to insert
the new node after Tail. Thread t, is executing dequeue. It has removed node c, referenced

by t,:head. Its next step is to retire ¢!

Let us consider the interference ¢; is exposed to due to the actions of #,. The goal is to compute a
new view for t; which captures the effect of ¢, performing the insertion. To that end, we combine
the two views from Figure 6.2a. The result is given in Figure 6.2b. View vs is the expected
one: t; :node points to b and t,:head points to ¢ with b # c—the threads hold pointers to distinct
nodes. In vy, however, both threads alias the exact same node. Although peculiar, we have to
consider view vy as well to guarantee soundness of the overall analysis, that is, guarantee that
all possible views are explored. Indeed, just from inspecting v; and v, we cannot conclude that
the memory layout of v, is spurious in the sense that it does not occur in any execution of

Michael&Scott’s queue. Unfortunately, the spurious view will lead to a false alarm.

To see why view v, is problematic, we continue to compute the inference. To that end, we let ¢,
execute its next command in v,. The result is view v; from Figure 6.2c. In vi, node b has been
retired. Here, we assume that the retirement is followed immediately by a free(b). Next, we
project away thread ¢, from UL and let t; execute its next command. In the resulting view, vZ
from Figure 6.2c, the deleted node b has become the new Tail, breaking the shape invariant of
the queue. Subsequent enqueue operations can now reallocate b and update it. The updates lead
to unintended updates of the overall queue, changing the queue’s content or losing elements if

the next field of b is modified. This constitutes a linearizability violation, verification fails. =

A well-known and common technique to avoid such spurious views during thread-modular
analyses is ownership reasoning [Castegren and Wrigstad 2017; Dietl and Miller 2013; Gotsman
et al. 2007; O’'Hearn 2004; Vafeiadis and Parkinson 2007]. The allocation of a new node grants
the allocating thread ownership over the new node. Ownership is removed as soon as the new
node is published, that is, made accessible to other threads. Typically, this happens when a
pointer to a node is written to a shared pointer variable or to a pointer field of another node
that is reachable from the shared variables. (We refrain from a formal definition of ownership

at this point.) Then, we exploit ownership to avoid spurious views and increase the precision

! The attentive reader of Chapter 2 might observe that, unlike presented in Figure 6.2 here, the next field c.next
of the removed but not yet retired node ¢ is never NULL in Michael&Scott’s queue. To obtain such a view
where c.next is NULL, we require a preceding interference step which suffers from the same imprecision as the
interference step presented here. For simplicity, we stick with c.next being NULL in this example.

Chapter 6 Ownership and Reclamation

Figure 6.2: Views encountered during a thread-modular analysis of Michael&Scott’s queue.

Imprecision in interference steps leads to spurious verification failure.

(a) Two views the interference among which is computed. View v; captures thread ¢; which has

allocated a new node b and is about to append it to the Tail of the queue via the CAS from Line 315.

View v, captures thread ¢, which has removed node ¢ from the queue and is about to retire it, Line 339.

View v, t;:pc = Line 315 View v, ty:pc = Line 339

(b) Possible combinations of views v; and v,. Judging from the view abstraction alone, a vanilla thread-
modular analysis cannot know whether nodes b and ¢ coincide in the actual program configuration
the views abstract from. Interference has to consider both v; and vy, although v, spurious.

View v3 t;:pc = Line 315 View vy ty:pc = Line 315
ty:pc = Line 339 ty:pc = Line 339
Tail [@] t;:node [@] Tail [ty:node [o]

Py

I thead E—}—» G

5 head E}

(c) Continuing the interference computation for v,, we let thread ¢, take a step and retire b, Line 339.
The result is vf, where the retirement of b has immediately freed it (marked with ¥). Next, we project
away t, and let t; execute Line 315. The result is UZ where the freed node b has been inserted into the
queue. Subsequent reallocations of b may thus change the queue’s content unknowingly, leading to
verification failure. Note that the verification failure is spurious since it is a result of the spurious v;.

View vfl ty:pc = Line 315 View vz t;:pc = Line 317
ty:pc = Line 344

Section 6.1 Reclamation breaks Ownership

57

58

of thread-modular analyses. To that end, we extend views to track ownership information and
prevent combinations of views where an owned node is referenced by another non-owning
thread. That is, we ensure that the access exclusivity granted by ownership is respected. For
the above example, this means that thread t, cannot have a pointer to b. Hence, we can rule out

view vy as a combination of v; and v, because b = ¢ is guarantee to be no longer possible.

While ownership reasoning is elegantly simple and yet effective, we cannot use it in our setting.
The above approach is sound only under garbage collection, when nodes are neither reused
nor reclaimed, but unsound otherwise. We demonstrate this with an example. Thereafter, in

Section 6.2, we introduce a new variant of ownership that applies to our setting.

Example 6.3. To see why traditional ownership reasoning breaks when memory is reclaimed
and reused, consider the configurations of Micheal&Scott’s queue with hazard pointers depicted
in Figure 6.4a. Configuration cfg corresponds to the scenario where node b used to be the Tail of
the queue, however, it has subsequently been removed from the queue, reclaimed, and reallocated.
The reallocating thread and owner of b is t;. Thread ¢, started its operation while b was still
the Tail and acquired a pointer to it, ¢;:tail. Node b was removed and reallocated before ¢,
could protect it. Hence, ,:tail is a dangling pointer to the now ¢;-owned b. The view abstraction
of cfg is the expected one: views v; and v, from Figure 6.4b. To make explicit that we lose any
relation among threads in the abstraction, we renamed node b to ¢ in v, (in practice, memory

abstractions are unlikely to maintain the addresses explicitly [Chang et al. 2020]).

If we let thread t; continue its execution in cfg, it appends b to the end of the queue and then
swings Tail to the newly added node. The result is cfg’ from Figure 6.4a. For an analysis to
be sound, interference has to produce from v; and v, a new view for ¢, that captures the effect
of t;’s actions. The first step of interference is to combine v, and v,. Intuitively, we expect
the combined view to correspond to cfg. The fact that ¢; owns b, however, makes traditional
ownership reasoning ignore the relevant case b = c. That is, v; and v, do not produce cfg
although they were obtained from it. Consequently, it is not guaranteed that a view for ¢, is

explored which reflects cfg’. This compromises soundness.

It is worth pointing out that under GC the same problem does not arise. Node b would have not

been reclaimed due to #,:tail pointing to it. [

To overcome the problem of an unsound analysis, we introduce a variant of ownership that

allows for both soundness and precision in the presence of memory reclamation and reuse.

Chapter 6 Ownership and Reclamation

Figure 6.4: Reallocation scenario from Michael&Scott’s queue with hazard pointers where
traditional ownership reasoning, as done under garbage collection, is unsound.

(a) Program configurations without view abstraction. In cfg, thread ¢; owns node b while t, holds a
dangling pointer to it. The scenario arises if b is reclaimed and subsequently reallocated in-between t,

acquiring and protecting pointer #,:tail. Next, ¢; inserts b into the queue. The result is cfg’.

Configuration cfg t;:pc = Line 315

ty:pc = Line 308

ty:tail e

Configuration cfg' t;:pc = Line 317

ty:pc = Line 308

Tail ty:node [o]

e[

4

ty:tail [e]

(b) View abstraction for cfg gives views v; and v,. Applying traditional ownership reasoning prevents
a combined view where nodes b and c coincide, because b is owned. Hence, configuration cfg' is not
guaranteed to be covered by any view. The analysis is unsound.

t;:pc = Line 315

ty:pc = Line 308

tp:tail [e]

Y }

(=

Section 6.1 Reclamation breaks Ownership

59

6.2 Regaining Ownership

The previous section demonstrated the dilemma of thread-modular analyses: interference without
ownership is too imprecise for successful verification, however, exploiting ownership makes
the analysis unsound. We propose a novel notion of ownership to overcome this problem. The
key observation is the following: traditional ownership reasoning breaks soundness because of
dangling pointers. When memory is reallocated, all preexisting pointers to the newly allocated
node are dangling. We suggest to keep track of this fact and allow dangling pointers to reference
nodes owned by other threads when combining views for interference. All remaining, non-
dangling pointers are treated in the traditional way: they are prevented from referencing nodes

owned by other threads during interference.

To make precise which pointers in a computation are dangling, we introduce the notion of validity.
That is, we define a set of valid pointers. The dangling pointers are then the complement of the

valid pointers. We take this detour since we found it easier to formalize the valid pointers.

Initially, all pointer variables are valid. A pointer variable/selector becomes valid if it receives its
value from an allocation or another valid pointer. A pointer becomes invalid if its referenced
memory location is deleted or it receives its value from an invalid pointer. A deletion of an
address makes invalid its pointer selectors and all pointers referencing that address. A subsequent
reallocation of the address makes valid only the receiving pointer; all other pointers to the
address remain invalid. Assumptions of the form p = g validate p if g is valid, and vice versa.

The following definition makes this precise.

Definition 6.5 (Valid Expressions). The valid expressions in 7, valid, S PExp, are:

valid, = PVar
valid, (1 := qup) = valid, U {p} if ¢ € valid,
valid, (1 := qup) = valid; \ {p } if ¢ ¢ valid,
valid, (pnext := qup) = valid; U { a.next } ifm.(p) = a € Adr A q € valid,

valid; (1 pnext := qup) = valid; \ { a.next } ifm,(p) = a € Adr A q & valid,

valid; (1 p := gnext,up) = valid; U {p} if ¢ € valid, A m,(q).next € valid,

valid; (4 p := gnext,up) = valid; \ {p } if g & valid, v m;(q).next & valid,
valid, (1 sree(a),up) = valid, \ invalid,

valid; (1 p := na11oc,up) = valid; U {p,a.next} if [p = a] € up

valid; (1 assune p=q,up) = valid; U {p,q} if {p,q} N wvalid, + @

valid, ,.; = valid, otherwise

with invalid, == {p | m.(p) =a} U { b.next | m;(b.next) = a} U {a.next}.

60 Chapter 6 Ownership and Reclamation

6.3

We turn to the definition of ownership. It follows our previous discussion that allocations
grant ownership while publishing removes it. Technically, we remove ownership of published
addresses not in the moment they are published, but later upon the first access. This reduces the
computational effort of tracking ownership information in tools since there is no need to compute
the reachability of addresses in order to check if ownership is lost. To prevent ownership getting
lost prematurely due to dangling pointers accessing owned addresses, our ownership definition
takes validity into account: only first accesses through valid pointers remove ownership. The

discussion yields the following definition.

Definition 6.6 (Ownership). The addresses owned by thread t in 7, owned,(t) S Adr, are:

owned (1) = @

owned, (¢ := g [pa])(t) = owned (t) \ {a} if p € shared A q € valid,
ownedy (1 .= gnext,[pa]) () = owned (t) \ {a} ift# t' A g, m:(q).next € valid,

ownedy (41 p := gnext,[pa])(t) = owned (t) \ {a} ift= t' A p € shared

owned. (¢ p := nailoc,[poae]) () = owned (t) U {a} ift t' A p & shared

Owned At free(a),@) t) = Owned‘r(t) \ {a}

) (
(
(
owned, 4:(t) := owned,(t) otherwise .

With the above notion of ownership, we are ready to give the main result of the section. It states
that a thread ¢ can reference/access the addresses owned by another thread t', t# t', only if the
pointer of ¢ is invalid, i.e., dangling. This validates the soundness of ownership reasoning when
combining views during interference. With respect to the example from Figure 6.2, it prevents

the spurious view v, and thus avoids the associated false alarm.

Theorem 6.7 (Ownership Guarantee). Consider 7 € O[[P]]ﬁg; with m,(p) € owned,(t).
Then, p € valid, implies p € local,.

It is worth pointing out that the above theorem does not impose any restrictions on the analyzed
program, like if/how it accesses freed memory. Ownership is a universal technique to make
thread-modular verification more precise. That it makes thread-modular verification sufficiently

precise to establish correctness for the data structures of our interest is demonstrated below.

Evaluation

We devise an automated analysis to check linearizability of non-blocking data structures. Sec-
tion 6.3.1 extends the thread-modular framework from Chapter 4 to safe memory reclamation

and ownership reasoning. Section 6.3.2 evaluates the approach.

Section 6.3 Evaluation

61

6.3.1

6.3.2

62

Integrating Safe Memory Reclamation

We extend the analysis from Chapter 4 to integrate SMR. To that end, we add SMR automata
to views. Note that SMR automata have a pleasant interplay with thread-modularity. In a view
for thread t only those automaton states are needed where ¢ is observed. For Op,s, X Oggg, for
example, this means that only states with z, = t need to be stored in the view for ¢. Similarly,
the memory abstraction induces a set of reachable addresses that need to be observed (in the
case of Opgge X Ofgpgr by z,). To keep the number of SMR automaton states per view small in
practice, we do not keep states for shared addresses, i.e., addresses that are reachable from the
shared variables. Instead, we maintain the invariant that they are never retired nor freed. For
the analysis, we then assume that the ignored states are arbitrary (but not in locations implying
retiredness or freedness). We found that all benchmark programs satisfied this invariant and

that the resulting precision allowed for successful verification.

As discussed in Section 5.2, we need to check for double retires so that the use of Opg, is sound.
We integrate an appropriate check: verification fails upon in:retire(p) if p points to a and a is

currently retired, that is, if Opy, is in state (L3, ¢) with ¢ = {z, = a} prior to the call.

Ownership reasoning based on Theorem 6.7 is integrated easily by tracking validity and own-
ership information in views. Then, combined views can be discarded during interference if a

thread holds a valid pointer to an addresses owned by another thread.

