
Verifying Non-blocking Data
Structures with Manual
Memory Management

Von der

Carl-Friedrich-Gauß-Fakultät

der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines

Doktors der Naturwissenschaen (Dr. rer. nat.)

genehmigte Dissertation

von

Sebastian Wol

geboren am 22.03.1990

in Torgau

Eingereicht am: 03. März 2021

Disputation am: 25. Juni 2021

1. Referent: Prof. Roland Meyer

2. Referent: Prof. Rupak Majumdar

3. Referent: Prof. Constantin Enea

2021

ii

“ In practice, who is going to make the one thing that
does everything when you can make a hundred things that
do each thing perfectly.” — Neil deGrasse Tyson [2018]

iii

iv

Abstract

Verication of concurrent data structures is one of the most challenging tasks in software

verication. The topic has received considerable attention over the course of the last decade.

Nevertheless, human-driven techniques remain cumbersome and notoriously dicult while

automated approaches suer from limited applicability. This is particularly true in the absence

of garbage collection. The intricacy of non-blocking manual memory management (manual

memory reclamation) paired with the complexity of concurrent data structures has so far made

automated verication prohibitive.

We tackle the challenge of automated verication of non-blocking data structures which manually

manage their memory. To that end, we contribute several insights that greatly simplify the

verication task. The guiding theme of those simplications are semantic reductions. We show

that the verication of a data structure’s complicated target semantics can be conducted in a

simpler and smaller semantics which is more amenable to automatic techniques. Some of our

reductions rely on good conduct properties of the data structure. The properties we use are

derived from practice, for instance, by exploiting common programming patterns. Furthermore,

we also show how to automatically check for those properties under the smaller semantics.

The main contributions are: (i) A compositional verication approach that veries the mem-

ory management and the data structure separately. The approach crucially relies on a novel

specication formalism for memory management implementations that over-approximates the

reclamation behavior. (ii) A notion of weak ownership that applies when memory is reclaimed

and reused. Weak ownership bridges the gab between techniques for garbage collection, which

can assume exclusive access to owned memory, and manual memory management, where dan-

gling pointers break such exclusivity guarantees. (iii) A notion of pointer races and harmful ABAs

the absence of which ensures that the memory management does not inuence the operations of

the data structure, i.e., it behaves as if executed under garbage collection. Notably, we show that

a check for pointer races and harmful ABAs only needs to consider executions where at most a

single address is reused. (iv) A notion of strong pointer races the absence of which entails the

absence of ordinary pointer races and harmful ABAs. We devise a highly-ecient type check for

strong pointer races. This results in a light-weight analysis that rst type checks a data structure

and then performs the actual verication under garbage collection using an o-the-shelf verier.

(v) Experimental evaluations that substantiate the usefulness of the aforementioned contributions.

To the best of our knowledge, we are the rst to fully automatically verify practical non-blocking

data structures with manual memory management.

v

vi

Zusammenfassung

Verikation nebenläuger Datenstrukturen ist eine der herausforderndsten Aufgaben der Pro-

grammverikation. Im Laufe des letzten Jahrzehnts wurde eine beachtliche Menge an Beiträgen

zu diesem Thema publiziert. Dennoch bleiben die zur Verfügung stehenden manuellen Techniken

weiterhin mühsam und kompliziert in der Anwendung. Auch automatisierte Verikationsver-

fahren sind weiterhin nur eingeschränkt anwendbar. Diese Schwächen sind besonders stark

ausgeprägt, wenn sich Programme nicht auf einen Garbage-Collector verlassen. Die Komplexität

manueller Speicherverwaltung gepaart mit komplexen nicht-blockierenden Datenstrukturen

macht die automatisierte Programmverikation derzeit unmöglich.

Diese Arbeit betrachtet die automatisierte Verikation nicht-blockierender Datenstrukturen,

welche nicht auf einen Garbage-Collector zurückgreifen, sondern ihren Speicher manuell verwal-

ten. Dazu werden verschiedene Konzepte vorgestellt, die die Verikation stark vereinfachen. Das

Leitmotiv dieser Vereinfachungen ist dabei die semantische Reduktion, welche die Verikation

in einer leichteren Semantik erlaubt, ohne die eigentliche und zumeist wesentlich komplexe-

re Semantik zu betrachten. Einige dieser Reduktion beruhen auf einem Wohlverhalten des zu

verizierenden Programms. Dabei wird das Wohlverhalten mit Bezug auf praxisnahe Eigen-

schaften deniert, wie sie z.B. von gängigen Programmiermustern vorgegeben werden. Ferner

wird gezeigt, dass die Wohlverhaltenseigenschaften ebenfalls unter der einfacheren Semantik

nachgewiesen werden können.