Linearizability Experiments

We implemented the approach presented in this chapter in a C++ tool called TMREXP® and
empirically evaluated it on Treiber’s stack, Michael&Scott’s queue, and the DGLM queue. For a
base line, we also evaluated a naive stack and a naive queue implementation both of which use a
single lock. Our benchmarks do not include set implementations since the memory abstraction we
built on cannot handle sortedness [Abdulla et al. 2013, 2017]; we stress that this is a shortcoming
of the memory abstraction, not a shortcoming of the results we have established in this chapter.
As SMR algorithm we used FL. Recall from Section 5.2 that we specify FL with Op,,, and assume

that freed addresses can be accessed safely.

The findings are listed in Table 6.8. They include (i) the size of the explored state space, i.e.,
the number of reachable views, (ii) the number of interference steps that were performed as
well as the number of interference steps that were omitted due to ownership reasoning, and
(iii) the running time and result of verification (v' for success and X for failure). Besides the
novel ownership reasoning presented in this chapter, we include benchmarks for traditional

and no ownership reasoning. For traditional ownership reasoning, as done under garbage

2 TMREXP is freely available at: € https://wolf£09.github.io/phd/

Chapter 6 Ownership and Reclamation

https://wolff09.github.io/phd/

Table 6.8: Experimental results for verifying singly-linked data structures using FL. The
experiments were conducted on an Intel i5-8600K@3.6GHz with 16GB of RAM using
Ubuntu 16.04 and Clang 6.0.

Program Ownership” States Interferences (pruned) Time
GC 328 3.2k (10k) 0.006s v
Single lock stack New 703 7k (22k) 0.21s v
None 16k 183k (0) 5.34s v/
GC 100 0.7k (5k) 0.04s
Single lock queue New 520 0.7k (31k) 0.56s v
None 27k 442k (0) 32s
GC 269 3.5k (16k) 0.06s v
Treiber’s stack New 744 44k (96k) 2.36s
None 117k 7920k (0) 602s
GC 3134 47k (1237k) 2.52s
Michael&Scott’s queue New 19553 6678k (20748k) 3h /
None > 69000 — 2s X
GC 3134 47k (1237k) 2.52s
DGLM queue New > 6500 — 305 X"
None > 64000 - 2s X"

“The ownership reasoning technique used: traditional reasoning as done under garbage collection, the new
approach from this chapter, or none.

b -, . c .
False positive due to imprecision in the memory abstraction.

collection, we also prevent memory from being reallocated in order to achieve a sound analysis.

Without ownership reasoning, we maintain two threads per view in order to achieve acceptable
precision, as proposed by Abdulla et al. [2013, 2017]. All experiments were conducted on an
Intel i5-8600K@3.6GHz with 16GB of RAM using Ubuntu 16.04 and Clang 6.0.

Our experiments substantiate the usefulness of the proposed ownership technique. It gives a

speed-up of up to two orders of magnitude for Treiber’s stack and the naive implementations.

The running times are a middle ground between a GC analysis and the full analysis as suggested
by Abdulla et al. [2013]. The size of the state space explored by the new technique is much closer
to GC than to the full analysis. Comparing the results for Treiber’s stack and Michael&Scott’s

queue, however, suggests that the blow up introduced by memory reclamation and subsequent

reuse is too severe to handle more elaborate data structures or more elaborate SMR algorithms.

In the following chapters we propose new methods to fight this problem.

Section 6.3 Evaluation

63

64

7.1

Pointer Races

While the compositional verification approach from Chapter 5 abstracts away the implementation
details of the SMR algorithm, it leaves the verifier with a hard task, as seen in Chapter 6: memory
reclamation in the presence of fine-grained concurrency. To alleviate the impact of memory
reclamation on the analysis, we show that one can soundly verify a data structure P(O) by
considering only those computations where at most a single address is reused. This avoids the need
for an exploration of full O [[P]]ﬁg: which suffers from a severe state space explosion. In fact,
we were not able to make an analysis go through with only the compositional approach from
Chapter 5; we need the reduction result presented in the following. The analysis from Chapter 6
as well as previous works on automated data structure verification [Abdulla et al. 2013; Holik

et al. 2017] have not required such a reduction since they considered FL rather than full-featured

SMR algorithms like EBR and HP.

Our results are independent of the actual safety property and the actual automaton O specifying
the SMR algorithm. To achieve this, we establish that for every computation from O[[P]]ﬁg:
there is a similar computation which reuses at most a single address. We construct the similar
computation by eliding reuse in the original computation. With elision we mean that we replace
in a computation a freed address with a fresh one. This allows a subsequent allocation to malloc

the elided address fresh instead of reusing it. Our notion of similarity makes sure that both

computations reach the same control locations. This allows for verifying safety properties.

The remainder of the chapter is structured as follows. Section 7.1 introduces our notion of
computation similarity. Section 7.2 formalizes requirements on P(Q) such that similarity suffices
to prove the desired reduction result. Section 7.3 discusses how the ABA problem can affect
the soundness of our approach and shows how to detect those cases. Section 7.4 presents the

reduction result. Section 7.5 evaluates our approach.

Similarity of Computations

Our goal is to mimic a computation 7 where memory is reused arbitrarily with a computation o
where memory reuse is restricted. As noted before, we want the threads in 7 and o to reach the

same control locations in order to verify safety properties of 7 in 0. We introduce a similarity

relation among computations such that 7 and o are similar if they can execute the same actions.

Section 7.1 Similarity of Computations

65

66

This results in both computations reaching the same control locations, as desired. However,
control location equality alone is insufficient for ¢ to mimic subsequent actions of 7, that is,
to preserve similarity for subsequent actions. This is because most actions involve memory
interaction. Since o reuses memory differently than 7, the memory of the two computations is
not equal. Similarity requires a non-trivial correspondence wrt. the memory. Towards a formal

definition let us consider an example.
Example 7.1. Let 7; be a computation of a data structure P(Opyse X Ofp X Ojpp) using HP:

7y = (t,p :=malloc, [p +— a,...]).(t, in:retire(p), @).(t, free(a), @).(t, re:retire, @).

(t,q: malloc, [q Pa...]).

In this computation, thread ¢ uses pointer p to allocate address a. The address is then retired and

freed. In the subsequent allocation, ¢ acquires another pointer q to g; a is reused.

If o, is a computation where a shall not be reused, then o is not able to execute the exact same

sequence of actions as 7;. However, it can mimic 7; as follows:

o1 = (t,p :=malloc,[p — b,...]).(t, in:retire(p), @).(t, free(b), @).(t, re:retire, @).

(t, q = malloc, [q —a,...]) s

where o coincides with 7; up to replacing the first allocation of a with another address b. We

say that oy elides the reuse of a. The memories of 7; and o; differ on p and agree on q.]

In the above example, p is a dangling pointer. Programmers typically avoid using such pointers
because it is unsafe. For a definition of similarity, this practice suggests that similar computations
must coincide only on the non-dangling pointers and may differ on the dangling ones. To make
this precise, recall the notion of validity, Definition 6.5: the non-dangling pointers are precisely

the valid pointers.

Example 7.2 (Continued). In both 7; and o from the previous example, the last allocation
renders valid pointer g. On the other hand, the free to a in 7; renders p invalid. The reallocation
of a does not change the validity of p, it remains invalid. In oy, address b is allocated and freed
rendering p invalid. It remains invalid after the subsequent allocation of a. That is, both 7; and oy
agree on the validity of g and the invalidity of p. Moreover, 7; and o; agree on the valuation of

the valid g and disagree on the valuation of the invalid p.]

The above example illustrates that eliding reuse of memory leads to a different memory valuation.
However, the elision can be performed in such a way that the valid memory is not affected. So we
say that two computations are similar if they agree on the resulting control locations of threads
and the valid memory. The valid memory includes the valid pointer variables, the valid pointer

selectors, the data variables, and the data selectors of addresses that are referenced by a valid

Chapter 7 Pointer Races

pointer variable/selector. Formally, this is a restriction of the entire memory to the valid pointer

expressions, written m| g, -

Definition 7.3 (Restrictions). A restriction of memory m to a set P S PExp, written m|p,
is a new memory m' with domain dom(m') := P U DVar U { a.data € DExp | a € m(P) }
such that m(e) = m'(e) for all e € dom(m').

We are now ready to formalize the notion of similarity among computations. Two computations

are similar if they agree on the control location of threads and the valid memory.

Definition 7.4 (Computation Similarity). Two computations 7 and o are similar, denoted

by 7 ~ o, if we have ctrl(r) = ctrl(co) and m,|\ad, = Mo | valid, -

If two computations 7 and o are similar, then each action enabled after 7 can be mimicked in o.

More precisely, action act = (t, com, up) after r can be mimicked by act' = (t, com, up') after o.

Both actions agree on the executing thread and the executed command, but may differ in the
memory update. The reason for this is that similarity does not relate the invalid parts of the

memory. This may give another update in o if com involves invalid pointers.

Example 7.5 (Continued). Consider the following continuation of 7; and oy:

T =1.(t, p := p, up) and oy =0y.{t,p=p, up’)

where we append an assignment of p to itself. The prefixes 7; and o are similar, 7; ~ o7.
Nevertheless, the updates up and up' differ because they involve the valuation of the invalid
pointer p which differs in 7; and o;. The updates are up = [p + a] and up' = [p ~ b]. Since
the assignment leaves p invalid, similarity is preserved by the appended actions, 7, ~ g,. We say

that act' mimics act.

Altogether, similarity does not guarantee that the exact same actions are executable. It guarantees

that every action can be mimicked such that similarity is preserved.]

In the above we omitted an integral part of the program semantics. Memory reclamation is
not based on the control location of threads but on an SMR automaton examining the history
induced by a computation. The enabledness of a free is not preserved by similarity. On the one
hand, this is due to the fact that invalid pointers can be (and in practice are) used in SMR calls
which leads to different histories. On the other hand, similar computations end up in the same
control location but may perform different sequences of actions to arrive there, for instance,
execute different branches of conditionals. That is, to mimic free actions we need to correlate
the behavior of the SMR automaton rather than the behavior of the program. We motivate the

definition of an appropriate relation.

Section 7.1 Similarity of Computations

67

68

Example 7.6 (Continued). Consider the computations 73 = 7,.y and 03 = 0.y with

y = (t, in:protecti(p), @).(t, re:protecty, @).(t, in:retire(q), @).(t, re:retire, @)
where thread t issues a protection and a retirement using p and g, respectively. The histories
induced by those computations are:

H(rs) = H(ry).in:protecty(t, a).re:protect,(t).in:retire(t, a).re:retire(t)
and H(o3) = H(o,).in:protect,(t,b).re:protect,(t).in:retire(t, a).re:retire(t) .

Recall that 7, and o, are similar. Similarity guarantees that the events of the retire call coincide
since q is valid. The events of the protect call differ because the valuations of the invalid p differ.
That is, SMR calls do not necessarily emit the same event in similar computations. Consequently,

the SMR automaton reaches different states after 73 and o3. More precisely, automaton Opp from

Figure 5.4 takes the following steps from the initial state (Lg, ¢) with ¢ = {z; > t,z, = a }:

(L) 22 (L,) Pttt (g gy zetprorecthlt) (p o)
in:retire(t,a) (Lua (p) re:retire(t) (Ln, (P)

and (Lg, @)~ (L,) —mPmotectW) (g oy zeterotertnD) L (p)
in:retire(t,a) (Lg,(p) re:retire(t) (Lg,(p) '

This prevents a from being freed after 73, because a free(a) would lead to the final state (L5, ¢)

and is thus not enabled, but allows for freeing it after o3.]

The above example shows that eliding memory addresses to avoid reuse may change SMR
automaton steps. The affected steps involve freed addresses. Like for computation similarity, we
define a relation among computations which captures the SMR behavior on the valid addresses,
i.e., those addresses that are referenced by valid pointers, and ignores all other addresses. Here,
we do not use an equivalence relation. That is, we do not require SMR automata to reach the
exact same state for valid addresses. Instead, we express that the mimicking ¢ allows for more
behavior on the valid addresses than the mimicked z. We define an SMR behavior inclusion among
computations. This is motivated by the above example. There, address a is valid because it is
referenced by the valid pointer g. Yet the SMR automaton steps for a differ in 7; and o3. After o3

strictly more behavior is possible: o3 can free a while 73 cannot.

To make this intuition precise, we need a notion of behavior on an address. Recall that the goal of
the desired behavior inclusion is to enable us to mimic frees. Intuitively, the behavior allowed

by O on address a is the set of those histories that lead to a free of a.

Definition 7.7 (SMR Behavior). The behavior allowed by automaton O on address a after
history h is the set Fo(h, a) == { k' | h.h' € S(O) A frees; S a }.

Chapter 7 Pointer Races

7.2

Note that i’ € Fo(h, a) contains free events for address a only, as dictated by frees,: S a.
This side condition is necessary because an address may become invalid before being freed if,
for instance, the address becomes unreachable from the valid pointers. Despite similarity, the
mimicking computation o may have already freed such an address while 7 has not. Hence, the
free is no longer allowed after o but still possible after 7. To prevent such invalid addresses from
breaking the desired inclusion on valid addresses, we strip from Fp (h, a) all frees that do not
target a. Note that we do not even retain frees of valid addresses here. This way, only SMR-related

actions influence Fo (h, a). To be more precise, we have Fo (H (), a) = Fo (H(r.act), a) for

all actions act which do not emit an event.

The SMR behavior inclusion among computations is defined such that ¢ includes at least the
behavior of 7 on the valid addresses. To make this formal, we define the addresses that are in use
in a memory m by adr(m) := (dom(m) U range(m)) N Adr where we use { a.next } N Adr = a

and likewise for data selectors. Then, the valid addresses in 7 are adr(m;|aia,)-

Definition 7.8 (SMR Behavior Inclusion). Computation ¢ includes the SMR behavior of 7,
denoted by 7 < 0, if F (7, a) € Fo (o, a) holds for all a € adr(m;|yaia,)-

Preserving Similarity

The development in Section 7.1 is idealized. There are cases where the introduced relations do
not guarantee that an action can be mimicked. All such cases have in common that they involve
invalid pointers. More precisely, (i) the computation similarity may not be strong enough to
mimic actions that dereference invalid pointers, and (ii) the SMR behavior inclusion may not
be strong enough to mimic calls involving invalid pointers. For each of those cases we give an
example and restrict our development. We argue throughout this section that our restrictions

are reasonable. Our experiments confirm this. We start with the computation similarity.

Example 7.9 (Continued). Consider the following continuation of 73 and o3:

74 = 13.(t, g.next := q, [a.next a]).(t, p.next := p, [a.next — a])

03.(t, g.next := q, [a.next — a]).(t, p.next := p, [b.next — b]) .

and oy

The first appended action updates a.next in both computations to a. Since q is valid after both 73
and o3 this assignment renders valid a.next. The second action updates a.next in 4. This results
in a.next being invalid after 7, because the right-hand side of the assignment is the invalid p.
In o4 the second action updates b.next which is why a.next remains valid. That is, the valid
memories of 7, and oy differ. We have executed an action that cannot be mimicked on the valid

memory despite the computations being similar.]

Section 7.2 Preserving Similarity

69

70

The problem in the above example is the dereference of an invalid pointer. The computation
similarity does not give any guarantees about the valuation of such pointers. Consequently, it
cannot guarantee that an action using invalid pointers can be mimicked. To avoid such problems,

we forbid programs to dereference invalid pointers.

The rational behind this is as follows. Recall that an invalid pointer is dangling. That is, the
memory it references has been freed. If the memory has been returned to the underlying operating
system, then a subsequent dereference is unsafe, i.e., prone to a system crash due to a segfault.
Hence, such dereferences should be avoided. The dereference is only safe if the memory is
guaranteed to be accessible. To decide this, the invalid pointer needs to be compared with a
definitely valid pointer. Such a comparison renders valid the invalid pointer (cf. Definition 6.5).
This means that dereferences of invalid pointers are always unsafe. We let verification fail if
unsafe accesses are performed. That performance-critical and non-blocking code is free from

unsafe accesses is confirmed by our experiments.

Definition 7.10 (Unsafe Access). A computation z.(t, com, up) performs an unsafe access

if com contains p.data or p.next with p ¢ valid,.

Forbidding unsafe accesses makes the computation similarity strong enough to mimic all desired
actions. A discussion of cases where the SMR behavior inclusion cannot be preserved is in order.

We start with an example.

Example 7.11 (Continued). Consider the following continuations of r;, oy from Example 7.1:

75 = 1;.(t, iniretire(p), @) with H(rs) = H(r;).in:retire(t,a)

and o5 = 01.(t, in:retire(p), @) with H(os) = H(oy).in:retire(t,b) .

The SMR behavior of 7; is included in oy, that is, 7; < o;. After 75 a deletion of a is possible
because it is retired. After o5 a deletion of a is prevented by Op,. because a has not been retired.
Formally, we have free(a) € Fo (75, a) and free(a) ¢ Fo (o5, a). However, a is a valid address
because it is referenced by the valid pointer g. That is, the behavior inclusion among 7; and oy is

not preserved by the subsequent action.]

The above example showcases that calls to the SMR algorithm can break the SMR behavior
inclusion. This is the case because an action can emit different events in similar computations.

The event emitted by an SMR call differs only if it involves invalid pointers.

The naive solution would be to prevent using invalid pointers in calls altogether. In practice,
this is too strong a requirement. As seen in Chapter 2, a common pattern for protecting an

address with hazard pointers is to (i) read a pointer p into a local variable g, (ii) issue a protection

Chapter 7 Pointer Races

using ¢, and (iii) repeat the process if p and g do not coincide." After reading into q and before
protecting g the referenced memory may be freed. Hence, the protection is prone to use invalid
pointers. Forbidding such protections would render our theory inapplicable to non-blocking

data structures using hazard pointers.

To fight this problem, we forbid only those calls involving invalid pointers which are prone to
break the SMR behavior inclusion. Intuitively, this is the case if there exists another call which
differs only on the invalid pointer arguments and allows for more behavior on the valid addresses
than the original call. To regain precision and support more scenarios where invalid pointers are

used, we keep unchanged the address the behavior of which is considered.

Definition 7.12 (Racy Call). Computation 7.(t, in: func(7), @) performs a racy call if the
following holds for h = H(r) and v = m(7):

Ja3w. (Vi (v;=aVr €valid, Vr; € DExp) = v; = w;)

A Fo(h.in:func(t,w), a) ¢ Fo(h.in:func(t,v), a)

It follows immediately that calls containing only valid pointers are not racy. Using the SMR
automaton for HP, Opg,,, X OSIP X Oll.lp, we deem racy the call to retire from Example 7.11—we
reject the program and let verification fail. Indeed, requesting the deferred deletion of an invalid
pointer might lead to a double free, resulting in a system crash. For that reason, retire is always
called using valid pointers in practice. For protect calls one can show that they never race. We
have already seen this in Example 7.6. There, a call to protect with invalid pointers did not
break the SMR behavior inclusion. Instead, the mimicking computation o3 could perform strictly

more frees than the computation it mimicked 7.

We uniformly refer to the above situations where the usage of an invalid pointer can break
the ability to mimic an action as a pointer race. It is a race indeed because the usage and the

reclamation of a pointer are not properly synchronized.

Definition 7.13 (Pointer Race). A computation 7.act is a pointer race if act performs (i) an

unsafe access, or (ii) a racy SMR call.

With pointer races we restrict the class of supported programs. The restriction to pointer race
free programs is reasonable in that we can handle common non-blocking data structures from
the literature as shown in our experiments. Since we want to give the main result of this section
in a general fashion that does not rely on the actual SMR automaton used to specify the SMR

implementation, we have to restrict the class of supported SMR automata as well.

! For an instantiation of this pattern, consider Lines 326 to 328 of Michael&Scott’s queue from Figure 2.13.

Section 7.2 Preserving Similarity

71

72

We require that the SMR automaton supports the elision of reused addresses, as done in Exam-
ple 7.1. Intuitively, elision is a two-step process the automaton must be insensitive to. First, an
address a is swapped with a fresh address b upon an allocation where a should be reused but
cannot. In the resulting computation, a is fresh and thus the allocation can be performed without
reusing a. The process of swapping a with b must not affect the behavior of the automaton on
addresses other than a and b. Second, the automaton must allow for more behavior on the fresh
address than on the reused address. This is required to preserve the SMR behavior inclusion

because the allocation renders a valid.

Additionally, we require a third property: the SMR automaton behavior on an address must not
be influenced by frees of another address. This is needed because computation similarity and
SMR behavior inclusion do not guarantee that frees of invalid addresses can be mimicked, as
discussed before. Since such frees do not affect the valid memory, there is no need to mimic them.

The SMR automaton has to allow us to simply skip such frees when mimicking a computation.

For a formal definition of our intuition we write h[a/b] to denote the history that is constructed
from h by swapping every occurrence of a and b. Moreover, we write a € fresh, and mean that

address a does not appear in any of the events of h.

Definition 7.14 (Elision Support). SMR automaton O = Op,e X Ogpr supports elision of
memory reuse if for all A, h € S(Opase) and a, b, ¢ € Adr the following conditions are met:
(i) a # ¢ # b implies Fo,,,(h, ¢) = Foq,(hla/b], c),
(i) Fo(h a) € Fo(h' a)and b € freshy implies Fo,, . (h b) € Fo, (k. b), and
(iii) a # b and h.free(a) € S(O) implies Fo,,,(h, b) = Fo,,(h.free(a), b).

Crucially, the above definition is concerned with the SMR-specific part Ogyk only. Automa-
ton Opy, does not satisfy Property (ii) for arbitrary histories A, K. The problem is that
an in:retire(t,b) in history h takes Qg from its initial location L, to location Ls. In Lg
a free(b) is allowed. However, that b is fresh in h' means that O, is in L, where free(b) is not
allowed. So, h' does not include all of h’s behavior. When constructing for 7 a mimicking compu-
tation o that elides the reuse of b, the problematic scenario occurs only if b is both freed and
retired after 7. This, in turn, gives rise to a double retire on b. To see this, observe that b must have
been retired after being freed as otherwise Op,,, would be in L, rather than L; after h = H (7).
For b to be freed, there must be a preceding retirement according to Op,.. Removing the free,
we obtain a computation where b remains retired and is thus retired twice. Hence, a check for
double retires, which Section 5.2 mandates anyways, yields a lift of Property (ii) to full O in the
relevant situations. It is worth pointing out that we cannot rely on pointer races here. While the
SMR automata we use would deem racy a retirement of a freed and thus invalid address, this is

not guaranteed in general.

Chapter 7 Pointer Races

We found Definition 7.14 practical in that the SMR automata for specifying HP and EBR from

Figure 5.4, which we use for our experiments in Section 7.5, support elision.

Proposition 7.15. The SMR automata Opg,s, X Opgg and Opgge X O%p X (’)}ip from Figure 5.4

0.1 ..
as well as Oy X Opp support elision.

7.3 Detecting ABAs

So far we have introduced restrictions, namely pointer race freedom and elision support, to rule
out cases where our idea of eliding memory reuse does not work, that is, breaks similarity or the
SMR behavior inclusion. If those restrictions were strong enough to carry out our development,
then we could remove any reuse from a computation and get a similar one where no memory
is reused. That the resulting computation does not reuse memory means, intuitively, that it is
executed under garbage collection. As shown in the literature [Michael and Scott 1996], the ABA
problem is a subtle bug caused by manual memory management which is prevented by garbage
collection. So, eliding all reuses jeopardizes soundness of the analysis—it could miss ABAs which
result in a safety violation. With this observation, we elide all reuses except for one address per
computation. This way we analyze a semantics that is close to garbage collection, can detect

ABA problems, and is much simpler than full O[P[4.

The semantics that we suggest to analyze is O[P]ay = U caar O[[P]],{:ig- It is the set of all
computations that reuse at most a single address. A single address suffices to detect the ABA
problem. The ABA problem manifests as an assumption of the form assume p = g where the
addresses held by p and q coincide but stem from different allocations. That is, one of the pointers
has received its address, the address was freed and then reallocated, before the pointer is used in
the assumption. Note that this implies that for an assumption to be ABA one of the involved
pointers must be invalid. Pointer race freedom does not forbid this. Nor do we want to forbid
such assumptions. In fact, most programs using hazard pointers contain ABAs. They are written

in a way that ensures that the ABA is harmless.

Example 7.16 (ABAs in Michael&Scott’s queue using hazard pointers). Consider the

following code, repeated from Michael&Scott’s queue from Figure 2.13:

326 Node* head = Head;
327 protecty(head);

328 if (head != Head) continue;

In Line 326 the value of the shared pointer Head is read into the local pointer head. Then, a
hazard pointer is used in Line 327 to protect head from being freed. In between reading and

protecting head, its address could have been deleted, reused, and reentered the queue. That is,

Section 7.3 Detecting ABAs

73

74

when executing Line 328 the pointers Head and head can coincide although the head pointer
stems from an earlier allocation. This scenario is an ABA. Nevertheless, the queue’s correctness
is not affected by it. The ABA prone assumption is only used to guarantee that the address
protected in Line 327 is indeed protected after Line 328. With respect to the SMR automaton Opp,
the assumption guarantees that the protection was issued before a retirement (after the latest
reallocation) so that Opp is guaranteed to be in Ly and thus prevents future retirements from

freeing the protected memory. The ABA does not void this guarantee, it is harmless.]

The above example shows that non-blocking data structures may perform ABAs which do not
affect their correctness. To soundly verify such algorithms, our approach is to detect every ABA
and decide whether it is harmless indeed. If so, our verification is sound. Otherwise, we report

to the programmer that the implementation suffers from a harmful ABA problem.

A discussion of how to detect ABAs is in order. Let 7 € (’)[[P]]ﬁg: and o € O[[P]]I{q?ii

be similar
computations. Intuitively, o is a computation which elides the reuses from 7 except for address a.
Address a can be used in o in exactly the same way as it is used in 7. Let act be an ABA prone
assumption of the form act = (¢, assume p = g, @). Assume act is enabled after 7. To detect this
ABA under O[[P]]I{q(;r} we need act to be enabled after 6. We seek to have o.act € O[[P]]I{;;r}. This
is not guaranteed. Since act is an ABA it involves at least one invalid pointer, say p. Computation
similarity does not guarantee that p has the same valuation in both 7 and . However, if p points
to a in 7, then it does so in o because a is (re)used in ¢ in the same way as in 7. Thus, we end up

with m,(p) = m,(p) although p is invalid. In order to guarantee this, we introduce an address

alignment relation which precisely tracks how the reusable address a is used.

Definition 7.17 (Address Alignment). Computations 7 and o are a-aligned, 7 <, o, if:

Vp € PVar. m(p) =a < mq(p) =a
and Vb € m,(valid;). m (b.next) =a < my(b.next) =a
and a € fresh_ U freed. < a € fresh_U freed
and Fp(r, a) € Fo(o, a)

and a € retired, < a € retired, .

The first line in this definition states that the same pointer variables in 7 and ¢ are pointing
to a. Similarly, the second line states this for the pointer selectors of valid addresses. We have to
exclude the invalid addresses here because 7 and ¢ may differ on the in-use addresses due to
eliding reuse. The third line states that a can be allocated in 7 iff it can be allocated in ¢. The
fourth line states that the SMR automaton allows for more behavior on a in ¢ than in 7. These
properties combined guarantee that ¢ can mimic actions of 7 involving a no matter if invalid
pointers are used. The last line requires that a is retired in 7 iff it is retired in . This property

makes double retires performed after 7 visible in the mimicking o.