Die Hauptresultate der vorliegenden Arbeit sind die Folgenden: (i) Ein kompositioneller Veri-

kationsansatz, welcher Speicherverwaltung und Datenstruktur getrennt veriziert. Der Ansatz

beruht auf einem neuartigen Spezikationsformalismus, der das Speicherbereinigungsverhal-

ten der Speicherverwaltung überapproximiert. (ii) Ein Begri des Weak-Ownership, welcher

selbst dann Anwendung ndet, wenn Speicher wiederverwendet wird. Weak-Ownership schließt

die konzeptionelle Lücke zwischen Verikationstechniken für Garbage-Collection, bei denen

Ownership eines Speicherbereichs den alleinigen Zugri des Ownership-haltenden Threads

garantiert, und manueller Speicherverwaltung, bei der hängende Zeiger diese Exklusivität des

Zugries verletzen können. (iii) Ein Begri des Pointer-Race und des Harmful-ABA, deren Ab-

wesenheit garantiert, dass die Speicherverwaltung keinen Einuss auf die Datenstruktur ausübt

und somit die Datenstruktur unter der Annahme von Garbage-Collection veriziert werden

kann. Bemerkenswerterweise genügt es diese Abwesenheit in einer Semantik zu prüfen, die

höchstens eine xe Speicherzelle realloziert. (iv) Ein Begri des Strong-Pointer-Race, dessen

vii

Abwesenheit garantiert, dass weder ein Pointer-Race noch ein Harmful-ABA vorhanden sind. Um

zu prüfen, ob ein Programm Strong-Pointer-Races enthält, präsentieren wir ein hochezientes

Typsystem. Somit erhalten wir eine leichtgewichtige Analyse, welche als erstes einen Typcheck

durchführt und dann die tatsächlich zu überprüfende Eigenschaft unter der Annahme eines

Garbage-Collectors und mit Hilfe existierender Tools nachweist. (v) Experimentelle Evaluationen

der genannten Techniken, um deren Nutzen für die Verikation nachzuweisen. Die vorgestellten

Techniken sind, nach bestem Wissen, die Ersten, die nicht-blockierende Datenstrukturen mit in

der Praxis gängigen Speicherverwaltungen vollständig automatisch verizieren können.

viii

Acknowledgements

First and foremost, I would like to thank my supervisor Roland Meyer for accepting me as his

PhD student and guiding me through the sometimes rough and bewildering waters that are

research. I am grateful for his interest in the topic, his support of my research, and his constant

indomitable will to push our results beyond practicability to theoretic elegance and simplicity.

I sincerely thank Rupak Majumdar and Constantin Enea for accepting to review this thesis.

I am deeply indebted to my parents, Evelin and Martin, for their constant support. Without them,

I would have had none of the opportunities that lead to this work.

Last but not least, I thank all my partners in crime when it came to extracurricular activities, in

order of appearance: Thomas Lottermann, Manuel Dossinger, Sebastian Henningsen, Frederik

Walk, Simon Birnbach, Jana Lampe, Adrian Leva, Sarah Dossinger, Michael Hohenstein, Marvin

Huber, Sebastian Schumb, Stefan Templin, Phillip Schon, Sven Kautz, Peter Chini, Sebastian

Muskalla, Florian Furbach, Emanuele D’Osualdo, Prakash Saivasan, Elisabeth Neumann, Sören

van der Wall, Mike Becker, Thomas Haas, Elaine Anklam, and Johannes Mohr.

ix

x

Preface

Parts of this thesis have already appeared in one of the following peer-reviewed publications:

[1] Frédéric Haziza, Lukás Holík, Roland Meyer, and Sebastian Wol. 2016. Pointer Race

Freedom. In: VMCAI, LNCS vol. 9583. Springer. DOI:10.1007/978-3-662-49122-5_19

Relevant for: Chapter 6.

[2] Roland Meyer and Sebastian Wol. 2019. Decoupling lock-free data structures from memory

reclamation for static analysis. In: PACMPL 3 (POPL). DOI:10.1145/3290371

Relevant for: Chapters 1 to 5 and 7.

[3] Roland Meyer and Sebastian Wol. 2020. Pointer life cycle types for lock-free data structures

with memory reclamation. In: PACMPL 4 (POPL). DOI:10.1145/3371136

Relevant for: Chapters 1, 3, 8 and 9.