Chapter 7 Pointer Races

one

The address alignment lets us detect ABAs in O[P] 44 Intuitively, we can only detect first
ABAs because we allow for only a single address to be reused. Subsequent ABAs on different
addresses cannot be detected. To detect ABA sequences of arbitrary length, an arbitrary number
of reusable addresses is required. To avoid this, i.e., to avoid an analysis of full O[[P]]gz:, we
formalize the idea of harmless ABAs from before. We say that an ABA is harmless if executing it
leads to a system state which can be explored (by another computation) without performing
an ABA. That the system state can be explored without performing an ABA means that every
ABA is also a first ABA. Thus, any sequence of ABAs is explored by considering only first ABAs.

Note that this definition is independent of the actual correctness notion.

Definition 7.18 (Harmful ABA). The semantics O[[P] 4y, is free from harmful ABAs if:

V og.act € 0[P V o, € 0PI 36, € O[PT).

1 1 I
o, ~0p N act = (0, assume o, 0) = oz.act ~op N op Xp 0, N 0g.act <0y .

To understand how the definition implements our intuition, consider r.act € (’)[[P]]%: where act
performs an ABA on address a. Our goal is to mimic 7.act in O[[P]]LZE , that is, we want to
mimic the ABA without reusing address a (for instance, to detect subsequent ABAs on address b).
Assume we are given o;, € OHP]];ZE which is similar and b-aligned to 7. This does not guarantee
that act can be mimicked after o;; the ABA may not be enabled because it involves invalid
pointers the valuation of which differs in r and o;,. However, we can construct a computation o,
which is similar and a-aligned to 7. After o, the ABA is enabled, i.e., o .act € O[[P]],{L\Zli . For
those two computations ¢,.act and o, we invoke the above definition. It yields another com-
putation a,', € (’)[[P]]I{AZE which, intuitively, coincides with o}, but where the ABA has already
been executed. Put differently, oy isa computation which mimics the execution of act after oy,

although act is not enabled.
Example 7.19 (Continued). Consider the computation z.act of Michael&Scott’s queue with:

T = 15.(t, head := Head, [head a]).7;.free(a).zs.
(t, in:protecty(head), @).(t, re:protecty, @)

and act = (¢, assume head = Head, @) .

This computation resembles a thread t executing Lines 326 to 328 while an interferer frees
address a referenced by head, reallocates it, and makes it the Head of the queue again; we assume
that 74, 77, 73 consist of the interferer’s actions the precise form of which does not matter here.
The assume in act resembles the conditional from Line 328 and states that the condition evaluates

to true. That is, act is a potential ABA on address a.

a}

Reusing address a allows us to mimic 7 with an a-aligned computation o, € O[[P]]idr The ABA

prone action act is guaranteed to be enabled after o,, so ¢,.act mimics 7.act. Reusing another

Section 7.3 Detecting ABAs

75

7.4

76

. . b ..
address b yields a b-aligned o, € O[[P]]idi mimicking 7. After o, act may not be enabled.
The reason for this is that o, elides allocations of a to avoid it being reused. The interferer’s
reallocation of a (in 7g) forces oy, to elide its previous allocation. Hence, thread #’s head does not

point to a while Head still does. The ABA prone act is not enabled after oy,

To see that the above ABA is harmless, consider the following rescheduling of the actions in z:

' = 14.7;.free(a).zs. (t, head := Head, [head — a]).

(t,in:protecty(head), @).(t, re:protecty, @) .

{b}

Here, thread t reads the latest version of Head. This gives rise to a computation 0,', € O[P],

mimicking . Unlike oy, however, crl’, can execute act since the later read of head is not affected
by the elision of reallocations. Finally, o,.act mimics .act. Requiring the existence of such a o

guarantees that an analysis can see past ABAs on address a, although a is not reused. []

A key aspect of the above definition is that checking for harmful ABAs can be done in the simpler
semantics O P]44.. Altogether, this means that we can rely on O[P]|%y, for both the actual
analysis and a soundness (absence of harmful ABAs) check. Our experiments show that the

above definition is practical. There were no harmful ABAs in the benchmarks we considered.

Reduction Result

We show how to exploit the concepts introduced so far to soundly verify safety properties and es-

tablish the absence of double retires in the simpler semantics O[P] %y, instead of full O[[P]]ﬁg;.

Theorem 7.20. Let O support elision. Let O P]|%\y. be free from pointer races, double retires,

Adr

and harmful ABAs. Then, for all 7 € O[[P]14, and for all a € Adr thereis o € (’)[[P]]I{AZE with

T~0,T<0,and 7 <, 0.

Proof Sketch. We construct o inductively by mimicking every action from 7 and eliding reuses as
needed. For the construction, consider r.act € (’)[[P]]%; and assume we have already constructed,
for every a € Adr, an appropriate o, € O[[P]]I{ng. Consider some address a € Adr. The task is to
mimic act in o,. If act is an assignment or an SMR call, then pointer race freedom guarantees
that we can mimic act by executing the same command with a possibly different update. We

discussed this in Section 7.2. The interesting cases are ABAs, frees, and allocations.

First, consider the case where act executes an ABA assumption assume p = g. That the assump-
tion is an ABA means that at least one of the pointers is invalid, say p. Hence, act may not be
enabled after o,. Let p point to b in 7. By induction, we have already constructed o}, for 7. The

ABA is enabled after ;. This is due to 7 <}, o0p. It implies that p points to b in 7 iff p points to b

Chapter 7 Pointer Races

in 0;, (independent of the validity), and likewise for q. That is, the comparison has the same
outcome in both computations. Now, we can exploit the absence of harmful ABAs to find a
computation mimicking z.act for a. Applying Definition 7.18 to op.act and o, yields some oy

that satisfies the required properties.

Second, consider the case of act performing a free(b). If act is enabled after o, nothing needs
to be shown. In particular, this is the case if b is a valid address or a = b. Otherwise, b must be
an invalid address. Freeing an invalid address does not change the valid memory. It also does
not change the control location of threads as frees are performed by the environment. Hence,
we have r.act ~ 0,. By the definition of elision support, Definition 7.14iii, the free does not
affect the behavior of the SMR automaton on other addresses. We get 7.act < g,. With the same

arguments we conclude 7.act <, ¢,. That is, we do not need to mimic frees of invalid addresses.

Last, consider act executing an allocation p := malloc of address b. If b is fresh in 0, ora = b,

then act is enabled after o,. The allocation makes b a valid address. That < holds for this address

follows from elision support, Definition 7.14ii. As argued earlier, elision support applies to full O

here because there are no double retires on b by assumption: a double retire on b in 7 would
one

manifest as a double retire in some o, € O[P] 44 with 7 <, 0, which exists by induction.

Consider now the remaining case where act is not enabled after o, because b is not fresh. We

replace in o, every occurrence of b with a fresh address c. Let us denote the result with o,[b/c].

Relying on elision support, Definition 7.14i, one can show o, < 0,[b/c] and thus 7 < o,[b/c]
for all < € { ~, <, <, }. Since b is fresh in o,[b/c], we conclude by enabledness of act as in the

previous case. |

From the above follows the overall reduction result. It states that safety properties can be verified
under the much simpler semantics which reuses at most a single address. We stress that the

result is independent of the actual SMR automaton used.

Theorem 7.21 (Reduction 1). If O supports elision and O P]|%y, is free from pointer races,

double retires, and harmful ABAs, then good(O[[P]]ﬁg:) = good(O[P]%s)-

We can also prove the absence of double retires in the simpler semantics, as mandated by SMR

algorithms in general (cf. Section 2.3) and SMR automaton Opg, in particular (cf. Section 5.2).

Theorem 7.22. If O supports elision and O P]%y. is free from pointer races, double retires,

and harmful ABAs, then (’)[[P]]ﬁg: is free from double retires.

In the next section, we put the results to practice and demonstrate how to verify non-blocking

data structures with memory reclamation.

Section 7.4 Reduction Result

77

7.5

7.5.1

78

Evaluation

We propose an automated analysis that is capable of checking linearizability of non-blocking
data structures as well as checking compliance of SMR implementations with SMR automaton
specifications. The analysis extends the one from Section 6.3 as described in Section 7.5.1. The
linearizability benchmarks are discussed in Section 7.5.2. SMR implementations are verified

against SMR automata in Section 7.5.3.

Soundness checks

To guarantee that the restriction of reuse to a single address is sound, we have to check for
pointer races and harmful ABAs, as demanded by Theorem 7.21. To check for pointer races
we rely on the validity information we already integrated in Chapter 6. If a pointer race is
detected, verification fails. For this check, we rely on Proposition 7.23 below and deem racy
any invocation of retire with invalid pointers. That is, the pointer race check boils down to
scanning dereferences and retire invocations for invalid pointers. A more general check for

racy calls can be implemented by using the technique from Proposition 5.3.

Proposition 7.23. If a call is racy wrt. Opgse X Oggg or Opggse X ng X O}Ip or Opgee X (92}11;,

then it is a call to function retire with an invalid pointer as its argument.

Next, we add a check for harmful ABAs on top of the state space exploration. This check has to
implement Definition 7.18. That a computation o,.act contains a harmful ABA can be detected
in the view v, for thread t which performs act. Like for computations, the view abstraction v,
of gy, for t cannot perform the ABA. To prove the ABA harmless, we seek a view v;, which is
similar to v,, b-aligned to vy, and includes the SMR behavior of v,. (The relations introduced in

Sections 7.1 to 7.3 naturally extend to views.) If no such v;, exists, verification fails.

In the thread-modular setting one has to be careful with the choice of vp. It is not sufficient to find
just some v, satisfying the desired relations. The reason lies in that we perform the ABA check
on a thread-modular abstraction of computations. To see this, assume the view abstraction of o,
is a(op) = { vy, v} where vy, is the view for thread ¢ which performs the ABA in o,.act. For just
some vy it is not guaranteed that there is a computation o}, such that (o) = { vy, v }. The sheer
existence of the individual views vj and v in V does not guarantee that there is a computation the
abstraction of which yields those two views. Put differently, we cannot construct computations

: . ! . . 1
from views. The existence of v, does not prove the existence of the required oy,.

To overcome this problem, we use a method to search for a U;, that guarantees the existence

of o3, in terms of the above example, guarantees that there is o3, with a(o,) = { vy, v }. We take

Chapter 7 Pointer Races

7.5.2

the view v, that cannot perform the ABA. We apply sequential steps to v, until it comes back
to the same program location. The rational behind this approach is that ABAs are typically
conditionals that restart the operation if the ABA is not executable. Restarting the operation
results in reading out pointers anew (this time without interference from other threads, cf.
Example 7.19). Consequently, the ABA is now executable. The resulting view is a candidate
for vp. If it does not satisfy Definition 7.18, verification fails. Although simple, this approach

succeeded in all of our benchmarks.

Linearizability Experiments

We implemented the approach presented in this chapter in a C++ tool called TMREXP.” We
empirically evaluated the tool on Treiber’s stack, Michael&Scott’s queue, and the DGLM queue.
We reiterate from Section 6.3 that the analysis we build on cannot handle sets [Abdulla et al.
2013, 2017]; this is a shortcoming of the original approach, not a shortcoming of the results
from the present chapter. As SMR algorithms we considered EBR and HP as specified by the
SMR automata Og,,, X Opgr and Opg,e X O}OIP X Ollgp, respectively. We did not consider FL.
The reason for this is that the approach suggested in Chapter 5 and implemented in Chapter 6,
namely specifying FL via Og, and having retired addresses freed, inevitably leads to pointer
races (unsafe accesses) and thus to verification failure. We believe that one can generalize and
tailor the results presented here to support FL. Such a generalization, however, is beyond the

scope of this thesis.

The findings are listed in Table 7.24. They include (i) the size of the explored state space, i.e.,
the number of reachable views, (ii) the number of ABA prone views, i.e., views where a thread
is about to perform an assumption containing an invalid pointer, (iii) the running time and
result of verification, i.e., the exhaustive exploration of the state space and linearizability check,
and (iv) the running time and result of proving the absence of harmful ABAs. We mark tasks
with v if they were successful and with X if they failed. All experiments were conducted on an

Intel i5-8600K@3.6GHz with 16GB of RAM using Ubuntu 16.04 and Clang 6.0.

Our approach is capable of verifying non-blocking data structures using HP and EBR. We were
able to automatically verify Treiber’s stack, Michael&Scott’s queue, and the DGLM queue. To
the best of our knowledge, we are the first to verify data structures using the aforementioned
SMR algorithms fully automatically. Moreover, we are also the first to verify automatically the

DGLM queue under any manual memory management technique.

An interesting observation throughout the entire test suite is that the number of ABA prone views
is rather small compared to the total number of reachable views. Consequently, the time needed

to check for harmful ABAs is insignificant compared to the verification time. This substantiates

2 TMREXP is freely available at: & https://wolf£09.github.io/phd/

Section 7.5 Evaluation

79

https://wolff09.github.io/phd/

80

Table 7.24: Experimental results for verifying singly-linked data structures using SMR.
The experiments were conducted on an Intel i5-8600K@3.6GHz with 16GB of RAM using
Ubuntu 16.04 and Clang 6.0.

SMR Program States ABAs Linearizability = ABA Check
Treiber’s stack 1822 0 16s v 0s v

EBR Michael&Scott’s queue 7613 0 2630s v 0s v
DGLM queue 27132 0 37545 ' 0s
Treiber’s stack 2606 186 19s v/ 0.06s v

- Opt. Treiber’s stack = = 0.8s X° =
Michael&Scott’s queue 19028 536 7075s 0.9s v
DGLM queue 41753 2824 7010s " 26s v

“ Pointer race due to an ABA in push. The ABA does not affect correctness.

b Imprecision in the memory abstraction required hinting.

the usefulness of ignoring ABAs during the actual analysis and checking afterwards that no

harmful ABA exists.

Our tool could not establish linearizability for the optimized version of Treiber’s stack with
hazard pointers. The reason for this is that the push operation does not use any hazard pointers.
This leads to pointer races and thus verification failure although the implementation is correct.

To see why, consider the following excerpt of push, repeated from Figure 2.12:

278 Nodex top = ToS;
279 node->next = top;
280 1f (CAS(&ToS, top, node))

281 break

The operation reads the top-of-stack pointer into a local variable top in Line 278, links the newly
allocated node to the top-of-stack in Line 279, and swings the top-of-stack pointer to the new
node in Line 280. Between Line 278 and Line 280 the node referenced by top can be popped,
reclaimed, reused, and reinserted by an interferer. Consequently, the CAS in Line 280 is ABA
prone. The reclamation of the node referenced by top renders both top and node->next invalid.
As specified by Definition 6.5, the comparison of the valid ToS with the invalid top in the CAS
from Line 280 makes top valid again. However, node->next remains invalid. That is, the push
succeeds and leaves the stack in a state with ToS->next being invalid. This leads to pointer races
because no thread can acquire valid pointers to the nodes following ToS. Hence, reading out data

of such subsequent nodes in the pop procedure, for example, raises a pointer race.

Chapter 7 Pointer Races

7.5.3

To solve this issue, the CAS in Line 280 has to validate the pointer node->next. One could annotate
the CAS with an invariant Tos == node-> next. Treating invariants and assumptions alike would
result in the CAS validating node->next. That the annotation is an invariant indeed, could be

checked during the analysis. We consider a proper investigation as future work.

For the DGLM queue, our tool required hints. The DGLM queue is similar to Michael&Scott’s
queue but allows the Head pointer to overtake the Tail pointer by at most one node. Due to
imprecision in the memory abstraction, our tool explored states with malformed lists where
Head overtook Tail by more than one node. We implemented a switch to increase the precision
of the abstraction and ignore cases where Head overtakes Tail by more than one node. This
simple hint made verification of the DGLM queue possible. While this change is ad hoc, it does
not jeopardize the principledness of our approach because it affects only the memory abstraction

which we took from the literature.

Verifying SMR Implementations

It remains to verify that a given SMR implementation is correct wrt. an SMR automaton O. As
noted in Chapter 5, an SMR implementation can be viewed as a non-blocking data structure
where the stored data are pointers. So we can reuse the above analysis. We extended our tool
TMREXP with an abstraction for (sets of) data values.” The main insight for a concise abstraction
is that it suffices to track a single SMR automaton state per view. If the SMR implementation is
not correct wrt. O, then by definition there is 7 € O[MGC(R) ﬁj: with H(7) ¢ S(O). Hence,
there must be some state s with % (r) ¢ S(s). Consider the specifications Opaee X Ofp X Oppp
and Ogge, X Ogpgr. There, state s is of the form s = (I, ¢) with ¢ = {z; — t,z, — a}. State s

induces an abstraction of data values d: either d = a or d # a. Similarly, an abstraction of sets of

data values simply tracks whether or not the set contains a.

To gain adequate precision, we retain in every view the thread-local pointers of the thread ¢ that
violates the specification, t = ¢(z;). With respect to the HP implementation from Figure 2.8,
this keeps the thread-¢-local HPRec in every view. It makes the analysis recognize that ¢ has
indeed protected a. Moreover, we store in every view whether or not the last retire invocation
stems from the thread of that view. With this information, we avoid unnecessary matches during
interference of views v; and v,: if both threads t; of v; and t, of v, have performed the last retire
invocation, then t; and £, are the exact same thread. Hence, interference is not needed as threads
have unique identities. We found this extension necessary to gain the precision required to verify

our benchmarks.

Table 7.25 shows the experimental results for verifying the implementations of EBR from Fig-

ure 2.7 and HP with two hazard pointers per thread from Figure 2.8. Both SMR implementations

3 IMREXP is freely available at: & https://wolf£09.github.io/phd/

Section 7.5 Evaluation

81

https://wolff09.github.io/phd/

Table 7.25: Experimental results for verifying SMR implementations against their SMR
automaton specifications. The experiments were conducted on an Intel i5-8600K@3.6GHz
with 16GB of RAM using Ubuntu 16.04 and Clang 6.0.

SMR Implementation Specification States Verification
Hazard Pointers OBase X OQIP X Oll_lp 5437 1.5s v/
Hazard Pointers OBase X (921’;, 5304 1.5s v/
Epoch-Based Reclamation OBgase X Okpr 11528 11.2s

allow threads to dynamically join and part. We conducted the experiments in the same setup
as before. Our experiments reveal that the verification of SMR implementations is simpler and
more efficient than verifying non-blocking data structures using SMR. This is unsurprising since,
as discussed in Section 2.3, SMR implementations do not reclaim the memory they use internally

for bookkeeping.

82 Chapter 7 Pointer Races

Strong Pointer Races

The reduction result from Chapter 7 has demonstrated that large parts of the state space can

be ignored during an analysis. Soundness of the result crucially relies on a pointer race check

and an ABA check. Upon a closer inspection, one may presume that the ABA check holds back

the reduction result. Indeed, one can establish pointer race freedom and verify the program

under scrutiny ignoring reallocations altogether, i.e., under (’)[[P]]gdr. The ABA check, however,
one

mandates an analysis of O P] 44 As we have seen, dealing with deletions and reallocations is

notoriously difficult and expensive—this was the very reason for our endeavor in Chapter 7.

In this chapter, we utilize the full potential of the reduction from Chapter 7. We show that
the actual verification can be conducted under the garbage collected semantics [[P]]g, using
off-the-shelf GC verifiers. To avoid an expensive state space exploration (a semantic analysis)
of a semantics larger than P15, we present a type system a successful type check of which
guarantees O P]%,, to be free from pointer races and harmful ABAs, as required by the reduction
result. We stress that the type check is syntax-centric—it need not explore the state space
of (9[[P]]§d,. To enable such a type check, we deem ABAs unsafe, whether harmless or not. This
limits applicability: allowing for harmless ABAs was motivated by real-world implementations.
To support these implementations nevertheless, we employ the theory of movers [Lipton 1975]

as an enabling technique.

The idea behind our type system is a memory life cycle common to non-blocking data structures
using SMR [Brown 2015]. The life cycle, depicted in Figure 8.1, has four stages: (i) local, (ii) active,
(iii) retired, and (iv) not allocated. Newly allocated objects are in the local stage. The object is
known only to the allocating thread; it has exclusive read/write access. The goal of the local stage
is to prepare objects for being published. When an object is published, it enters the active stage.

In this stage, accesses to the object are safe because it is guaranteed to be allocated. However, no

Figure 8.1: Memory life cycle of objects in non-blocking data structures using SMR.

RCE=D

83

84

thread has exclusive access and thus must fear interference by others. It is worth pointing out
that a publication is irreversible. Once an object becomes active it cannot become local again. A
thread, even if it removes the active object from the shared structures, must account for other
threads that have already acquired a pointer to that object. Removed objects are eventually
retired. Depending on the SMR algorithm, retired objects may still be safely accessible. Finally,
the SMR algorithm reclaims retired objects. Then, the memory can be reused and the life cycle

begins anew.

The main challenge our type system has to address wrt. the above memory life cycle is the
transition from the active to the retired stage. Due to the lack of synchronization, this can happen
without a thread noticing. Programmers are aware of the problem. They protect objects while
they are active such that the SMR guarantees safe access even after the object is retired. To
cope with this, our types integrate knowledge about the SMR algorithm. A core aspect of our
development is that the actual SMR algorithm is an input to our type system—it is not tailored

towards a specific SMR algorithm.

An additional challenge arises from the type system performing a thread-local analysis, it
considers the program code as if it was sequential. This means the type system is not aware of
the actual interference among threads, unlike state space explorations. To address this, we use

types that are stable under the actions of interfering threads [Owicki and Gries 1976].

In Chapter 2 we have already seen that detecting activeness of objects is non-trivial. Between
acquiring a pointer to the object and the protection, an interferer may retire the object and
thus void the protection. SMR algorithms usually offer no means to check whether or not a
protection was successful. Instead, programmers perform this check by exploiting intricate data
structure invariants, like all shared reachable objects are active. A type system, however, typically
cannot detect such data structure shape invariants. We turn this weakness into a strength. We
deliberately do not track shape invariants nor alias information. Instead, we use light-weight
annotations to mark pointers that point to active objects. To relieve the programmer from
arguing about their correctness, we automate the correctness check. Interestingly, this can be
done with off-the-shelf GC verifiers. It is worth pointing out that the ability to automatically
refute incorrect annotations allows for an automated guess-and-check approach for placing

invariant annotations [Flanagan and Leino 2001].

The remainder of this chapter is structured as follows: Section 8.1 introduces invariant an-
notations, Section 8.2 presents the generalized reduction result, Section 8.3 presents the type
system, Section 8.4 applies the type system to an example, Section 8.5 shows how to verify
annotations, Section 8.6 gives a type inference algorithm, Section 8.7 discusses movers, and

Section 8.8 evaluates the approach.

Chapter 8 Strong Pointer Races

8.1 Annotations

We introduce invariant annotations to guide the type check. An annotation construct that is
new to our model are angels, ghost (auxiliary) variables [Owicki and Gries 1976] with an angelic
semantics. Like for ghosts, their purpose is verification: angels store information about the
computation that can be used in invariants but that cannot be used to influence the control flow.
This information is a set of addresses, which means angels are second-order pointers. The set of
addresses is determined by an angelic choice, a non-deterministic assignment that is beneficial

for the future of the computation.

The idea behind angels is the following. Consider EBR’s leaveQ function. It guarantees that the
potentially infinitely many addresses accessible during a non-quiescent phase remain allocated,
i.e., will not be reclaimed even if they are retired. An angelic choice is convenient for selecting the
set. Subsequent dereferences can then use invariant annotations to ensure that the dereferenced
pointer holds an address in the set captured by the angel. With this, our type system is able to

detect that the access is safe.

To incorporate angels and invariant annotations into our programming model from Chapter 5,

we generalize the set of commands as follows
com = com | @invangelr | @invp =g | @invpinr
| @inv active(p) | @inv active(r).

Angels are local variables r from the set AVar. Invariant annotations include allocations of angels
via the keyword angel r. Intuitively, this maps the angel to a set of addresses. Conditionals
behave as expected. The membership assertion p in r checks that the address of p is included
in the set of addresses held by the angel r. The predicate active(p) expresses that the address
pointed to by p currently is neither freed nor retired, and similar for active(r). We use x to

uniformly refer to pointers p and angels r.
In the SMR semantics O[[P]]};, the new commands do not lead to memory updates:
(Invariant) If act = (¢, @inv o, @).

Invariant annotations behave like assertions, they do not influence the semantics but it has to
be verified that they hold for all computations. To make precise what it means for invariant
annotations to hold for a computation r, we construct a formula inv(7). The invariant annotations
are defined to hold for 7 iff inv(7) is valid. The construction of the formula is given in Figure 8.2.

There, active(o) is the set of addresses that are neither freed nor retired after computation o' We

" In Section 8.3 we will additionally require active addresses to be allocated, as suggested by Figure 8.1. The type
system will take care of the discrepancy and ensure that addresses are allocated whenever it relies on active(e)
annotations. The existence of a pointer to a non-freed address, for instance, guarantees that the address is
allocated (and not fresh). Skipping the allocation check in the encoding of invariants here makes the check
simpler and more widely applicable.

Section 8.1 Annotations

85

8.2

86

Figure 8.2: Formula encoding the correctness of invariant annotations in a computation 7.

inv(t) = inve(r)

invg(e) = true
invg(act.t) = Ar.invg q(1) if act = (t, @inv angel r, @)
invg(act.t) = my(p) = my(q) A invg o (1) if act = (t, @inv p = q, @)
invg(act.t) = mgs(p) €1 A invy 4(7) if act = (t, @inv p inr, @)
invg(act.t) = my(p) € active(c) A invy 4(r) if act = (¢, @inv active(p), @)
invg(act.t) = r C active(c) A invg q0(T) if act = (¢, @inv active(r), @)
invg(act.t) = invy g (1) otherwise.

only consider programs leading to closed formulas, meaning every angel is allocated (and hence
quantified) before it is used. The semantics of the formula is as expected: angels evaluate to sets
of addresses, equality of addresses is the identity, and membership is as usual for sets. With
this understanding, we let memories evaluate angels: m,(r) gives the largest set of addresses
that inv(r) allows for. It remains to verify annotations. Section 8.5 shows how to automatically

prove the correctness of invariant annotations for all computations.

Avoiding All Reallocations

Our goal is to strengthen the reduction from Chapter 7 such that verification of full (’)ﬂP]]f‘g;
becomes possible under [[P]]g. Recall that the soundness of the previous reduction crucially
relied on a semantics exploring reallocations (of a single address) in order to detect harmful
ABAs, i.e., assumptions involving invalid pointers. In order to avoid reallocations altogether, we
forbid ABA prone assumptions in addition to pointer race freedom. Section 8.7 will bridge the

gab to implementations that perform harmless ABAs, like the ones we have seen in Chapter 7.

In order to detect ABA prone assumptions in a computation 7, we need a lookahead of commands
that could be executed next, whether or not they are actually enabled. This contrasts our approach
from Chapter 7. There, we were guaranteed that every (first) ABA is enabled and thus executed
in a computation, provided we chose an appropriate address for reallocation. Now, without
reallocating any addresses, it is no longer guaranteed that the ABA is enabled and thus appears
in a computation from ﬂP]]g. Hence, we do not check the actually executed commands but
those that the control-flow could choose next. Formally, we say that a command com is control-

flow-enabled after 7, denoted by com € next-com(7), if there is pc € ctrl(r) with pc(t) £Z, o

Chapter 8 Strong Pointer Races

for some thread t. Then, 7 is prone to an unsafe assumption if an ABA prone assumption is

control-flow-enabled.

Definition 8.3 (Unsafe Assumption). A computation 7 is prone to an unsafe assumption

if there is assume p = q € next-com(z) with p ¢ valid, or q ¢ valid,.
Strong pointer races extend ordinary pointer races, Definition 7.13, with unsafe assumptions.

Definition 8.4 (Strong Pointer Race). A computation 7.act is a strong pointer race if act

performs (i) an ordinary pointer race, or (ii) an unsafe assumption.