Further publications related to this thesis:

[4] Lukás Holík, Roland Meyer, and Tomás Vojnar, and SebastianWol. 2017. Eect Summaries

for Thread-Modular Analysis - Sound Analysis Despite an Unsound Heuristic. In: SAS, LNCS

vol. 10422. Springer. DOI:10.1007/978-3-319-66706-5_9

[5] RolandMeyer and SebastianWol. 2018. Reasoning AboutWeak Semantics via Strong Seman-

tics. In: Principled Software Development, Springer. DOI:10.1007/978-3-319-98047-8_18

Technical reports of [1-4] are available as:

[6] Frédéric Haziza, Lukás Holík, Roland Meyer, and Sebastian Wol. 2015. Pointer Race

Freedom. In: CoRR abs/1511.00184. arxiv.org/abs/1511.00184

[7] Lukás Holík, Roland Meyer, and Tomás Vojnar, and SebastianWol. 2017. Eect Summaries

for Thread-Modular Analysis. In: CoRR abs/1705.03701. arxiv.org/abs/1705.03701

[8] Roland Meyer and Sebastian Wol. 2018. Decoupling lock-free data structures from memory

reclamation for static analysis. In: CoRR abs/1810.10807. arxiv.org/abs/1810.10807

Relevant for: Appendices B and C.

[9] Roland Meyer and Sebastian Wol. 2019. Pointer life cycle types for lock-free data structures

with memory reclamation. In: CoRR abs/1910.11714. arxiv.org/abs/1910.11714

Relevant for: Appendices A to C.

A web page accompanying this thesis is available at: https://wolff09.github.io/phd/

xi

https://doi.org/10.1007/978-3-662-49122-5_19
https://doi.org/10.1145/3290371
https://doi.org/10.1145/3371136
https://doi.org/10.1007/978-3-319-66706-5_9
https://doi.org/10.1007/978-3-319-98047-8_18
https://arxiv.org/abs/1511.00184
https://arxiv.org/abs/1705.03701
https://arxiv.org/abs/1810.10807
https://arxiv.org/abs/1910.11714
https://wolff09.github.io/phd/

xii

Contents

1 Introduction 1

Contribution 1: SMR Specications and Compositional Verication 3

Contribution 2: Ownership for Manual Memory Reclamation 4

Contribution 3: Avoiding Reallocations . 5

Contribution 4: Verication under Garbage Collection 6

Outlook . 7

I Preliminaries 9

2 Non-blocking Data Structures 11

2.1 Linearizability . 11

2.2 Fine-grained Synchronization . 13

2.3 Manual Memory Reclamation . 14

2.3.1 Free Lists . 16

2.3.2 Epoch-Based Reclamation . 18

2.3.3 Hazard Pointers . 20

2.4 Data Structure Implementations . 23

2.4.1 Stacks . 24

2.4.2 Queues . 26

2.4.3 Sets . 28

3 Model of Computation 37

3.1 Memory, or Heaps and Stacks . 37

3.2 Syntax of Programs . 38

3.3 Semantics of Commands . 38

3.4 Semantics of Programs . 39

4 Thread-Modular Analysis 43

II Contributions 45

5 Compositional Verification 47

5.1 SMR Automata . 48

xiii

5.2 SMR Specications . 49

5.3 Verication Relative to SMR Automata . 52

6 Ownership and Reclamation 55

6.1 Reclamation breaks Ownership . 55

6.2 Regaining Ownership . 60

6.3 Evaluation . 61

6.3.1 Integrating Safe Memory Reclamation 62

6.3.2 Linearizability Experiments . 62

7 Pointer Races 65

7.1 Similarity of Computations . 65

7.2 Preserving Similarity . 69

7.3 Detecting ABAs . 73

7.4 Reduction Result . 76

7.5 Evaluation . 78

7.5.1 Soundness checks . 78

7.5.2 Linearizability Experiments . 79

7.5.3 Verifying SMR Implementations . 81

8 Strong Pointer Races 83

8.1 Annotations . 85

8.2 Avoiding All Reallocations . 86

8.3 A Type System to Prove Strong Pointer Race Freedom 88

8.3.1 Guarantees . 89

8.3.2 Types . 90

8.3.3 Type Rules . 92

8.3.4 Soundness . 95

8.4 Example . 97

8.4.1 Type Transformer Relation . 98

8.4.2 Angels . 99

8.4.3 Typing . 100

8.4.4 Annotations . 101

8.4.5 Hazard Pointers . 101

8.5 Invariant Checking . 103

8.6 Type Inference . 105

8.7 Avoiding Strong Pointer Races . 108

8.8 Evaluation . 111

xiv

III Discussion 113

9 Related Work 115

9.1 Data Structures . 115

9.2 Memory Reclamation . 116

9.3 Reasoning and Verication . 116

9.3.1 Memory Safety . 117

9.3.2 Typestate . 118

9.3.3 Program Logics . 118

9.3.4 Linearizability . 119

9.3.5 Moverness . 120

10 Future Work 121

11 Conclusion 125

Bibliography 127

Appendices 147

A Additional Material 149

A.1 Compositionality . 149

A.2 Hazard Pointer Specication . 151

A.3 Relaxation of Strong Pointer Races . 152

B Meta Theory 155

B.1 Formal Denitions . 155

B.2 Compositionality . 162

B.3 Ownership . 163

B.4 Reductions . 163

B.5 Type System . 167

C Proof of Meta Theory 171

C.1 Compositionality . 171

C.2 Ownership . 181

C.3 Reductions . 182

C.4 Type System . 237

xv

xvi

List of Figures and Tables

2.2 Pseudo implementations for compare-and-swap. 13

2.3 A simple counter . 15

2.4 Implementation of free lists (FL) . 16

2.5 A simple counter with FL . 17

2.6 A simple counter with EBR . 18

2.7 Implementation of epoch-based reclamation (EBR) 19

2.8 Implementation of hazard pointers (HP) . 21

2.9 A simple counter with HP . 22

2.10 Node type for singly-linked data structures . 23

2.11 Treiber’s stack . 25

2.12 Optimized version of Treiber’s stack . 25

2.13 Michael&Scott’s queue . 26

2.14 DGLM queue . 27

2.15 Singly-linked set insertion . 28

2.16 Vechev&Yahav’s 2CAS set . 30

2.17 ORVYY set . 31

2.18 Vechev&Yahav’s CAS set . 33

2.19 Michael’s set . 34

2.20 Harris’ set . 35

3.1 Semantics of commands . 39

3.2 SOS rules for the standard semantics . 40

5.1 Typical system design and the interaction among components 47

5.4 SMR automata OBase, OEBR, and O𝑘
HP . 50

5.9 SMR semantics . 53

6.2 Spurious views encountered during thread-modular interference 57

6.4 Unsound ownership reasoning due to reallocations 59

6.8 Experiments for verifying data structures using FL (state space exploration) . . 63

7.24 Experiments for verifying data structures using SMR (state space exploration) . 80

7.25 Experiments for verifying SMR implementations (state space exploration) 82

xvii

8.1 Memory life cycle . 83

8.2 Encoding of correctness of annotations . 86

8.12 Type rules for primitive commands . 93

8.13 Type rules for statements . 94

8.17 EBR-specic types . 98

8.18 Angel annotations in Michael&Scott’s queue with EBR 99

8.19 A typing of Michael&Scott’s queue with EBR . 100

8.20 A typing of Michael&Scott’s queue with HP . 102

8.23 Source-to-source translation of annotations . 104

8.25 Constraint system Φ(𝑋, P, 𝑌) for type inference 106

8.27 Making a program more atomic to avoid strong pointer races 108

8.29 Experiments for verifying data structures using SMR (type systems approach) . 112

A.5 SMR automaton O0,1
HP . 153

xviii

Introduction 1
Software is ubiquitous. Today, it is the driving force behind controlling and managing all sorts

of systems ranging from microwave ovens to critical infrastructure. While one may survive

unscathed a cold meal as the result of defective oven software, quite the opposite is true for

defects in medical equipment and transportation. Famously, and even more so tragically, a

computer-aided radiation therapy device from the early 1980s, the Therac-25, suered from

a software defect [Leveson and Turner 1993]. The result: massive radiation overdoses which

resulted in at least six patients dying. Fast forward several decades and software is much more

widely spread in safety-critical systems. Yet, defects still endanger and claim the lives of people.

In the 2000s, Toyota replaced with software the physical connection between the acceleration

pedal and engine in some of their cars. The software malfunctioned [Barr 2013; CBS News 2010;

Yoshida 2013a,b]. The result: around ninety passengers were killed in car accidents as the car

would accelerate uncontrollably. In 2019, a software defect in e-scooters was reported, locking

the wheels at potentially high velocities [Carson 2019]. The result: several injured riders. The

list of software defects causing economic loss and human damage goes on [Charette 2005].