Now, we strengthen the reduction result from Theorem 7.20. Relying on the absence of strong

pointer races, we do not need to deal with ABAs as they are deemed unsafe and ruled out thus.

Theorem 8.5. Let O support elision and let (’)[[P]]gdr be free from strong pointer races and
double retires. Then, for all 7 € O[P[4 there is some o € O[P]%,, such that r ~ o, T < 0,

and retired, C retired,.

Besides similarity and SMR behavior inclusion, the theorem yields retired, S retired,. We rely
on this inclusion to establish under GC that P does not perform double retires, as required for a
meaningful application of SMR automaton Op,g,. The proof of the theorem is analogous to the

one of Theorem 7.20.

The next step in our reduction is the removal of free commands. We simply strip them away
from the computations of O[P]%,. The result are GC computations from [P]5. Interestingly,
the resulting GC computation allows to draw conclusions about the annotations in the original

computation. We exploit this in Section 8.5 in order to discharge invariants under GC.

Theorem 8.6. If o € O[P]3,, is free from strong pointer races, then there is some y € [P]5

such that ctrl(o) = ctrl(y) and mg | yeiia, = my|vaiia, and inv(y) = inv(o).

Proof Sketch. To see the theorem, we proceed in two steps. First, we remove env commands
from o. Since their only effect on the computations is an update of selectors of invalid addresses,
strong pointer race freedom guarantees that no thread can observe the update: accessing the
invalid address requires an invalid pointer and thus raises a (strong) pointer race. We obtain an
intermediate ' that satisfies o ~ ¢ and inv(c) & inv(c'). Next, we remove free commands
from ¢ and arrive at Y. As no memory is reused in (’)[[P]]gd,, all allocations remain enabled.
The remaining commands ignore O, so they remain enabled as well. The only consequence of

the removal is that no expressions are invalidated and previously freed addresses remaining

Section 8.2 Avoiding All Reallocations

87

8.3

88

retired. The former means mg | yaiia, = m, | vatia, Where m, is restricted to the valid expressions

of o rather than y. The latter establishes that invariant violations in y carry over to o.]

Finally, we arrive at the overall reduction result which allows for verification under GC, the

simplest semantics a tool can assume.

Theorem 8.7 (Reduction 2). If O supports elision and O[[P]]f;dr is free from strong pointer
races and double retires, then good(O[P]]ﬁg:) > good([P]5) and O[[P]]ﬁg: is free from

double retires.

We turn towards checking O[P]3,, for strong pointer races and double retires.

A Type System to Prove Strong Pointer Race Freedom

We present a type system a successful type check of which entails strong pointer race freedom
as required by Theorem 8.7. The guiding idea of our types is to under-approximate the validity
of pointers. To achieve this, our types incorporate the SMR algorithm in use and the guarantees
it provides. It does so in a modular way: a parameter of the type system definition is an SMR

automaton specifying the SMR algorithm.

A key design decision of our type system is to track no information about the data structure
shape. Instead, we deduce runtime specific information from annotations that can be discharged
fully automatically. We still achieve the necessary precision because the same SMR algorithm
may be used with different data structures. Hence, shape information should not help tracking

its behavior.

Throughout the remainder of the section we fix an SMR automaton O relative to which we
describe the type system. We assume that O contains exactly two variables z; and z,. Intu-
itively, z; stores the thread for which O tracks the protection of the address stored in z,. All SMR
algorithms we are aware of can be specified with only two variables. A possible explanation is
that SMR algorithms do not seem to use helping [Herlihy and Shavit 2008, Section 6.4] to protect

pointers.

Assumption 8.8. SMR automata have two variables z, resp. z, tracking a thread resp. an

address.

We believe that the results presented hereafter can be generalized to SMR automata with more

variables and consider a closer investigation of the matter as future work.

Chapter 8 Strong Pointer Races

8.3.1 Guarantees

Towards a definition of our type system, recall the memory life cycle from Figure 8.1. The
transition from the active to the retired stage requires care. The type system has to detect that a
thread is guaranteed safe access to a retired node. This means finding out that an SMR protection
was successful. Additionally, types need to be stable under interference. Nodes can be retired
without a thread noticing. Hence, types need to ensure that the guarantees they provide cannot

be spoiled by actions of other threads.

To tackle those problems, we use intersection types capturing which access guarantees a thread
has for each pointer. We point out that this means we track information about nodes in memory

through pointers to them. We use the following guarantees.

L: Thread-local pointers referencing nodes in the local stage. The guarantee comes with two
more properties. There are no valid aliases of the pointer and the referenced node is not

retired. This gives the thread holding the pointer exclusive access.

A Pointers to nodes in the active stage. Active pointers are guaranteed to be valid, they can be

accessed safely.

S Pointers to nodes which are protected by the SMR algorithm from being reclaimed. Such

pointers can be accessed safely although the referenced node might be in the retired stage.

E; SMR-specific guarantee that depends on a set of locations in the given SMR automaton. The

idea is to track the history of SMR calls performed so far. This history is guaranteed to reach

a location in L. The information about L bridges the (SMR-specific) gap between A and S.

Accesses to the pointer are potentially unsafe.

The interplay among these guarantees tackles the aforementioned challenges as follows. Consider
a thread that just acquired a pointer p to a shared node. In the case of hazard pointers, this pointer
comes without access guarantees. Hence, the thread issues a protection of p. We denote this
with an SMR-specific type [E. For the protection to be successful, the programmer has to make
sure that p is active during the invocation. The type system detects this through an annotation
that adds guarantee A to p. We then deduce from the SMR automaton that p can be accessed

safely because the protection was successful. This adds guarantee S.

Section 8.3 A Type System to Prove Strong Pointer Race Freedom

89

8.3.2 Types

90

The input SMR automaton O induces a set of intersection types [Coppo and Dezani-Ciancaglini

1978; Pierce 2002, Section 15.7] defined by the following grammar:
T:=a|L|A|S|E |TAT.

The meaning of guarantees LL to E is as explained above. We also write a type T as the set of its
guarantees where convenient. We define the predicate isValid(T) to hold if Tn{S,L, A } + @.

The three guarantees serve as syntactic under-approximations of the semantic notion of validity.

There is a restriction on the sets of locations L for which we provide guarantees ;. To understand
it, note that our type system infers guarantees about the protection of pointers thread-locally
from the code, that is, as if the code was sequential. Soundness then shows that these guarantees
carry over to the computations of the overall program where threads interfere. To justify this
sequential to concurrent lifting, we rely on the concept of interference freedom due to Owicki
and Gries [1976]. A set of locations L in the SMR automaton O is closed under interference from
other threads, if no SMR command issued by a thread different from z, (the protections of which

FE2)9 150 O with] € L

we track) can leave the locations. Formally, for every transition [
and ' ¢ L, we require guard g to imply t' =z, We only introduce guarantees E; for sets of

locations L that are closed under interference.

Type environments I' are total functions that assign a type to every pointer and every angel in
the code being typed. To fix the notation, I'(x) = T or x : T € T means x is assigned T in T'. We
write T,x: T for T W { x : T }. If the type of x does not matter, we just write T, x. The initial type

environment I,;; assigns @ to every pointer and angel.

Our type system will be control-flow sensitive [Crary et al. 1999; Foster et al. 2002; Hunt and
Sands 2006], which means type judgments take the form:

{ rpre } stmt { I10ost } .

The thing to note is that the type assigned to a pointer/angel is not constant throughout the
program but depends on the commands that have been executed. Consequently, we may have

the type assignment x : T in T, but x : T' in the type environment [, with T # T

Control-flow sensitivity requires us to formulate how types change under the execution of
SMR commands. Towards a definition, we associate with every type a set of locations in the
used SMR automaton, O = Opye X Ogpr. Guarantee E; already comes with a set of locations.
Guarantee S grants safe access to the tracked address. In terms of locations, it should not be
possible to free the address stored in z,. We define SafeLoc(O) to be the largest set of locations

in O that is closed under interference from other threads and for which all transition [w !

Chapter 8 Strong Pointer Races

with | € SafeLoc(Q) and g A a = z, satisfiable lead to an accepting location I'. Guarantee A
is characterized by location L, in Opgg. Technically, location L, does not imply activeness of
address z,. It implies a strictly weaker property, namely that z, is not retired. Then, z, is active
only if it is allocated. However, SMR automata cannot detect whether or not z, is allocated at
the moment (there is no event for malloc). Hence, we separately ensure that z,, is allocated, and
thus active indeed, whenever A is assigned. Along the same lines, we also use location L, for L.

The discussion yields the following definition.

Definition 8.9 (Meaning of Types). The locations associated with types T, Loc(T), are:

Loc(@) = Loc(O) Loc(Ep) := L
Loc(A) = {L,} X Loc(Ogyr) Loc(S) := SafeLoc(O)
Loc(IL) = {L,} X Loc(Ospyr) Loc(Ty AT;) == Loc(Ty) N Loc(Ty) .

The set of locations associated with a type is defined to over-approximate the locations reachable
in the SMR automaton by the (history of the) current computation. With this understanding,
it should be possible for command com to transform x : T into x : T' if the locations associated
with T' over-approximate the post-image under x and com of the locations associated with T.
We capture those transformations with the type transformer relation T, x, com ~ T'. To make

it precise, we first define the post-image pos L) on the locations of the SMR automaton.

tp,com(
The post-image yields a set of locations L' reachable by taking a com-labeled transition from L.
The considered transition is restricted in two ways. First, its guard g must allow z, to track
thread ¢ executing com. Second, if p appears as a parameter in com, then guard g must allow z,
to track p. Formally, these requirements translate to the satisfiability of gA ¢t = z; and g A p = 2z,
respectively. The parameterization in p makes the post-image precise. To see this, consider Opgg,
and the command com = in:retire(p). We expect the post-image of L, wrt. com and p to
be post,, com(L2) = {Ls }. The address has definitely been retired. Without the parametrization

in p, we would get { Ly, L3 }. The transition could choose not to track p. Now, we are ready to

formalize the type transformer relation.

Definition 8.10 (Type Transformer). The type transformer relation T, x, com ~ T' is

defined by the following conditions:

post, .om(Loc(T)) <€ Loc(T")
and isValid(T') = isValid(T)
and {LA}nT < {LA}NT.

The over-approximation of the post-image is the first inclusion. The implication states that SMR
commands cannot validate pointers. We can, however, deduce from the fact that the address

has not been retired (A or L) and the SMR command has been executed, that it is safe to access

Section 8.3 A Type System to Prove Strong Pointer Race Freedom

91

8.3.3

92

the address (S). The last inclusion states that SMR commands cannot establish the guarantees IL
and A. It is worth pointing out that the relation T, x, com ~ T only depends on the SMR
automaton, up to a choice of variable names. This means we can tabulate it to guarantee quick
access when typing a program. We also write T, com ~ T' if we have I'(x), x, com ~ T'(x)
for all pointers/angels x. We write I' ~ I’ if we take the post-image to be the identity. For an

example, refer to Section 8.4.1.

Guarantees IL and A are special in that their sets of locations, Loc(IL) and Loc(A), are not closed
under interference. For L, the type rules ensure interference freedom. They do so by enforcing
that retire is not invoked with invalid pointers. Hence, the fact that L-pointers have no valid
aliases implies that other threads cannot retire them. So Op,, remains in L, no matter the
interference. For A, the type rules account for interference. We define an operation rm(T) that

takes an environment and removes all A guarantees for thread-local pointers and angels:
rm(T) == {x:T\{A}| x:TE€T Ax ¢ shared} U {x:@ | x € shared } .

The operation also has an effect on shared pointers and angels where it removes all guarantees.
The reasoning is as follows. Interference on a shared pointer or angel may change the address
being pointed to. Guarantees express properties about addresses, indirectly via their pointers.
As we do not have any information about the new address, the pointer/angel receives the empty

set of guarantees.

Type Rules

The type rules of our type system are given in Figures 8.12 and 8.13. We write = { T},;; } stmt {T'}
to indicate that { Tj,; } stmt {T } is derivable with the given rules. We write I stmt if there is a
type environment I so that = { T},;; } stmt {T }. A program P type checks if = P. Soundness will

show that a type check entails the absence of strong pointer races and double retires.

We distinguish between rules for statements and rules for primitive commands. We assume
that primitive commands com appear only inside atomic blocks, formalized below. With this
assumption, the rules for primitive commands need not handle the fact that guarantee A is not
closed under interference. Interference will be taken into account by the rules for statements.
The assumption of atomic blocks can be established by a simple preprocessing of the program.

We do not make it explicit but assume it has been applied.

Assumption 8.11. Programs adhere to the following restricted syntax:

stmt = stmt; stmt | stmt @ stmt | stmt" | beginAtomic; stmt; endAtomic

| beginAtomic; com; endAtomic .

Chapter 8 Strong Pointer Races

Figure 8.12: Type rules for primitive commands.

(skrp) (maLrOC) (AssiGN1)

p ¢ shared T ={L} T =T\{L}
{T} skip {T} {T,p}p:i=malloc {T,p:T} {I‘,p,q:T}p:=q{F,p:T',q:T'}

(ASSIGN?2) (AsSIGN3)
T(q)=T isValid(T) T(p)=T isValid(T) T =T \{L}
{Tplpi=gnext {T,p:2} {T,q:T'} pnext := g {T,q:T"}
(AssiGN4) (ASSIGN5) (ASSIGNG6)
I'(q)=T isValid(T) I(p)=T isValid(T)
{T}u:=op(u){T} {T}u:=gqdata {T} {T}pdata:=u{T}
(AssuME1) (ASSUME2)
isValid(T) isValid(T") T"=(TAT)\{L} cond#p=gq
{T,p:T,q:T }assumep=q{L,p:T" q:T" } {T'} assume cond {T'}
(EQUAL) (AcTIVE)
T'=TAT T'=TA{A}

{(T,p:T,q:T }einvp=q{T,p:T" q:T"} {T,x:T} @inv active(x) {T,x:T'}

(ANGEL) (MEMBER)
r & shared I'(r)=T T'=TAT

{T,r}einvangelr {T,r:@} {T,p:T}einvpinr {T,p:T" }

(ENTER)
SafeCall(T, func(r)) T, in:func(¥) ~ T (Ex1T)
func(r) = retire(p) = A €T (p) T, re:func ~ r

{T} in:func(F) {T'} {T} re:func {T'}

The rules for primitive commands, Figure 8.12, that are not related to SMR are straightforward.

Rule (sk1p) has no effect on the type environment. Allocations grant the target pointer the L
guarantee, Rule (MaLL0cC). Rule (Ass1GN1) copies the type of the right-hand side pointer to
the left-hand side pointer of the assignment. Additionally, both pointers lose their L. qualifier
since the command creates an alias. Rule (Ass1GN2) ensures that the dereferenced pointer is
valid and then sets the type of the assigned pointer to the empty type. The assigned pointer

does not receive any guarantees since we do not track guarantees for selectors. Rule (Ass1GN3)

checks the dereferenced pointer for validity and removes L from the pointer that is aliased.

Data assignments, Rules (Ass1GN4), (Ass1GN5), and (AsS1GN6), simply check dereferenced
pointers for validity. Assumptions of the form p = g check that both pointers are valid and join

the type information, Rule (AssuME1). Guarantee L is removed due to the alias. All other

Section 8.3 A Type System to Prove Strong Pointer Race Freedom

93

94

Figure 8.13: Type rules for statements.

(INFER) (BEGIN)
L ~» I {5} stmt {T3 } I~ I
{Ty} stmt {Ty} {T} beginAtomic {T'}
(END) (sEQ)
(T} stmt; {T'} {T'} stmt, {T"}
{T'} endAtomic { rm(T) } {T} stmty; stmt, {1"”}
(cHOICE) (Loor)
{T}stmt, {T'} {T} stmty {T"} {T} stmt {T}
{T} stmt, ® stmt, {T'} {T} stmt* {T'}

assumptions have no effect on the type environment, Rule (AssuME2). Similarly, Rule (EQuaAL)
joins type information in the case of assertions. However, no validity check is performed and L is
not removed. Rule (AcT1VE) adds the A guarantee. Note that x is a pointer or an angel. Angels
are always local variables. Their allocation does not justify any guarantees, in particular not L,
as they hold full sets of addresses, Rule (ANGEL). We can also assert membership of an address

held by a pointer in a set of addresses held by an angel, Rule (MEMBER).

SMR-related commands may change the entire type environment, rather than manipulating
only the pointers that occur syntactically in the command. This is because of pointer aliasing
on the one hand, and because of the SMR automaton on the other hand (for instance, enterQ
has an effect on all pointers). The post type environment of Rules (ENTER) and (EXIT) simply
infers guarantees wrt. the pre type environment and the emitted event. Note that this is
the only way to infer SMR-specific guarantees [E;, i.e., these guarantees solely depend on the
SMR commands. Moreover, Rule (ENTER) performs a strong pointer race check. We define
predicate SafeCall(T, func(r)) to hold iff the command in: func(7) is guaranteed not to be a
racy call given the types in I. The formalization coincides with the one of racy calls from
before, Definition 7.12, except that it replaces the actual validity valid, in a computation 7 by the
under-approximation isValid(e). A special case of Rule (ENTER) is the invocation of retire(p),

which requires the argument p to be active. This prevents both racy retires and double retires.

The rules for statements are given in Figure 8.13. Rule (1NFER) allows for type transformations
at any point, in particular, to establish the proper pre/post environments for Rules (CHOICE)
and (LoopP). Entering an atomic block, Rule (BEGIN), has no effect on the type environment.
Exiting an atomic block allows for interference. Hence, Rule (EXIT) removes any type infor-
mation from the type environment that can be tampered with by other threads. Sequences

of statements are straightforward, Rule (sEQ). Choices require a common pre and post type

Chapter 8 Strong Pointer Races

8.3.4

environment, Rule (cHOICE). Loops require a type environment that is stable under the loop

body, Rule (Loop).

Soundness

Our goal is to show that a successful type check = P implies strong pointer race freedom and
the absence of double retires, provided the invariant annotations hold. Both properties will be
consequences of a more general soundness result that makes explicit the information tracked by
our type system. We give some auxiliary definitions that ease the formulation. Let [;,;; be the
initial location in O. We write 7 F,, T if there is a location [€ Loc(T) associated with the type T
so that (L,) Hin), (I, ¢). The definition is parameterized in the valuation ¢ determining the
thread and the address to be tracked. We write 7, F x: T if for every address a € m,(x) we
have r k, T, with ¢ = {z, = t,z, = a}. The thread is given. The address is the one held
by the pointer or among the ones held by the angel, as determined by the computation. We

write 7,t F T if we have 7,t F x : T for all type assignments x: T € I

Soundness states that a type environment annotating a program point approximates the history
of every computation reaching this point. Moreover, isValid(®) approximates validity. To
make this precise, we define the straight-line version stmi(z, t) of program P induced by
and ¢t. It is obtained by projecting 7 to the commands of thread ¢. Furthermore, we define the
relation F { Tj,;; } stmt(z,t) {T }. It requires that (i) 7,t F T holds and (ii) for every p: T € T
with isValid(T) we have p € valid,. The soundness result now lifts the syntactic derivation

relation - to the semantic soundness relation E.

Theorem 8.14 (Soundness). For all threads ¢ and all 7 € O[P]%,, with inv(z) we have:

= {Tini } stmt(z,1) {T} = F{Tipy } stmi(z,1) {T}.

Proof Sketch. We proceed by induction on the length of 7 € O[P]%,,. Let ¢ be a thread with:
F{Tinit } stmt(z,t) {T} .

The induction hypothesis links the current type environment I' derived for the straight-line
program to the semantic information carried by the computation. The hypothesis strengthens
the requirements (i) and (ii) in the definition of soundness by the following two conditions, where

we assume I'(x) = T:

(iii) IfIL € T, then x is a pointer that does not have valid aliases. That is, m,(x) = m,(q) entails
that we have g ¢ valid,. Note that angels cannot obtain L according to the type rules.
(iv) If A € T, then thread ¢ is in an atomic block.

Section 8.3 A Type System to Prove Strong Pointer Race Freedom

95

96

The interesting argumentation in the induction step is in the case when another thread appends
an action, r.act. It can be summarized as follows. Property (i) continues to hold for r.act because
the type T of x is closed under interference; for L and A we argue separately in the following.
If L € T, then act cannot use a valid alias of x. In particular, it cannot retire x according to
the premise of Rule (ENTER). If A € T, then thread t is in an atomic block and there is no
chance to append action act of another thread. The case does not occur. Consider property (ii).
Assume isValid(T) holds. That is, T contains one of A,IL,S. IfIL € T or A € T, then the above
reasoning for (i) already implies (ii). Otherwise, we have S € T. It implies (ii) because S is closed
under interference. Property (iii) follows from the fact that act cannot contain, and thus cannot
create, a valid alias of x. Lastly, to conclude Property (iv), note that another thread cannot append

an action while ¢ is inside an atomic block. []

The first consequence of soundness is that a successful type check implies strong pointer race
freedom. Phrased differently, the rules from Figures 8.12 and 8.13 allow for a successful typing
only if there are no strong pointer races. That is, our type system performs a strong pointer race

freedom check indeed.
Theorem 8.15. If inv(O[P]5;,) and - P, then O[[P]3,, is free from strong pointer races.

The theorem gives an effective means of checking the premise of Theorem 8.7: discharge the
invariant annotations using an off-the-shelf verification tool (cf. Section 8.5) and determine a

typing using the proposed type system (cf. Section 8.6).

Proof Sketch. To see the theorem, consider r.act € O[[P]]f\jdr. We focus on the case where the
last action is a dereference, say due to command com being p := g.next. The remaining cases in
the definition of strong pointer races are similar. We show that the dereference is safe, ¢ € valid,.
Let thread ¢ perform the dereference. Let stmt(zr.act, t) = stmt; com be the induced straight-line
program. One can show that if we can derive a typing for the program P, then we can derive

one for the induced straight-line program as well:
=P implies ar. = {T; } stmt(r.act,t) {T}.

The implication should be intuitive. The typing of the overall program can be seen as
an intersection over the typings of the induced straight-line programs. Consider some I'
with {Tj,; } stmt; com {T }. The only way to type the sequential composition stmt; com is
Rule (sEQ). It requires a type environment I so that both { Ty, } stmt {T' } and {T'} com {T'}
are derivable. The only way to type p := g.next is Rule (Ass1GN2). By its premise, I'(q) = T
with isValid(T). Theorem 8.14 yields q € valid,. The dereference of q is safe.]

Chapter 8 Strong Pointer Races

8.4

The second consequence of soundness is that a successful type check means that the program
does not perform double retires. This is the precondition for a meaningful application of SMR

algorithms in general and SMR automaton Opg, in particular.

Theorem 8.16. If inv(O[P]3,,) and I P, then O[[P]]ﬁg: is free from double retires.

Proof Sketch. The argumentation is along the lines of Theorem 8.15. However, we have to deal
with computations from full (’)[[P]]gg:. To the contrary, assume there is 7.act € (’)[[P]]ﬁf,: which
performs a double retire on address a. That is, act executes command retire(p) with m,(p) = a
and a € retired,. By Theorem 8.15, there are no strong pointer races. Then, Theorem 8.5 yields
another computation o.act € O[[P]]fdr such that ¢ ~ o and retired, S retired,. In order to
retire p, Rule (ENTER) requires pointer p to hold guarantee A. This, in turn, means p is valid.
We have m,(p) = a. Furthermore, a € retired, implies a € retired, and thus we conclude

that Opg,, is in location L;. This, however, contradicts the activeness of p, which guarantees

that Opg,, is in location L. [

The next section gives an in-depth example on how to apply our type system. The two sec-
tions thereafter automate the checks in Theorem 8.14: we show how to discharge the invari-
ants inv(O[P]%,,) with the help of off-the-shelf verification tools for garbage collection and

give an efficient algorithm for type inference - P.

Example

We apply our type system to Michael&Scott’s queue with EBR (cf. Figure 2.13). Here, a single
custom guarantee E,, is sufficient. We define Loc(EE,.) to be those locations where thread z;
is guarantee to have returned from a call to leaveQ but has not yet invoked enterQ. That is,
guarantee E, . captures when z; is accessing the data structure. The sets of locations represented
by A, S, and E. can be read of the cross-product SMR automaton Op,g, X Ogpg in Figure 8.17. It
is worth pointing out that Loc(S) does not contain location (L,, Ly). For a set containing (L, Ly)
to be closed under interference we would need to have (Ls, L,) in that set. However, (L3, Ly)

allows for a free of z, and thus must not belong to Loc(S) by definition.

In the following, we illustrate the type transformer relation, the use of angels, the typing of

programs, and explain how to find suitable annotations for the type inference to go through.

Section 8.4 Example

97

8.4.1

98

Figure 8.17: Cross-product SMR automaton for Op,,, X Ogpg and EBR-specific types.

F := free(a), a =z, R := in:retire(t,a), a = z,

A Eace S

intenterQ(t), t = z,

re:leaveQ(t), t = z;

re:leaveQ(t),

intenterQ(t), t = z

Type Transformer Relation

We illustrate the computation of the type transformer relation for command re:leaveQ and the

inference of guarantee S.

First, we establish the type transformer relation @, x, re:leaveQ ~ E,.. This boils down to

checking the inclusion:

post Loc(@)) € Loc(Ege)

x,Ie:leaveQ(

because the remaining properties of the type transformer relation are trivially satisfied (we do not
add any of { A, IL, S }). The empty type corresponds to no knowledge about previously executed
SMR commands, which means Loc(@) = L with L the set of all locations of Og,,, X Ogpg from
Figure 8.17. We compute the post-image of L wrt. x and re:leaveQ in Opgys X Oggg. To this end,
we consider all transitions labeled with re:1leaveQ(t). The pointer or angel x does not play a

role. We derive the desired inclusion as follows:

pOStx',re:]_eaveQ(Loc(Q)) = pOStx,Ie:]_eaveQ(L) = L \ { (L23L4)! (L35 L4)} = LOC(]E(ZCC) .

Chapter 8 Strong Pointer Races

8.4.2

Figure 8.18: Excerpt of the dequeue method from Michael&Scott’s queue with EBR, Lines 326
to 337 from Figure 2.13. To guide the type check, we added annotations involving angel r.
The added lines are typeset in bold font.

764 @inv angel r; 769 Nodex head = Head; 774 @inv next in r;

765 in:leaveQ(); 770 Nodex tail = Tail; 775 int output = next->data;
766 re:leaveQ; 771 @inv head in r; 776 /] ...

767 @inv active(z); 772 Nodex next = head->next; 777 in:exitQ();

768 /] ... 773 /] ... 778 re:exitQ;

Second, we show how to infer S. From Figure 8.17 we know that E,. alone does not yield S
because of location (Ls, L5); we also need A. We establish E;.. AA ~ E . AAAS. Since E ., A A
is valid and we do not add L, the key task is to establish

Loc(Eye AA) € Loc(Egee ANAAS) .

Because Loc(Eq A A) S Loc(Ey A A) is trivially true, it remains to show that guarantee S

can be obtained indeed, i.e., Loc(E, A A) S Loc(S):

Loc(Egee A A) = Loc(Ege) N Loc(A) ={(Lz Ls), Lys }
€ {(LsLs), (L3, L), L13 } = Loc(S) .

Angels

To illustrate the use of angels, consider the excerpt of Michael&Scott’s dequeue method depicted
in Figure 8.18. For the sake of legibility, we omit the enclosing beginAtomic and endAtomic
for all commands. The call to leaveQ guarantees that no currently active address is reclaimed
until enterQ is called. It thus protects an unbounded number of addresses before a thread acquires
a pointer to them. Later, when a thread acquired a pointer to such an address in order to access
it, the address may no longer be active and thus the type system may not be able to infer S,
as seen in Section 8.4.1 above. To overcome this problem, we use an angel r. Given its angelic
semantics, r will capture all addresses that are protected by the leaveQ call, Lines 764 to 767.
Later, upon accessing/dereferencing a pointer p, we make sure that » captures the address pointed

to by p, Lines 771 and 774.

Note that, conceptually, we want to execute Lines 766 and 767 atomically so that angel r can
precisely capture the addresses active when leaveQ returns, Line 766. However, there is no need
to introduce this atomic block: the dequeue operation cannot acquire pointers to those addresses

that become inactive between Lines 766 and 767 and thus we need not capture them.

Section 8.4 Example

929

Figure 8.19: A typing for the excerpt of dequeue from Michael&Scott’s queue with EBR
introduced in Figure 8.18.

779 { Head,head,next,r:@ % 794 § Head,head,next:@; r:E, AS %
780 @inv angel r; 795 @inv head in r;

781 { Head,head,next,r:@ % 796 § Head,next:@; head,r:E ;. AS ?
782 in:leaveQ(); 797 Nodex next = head->next;

783 { Head,head,next,r:@ % 798 § Head,next:@; head,r:E ;. AS ?
784 re:leaveQ; 799 // ...

785 § Head,head,next:@; r:E, . ? 800 @inv next in r;

786 @inv active(r); 801 § Head:@; next,head,r:E,. AS 1t
787 { Head,head,next:@; r:E . AA % 802 int output = next->data;

788 { Head,head,next:@; r:E;,, AAAS ? 803 § Head:@; next,head,r:E ;. AS ¥
789 { Head,head,next:@; r:E ;. AS ? 804 /] ...

790 /] ... 805 in:exitQ();

791 Nodex head = Head; 806 { Head,head,next,r:@ %

792 { Head,head,next:@; r:E,, AS ? 807 re:exitQ;

793 /] ... 808 { Head,head,next,r:@ %

8.4.3 Typing

100

We give a typing for the code from Figure 8.18 in Figure 8.19. Again, we omit the enclos-
ing beginAtomic and endAtomic of commands for better legibility. We start in Line 779 with
type @ for all pointers and the angel r. The allocation of r in Line 780 has no effect on the
type assignment. Line 782 invokes leaveQ. Again, the types are not affected because the SMR
automaton has no transitions labeled with in:1leaveQ. Next, the invocation returns, Line 784.
Following the discussion from Section 8.4.1, we obtain E . for r, Line 785. It is worth pointing

out that r is treated like an ordinary pointer when it comes to the type transformer relation.

To capture in the type system the set of addresses that can be safely accessed in the subsequent
code, we want to lift E,.. of r to S. We annotate r to hold a set of active addresses, Line 786. This
yields type E .. A A for r, Line 787. As explained above, we can now lift this type to E,. AAAS,
Line 788. Recall that the allocation of r in Line 780 is angelic. So the addresses held by r will

indeed be chosen to be active. In Line 789, we loose A since we are not inside an atomic block.

In the subsequent code, we already added annotations (cf. Section 8.4.2) ensuring that derefer-
enced pointers are captured by the angel r. For instance, Line 795 requires the address of head to
be captured by r. That this is the case indeed is established when the annotations are discharged.
For the typing, we can copy E,.. A S from r over to head. As a consequence, the dereference
of head in Line 797 is safe. Similarly, we require next to be captured by r in Line 800 such that

the dereference in Line 802 is safe.

Chapter 8 Strong Pointer Races

8.4.4 Annotations

8.4.5

We explain our algorithm to automatically add to the program in Figure 2.13 the annotations
from Figure 8.18 in order to arrive at the typing in Figure 8.19. We focus on the dereference
of head in Line 772 (Line 330 in Figure 2.13). Without annotations, the type inference will fail
because it cannot conclude that head is guaranteed to be valid. To fix this, we implemented a
sequence of tactics that we invoke one after the other. If none of them fixes the issue, we give up

the type inference and report the failure to the user.

The first tactic simply adds an @inv active(head) annotation to Line 772. This makes head valid
and the type inference go through for Line 772. However, we should only add the annotation if it
actually holds. To check this, we employ the technique from Section 8.5. In this particular case,

we will find that the annotation does not hold; we try to fix the problem with another tactic.

The second tactic adds an angel r to the (syntactically) most recent leaveQ call. We use a template
to transform the sequence in:leaveQ(); re:leaveQ to the code from Lines 764 to 767.2 Then, we
fix Line 772 by prepending the annotation @inv head in r, as shown in Line 771. This makes head

valid. Whether or not the annotation holds is again checked with the technique

It is worth pointing out that the second tactic is EBR-specific. From our experience, every SMR
automaton comes with a small set of tactics that significantly help finding the right annotations—
EBR requires the above tactic and HP requires two specific tactics (see Section 8.4.5 below). We
do not believe that there is a silver bullet of tactics since SMR algorithms may vary greatly, as
seen in the cases of EBR and HP. Theoretically speaking, one could find the annotations by an

exhaustive search (finitely many angels will suffice), but this will not scale.

Hazard Pointers

Our approach applies to non-blocking data structures using HP just as well as in the case of EBR.
The main difference is that HP typically does not require angels because pointers are protected
after they are acquired. Figure 8.20 gives an example typing of Michael&Scott’s dequeue method.
There, we use Opge X OIOJP X O;Ip as specification; for the types obtained from Qg X (9%113
refer to Appendix A.2. As noted above, we use two HP-specific tactics to annotate programs.
The first tactic produces candidate locations for active annotations based on the control flow of
the program. The rational behind the tactic is that conditionals that do not restart an operation
oftentimes implement consistency checks that ensure activeness. The correctness of candidate
annotations is checked with the technique form Section 8.5. The second tactic introduces atomic

blocks to ease the type check and is discussed in detail in Section 8.7.

ZA subsequent use of this tactic will skip this step and reuse the existing angel.

Section 8.4 Example

101

Figure 8.20: An example of HP-specific types and an application to Micheal&Scott’s queue.

(a) Cross-product SMR automaton for Qg X (’)ﬁp. The given types are specific to the k-th HP.

Opase X (’)IIEIP F := free(a), a = z, R := in:retire(t,a), a = z,

A Eb o S
in:protectk(t,a), t=z; Na#+ z,
in:unpro‘tec‘tk(t), t=2z

ul in:protecty(t, a), re:protecty(t),
t=Zt/\a=Za t=zt
L3, Lg > L3, Lg > L3,

in:protecty(t, a), re:protecty(t),

t=2z; Na=z,
—)Lz,LB >

I :

LZ’ L9

in:protecty(t,a), t =z, Aa # z,
in:unprotec‘tk(t), =2z

(b) A typing for an excerpt of the dequeue function from Michael&Scott’s queue with HP, Lines 326
to 337 from Figure 2.13. To guide the type check, we added annotations. The added lines are typeset
in bold font. The atomic blocks, Lines 810 to 821 and Lines 832 to 840, can be obtained with the
technique from Section 8.7 plus an HP-specific tactic for inserting active annotations.

809 { Head,head,next:@ % 827 { Head,next:@; head:S %
810 beginAtomic; 828 in:protect; (next);
811 { Head, head,next:@ % 829 § Head:@; head:S; next:E}, 3
812 @inv active(Head) 830 re:protect; ();
813 { Head:A; head,next:@ ? 831 { Head:@; head:S; next:E},/\Ei ¥
814 Node*x head = Head; 832 beginAtomic;
Eils 1 Head,head:A; next:@ % 833 { Head:@; head:S; next:E) AE] }
816 in:protect((head); 834 @inv active(Head)
0
817 { Head:A; head:A AE); next:@ } 835 $ Head:A; head:S; next:Eé/\Hﬂ 1
818 re:protecty(); . . 836 assume (head == Head);
819 § Head:A; head:A AE, AE;; next:@ % 5 5 Head:A: head:S:; next:Eé/\Eﬁ ?
820 § Head:A; head:S; next:@ ? B @inv active(next)
Gl endAtomic; 839 { Head:A; head:S; next:S }
822 { Head,next:d; head:S % 840 endAtomic:
r
823 /... 841 { Head:@; head:S; next:S %
824 { Head,next:@; head:S ? D /.
825 Nodex next = head->next; 843 int output = next->data;

28 { Head,next:@; head:S } 844 $ Head:@; head:S; next:S @

102 Chapter 8 Strong Pointer Races

8.5 Invariant Checking

The type system from Section 8.3 relies on invariant annotations in the program under scrutiny
in order to incorporate runtime behavior that is typically not available to a type system. For
the soundness of our approach, we require those annotations to be correct. More precisely,
the premises of Theorems 8.15 and 8.16 require the annotations to be correct under (’)[[P]]id,.
Interestingly, we can use an off-the-shelf GC verifier to discharge the invariant annotations fully
automatically. The following theorem shows that checking invariants under GC, that is, in [[P]]g,
suffices indeed. Technically, we extend Theorem 8.15 because the reduction from Theorem 8.6

requires strong pointer race freedom.

Theorem 8.21. If inv([P]5) and - P, then inv(O[P]%,,) holds and O[P]%,, is free from

strong pointer races.

Proof Sketch. Towards a contradiction, assume that the claim does not hold. Then, there is a
shortest computation 7 € O[P]5;, such that 7 is a strong pointer race or —inv(z). With the
same reasoning as in the proof of Theorem 8.15, we conclude that 7 is free from strong pointer
races. Hence, Theorem 8.6 yields some ¢ € [P]3 with inv(c) = inv(z). We get —~inv(c), a

contradiction to the assumption. []

Now, we are ready to automatically discharge invariant annotations with the help of GC verifiers.
In our experiments, we rely on cAvE [Vafeiadis 2009, 2010a,b]. Making the link to tools, however,
is non-trivial. Our programs feature programming constructs that are typically not available in
off-the-shelf verifiers. We present a source-to-source translation that replaces those constructs
by standard ones. The constructs to be replaced are SMR commands, invariants guaranteeing
pointers to be active (not retired), and invariants centered around angels. For the translation, we
only rely on ordinary assertions assert cond and non-deterministic assignments havoc(p) to

pointers. Both are usually available in verification tools.

The correspondence between the original program P and its translation inst(P) is documented
in Theorem 8.22 and as required. Predicate safe(+) evaluates to true iff the assertions hold, i.e.,
verification is successful. Recall that [P] is the GC semantics where addresses are neither freed
nor reclaimed. Note that this semantics is the simplest a tool can assume. Our instrumentation

also works if the GC tool collects and subsequently reuses garbage addresses.

Theorem 8.22 (Soundness and Completeness). We have inv([P]3) iff safe([inst(P)]2).

The source-to-source translation is linear in size.

The source-to-source translation is defined in Figure 8.23. It preserves the structure of the

program and does not modify ordinary commands. SMR function invocations and responses

Section 8.5 Invariant Checking 103

104

Figure 8.23: Source-to-source translation replacing SMR commands and annotations.

inst(stmt”™) = inst(stmt)* inst(in: func(r)) = skip
inst(stmt, ® stmt,) = inst(stmt;) @ inst(stmty) inst(re:func) = skip
inst(stmty; stmty) = inst(stmty); inst(stmt;) inst(com) = com
inst(@inv p = q) = assertp =gq
inst(in:retire(q)) = skip @ (retire_ptr := g; retire_flag := true)
inst(@inv active(p)) := assert !retire flag V retire ptr # p
inst(@inv angel r) := havoc(r); included_r := false; failed_r := false
inst(@inv q in r) = skip @ (assume q = r; assert !failed_r; included_r := true)
inst(@inv active(r)) = skip @ (assume retire flag A retire ptr =r;

assert lincluded_r; failed r := true)

will be taken care of by the type system; they are ignored, except for invocations of retire.

Invariants guaranteeing pointer equality yield assertions.

The purpose of invariants @inv active(p) is to guarantee that the address held by the pointer
has not been retired since its last allocation. The idea of our translation is to guess the moment
of failure, the retire call after which such an invariant will be checked. We instrument the
program by an additional pointer retire_ptr and a Boolean variable retire_flag. Both are
shared. An invocation of retire then translates into a non-deterministic choice between skip-
ping the command or being the call after which an invariant will fail. In the latter case, the
address is stored in retire ptr and retire flag is raised. Note that the instrumentation is
tailored towards garbage collection. As long as retire_ptr points to the address, it will not
be reallocated. Therefore, we do not run the risk of the address becoming active ever again.
The invariant @inv active(p) now translates into an assertion that checks the address of p for
being the retired one and the flag for being raised. A thing to note is that the instrumentation of
retire invocations is not atomic. Hence, there may be an interleaving where a pointer has been
stored in retire_ptr but the flag has not yet been raised. The assertion would consider this
interleaving safe. However, if there is such an interleaving, there is also one where the assertion

fails. Hence, atomicity is not needed.

For invariants involving angels, the idea of the instrumentation is the same as for pointers,
guessing the moment of failure. What makes the task more difficult is the angelic semantics.

We cannot just guess a value for the angel and show that it makes an invariant fail. Instead, we

Chapter 8 Strong Pointer Races

8.6

have to show that, no matter how the value is chosen, it inevitably leads to an invariant failure.
This resembles the idea of having a strategy to win against an opponent in a turn-based game,
a common phenomenon when quantifier alternation is involved [Gréadel et al. 2002]. Another
source of difficulty is the fact that angels are second-order variables storing sets. We tackle the

problem by guessing an element in the set for which verification fails.

The instrumentation proceeds as follows. We consider angels r to be ordinary pointers. For each
angel, we add two Boolean variables included_r and failed_r that are local to the thread. When
we allocate an angel using @inv angel r, we guess the address that (i) will inevitably belong t