The above brief history of software defects calls for thorough software verication. It needs

to be checked that software is correct, that is, behaves as intended. A basic building block of

software are data structures. They are the backbone of virtually all programs across all areas

of application [Mehta and Sahni 2004]. Their importance in programming is best summarized

by Wirth [1978]:

“Algorithms + Data Structures = Programs.”

The question of how to store and access data is fundamentally mission-critical, so ecient

and correct data structure implementations are imperative. In times of highly concurrent

computing being available even on commodity hardware, concurrent implementations are

needed. In practice, the class of non-blocking data structures has been shown to be particularly

ecient [Harris 2001; Henzinger et al. 2013a; Ladan-Mozes and Shavit 2004; Michael 2002a; Wu

et al. 2016]. Using ne-grained synchronization and avoiding such synchronization whenever

possible results in unrivaled performance and scalability. Unfortunately, this use of ne-grained

synchronization is what makes non-blocking data structures also unrivaled in terms of complexity.

Indeed, bugs have been discovered in published non-blocking data structures [Doherty et al.

2004a; Michael and Scott 1995]. This conrms the need for verication. More specically, this

1

conrms the need for formal proofs of correctness: the inherent non-determinism of concurrency

renders testing techniques unable to make defects acceptably improbable [Clarke 2008].

Data structure verication has received considerable attention over the past decade (Chapter 9

gives a detailed overview). Doherty et al. [2004b], for example, give a manual (mechanized) proof

of a non-blocking queue. Such proofs require a tremendous eort and a deep understanding of

the data structure and the verication technique. Or, as Clarke and Emerson [1981] put it:

“The task of [manual] proof construction can be quite tedious,

and a good deal of ingenuity may be required.”

Automated approaches remove this burden. Vafeiadis [2010a,b], for instance, veries singly-

linked data structures fully automatically.

Surprisingly, many proofs presented in the literature, whether manual or automatic, are unt

for practice. The reason for this is that most techniques are restricted to implementations that

rely on a garbage collector (GC) [Abdulla et al. 2016; Cao et al. 2017; Krebbers et al. 2018]. This

assumption, however, does not apply to all programming languages. Take C/C++ as an example.

It does not provide an automatic garbage collector that is running in the background. Instead,

it requires manual memory management (MM). That is, it is the programmer’s obligation to

avoid memory leaks by reclaiming memory that is no longer in use (using free or delete).

Hence, manual memory management is also referred to as manual memory reclamation. In

non-blocking data structures, this task is much harder than it may seem at rst glance. The root

of the problem is that threads typically traverse the data structure without synchronization. This

leads to threads holding pointers to objects that have already been removed from the structure.

If objects are reclaimed immediately after the removal, those threads are in danger of accessing

deleted memory. Such accesses are considered unsafe (undened behavior in C/C++ [ISO 2011])

and are a common cause for system crashes due to a segfault. The solution to this problem are

so-called safe memory reclamation (SMR) algorithms [Michael 2002b]. Their task is to provide

non-blocking means for deferring the reclamation/deletion until all unsynchronized threads have

nished their accesses. This is done by replacing explicit deletions with calls to a function retire

provided by the SMR algorithm which defers the deletion. To defer the deletion suciently

long, the SMR algorithm relies on feedback from the data structure. To that end, threads issue

protections of the memory that they are going to access. A protection requests the SMR algorithm

to defer the deletion of the protected memory until the protection is revoked. The exact form

of protections depends on the SMR algorithm. Coming up with ecient and practical SMR

implementations is dicult [Brown 2015; Cohen 2018; Nikolaev and Ravindran 2020] and an

active eld of research (cf. Chapter 9).

The use of SMR algorithms to manage manually the memory of non-blocking data structures

hinders verication, both manual and automated. This is due to the high complexity of such

2 Chapter 1 Introduction

algorithms. As hinted before, an SMR implementation needs to be non-blocking in order not

to spoil the non-blocking guarantee of the data structure using it. In fact, SMR algorithms are

quite similar to non-blocking data structures implementation-wise. So far, this added complexity

could not be tamed in a principled way by automatic veriers.

The present thesis tackles the challenge of automatically verifying non-blocking data structures

which use SMR. To make the verication tractable, we contribute several insights that greatly

simplify the verication task. The guiding theme of those simplications are semantic reductions.

We show that the verication of a program’s complicated target semantics can be done in a

simpler and smaller semantics which is more amenable to automatic techniques. For instance, we

show that veriers can ignore manual memory manual altogether and instead assume a garbage

collector (cf. Contribution 4 below). Our reductions typically rely on good conduct properties

of the program. The properties we rely on are derived from practice and exploit common

programming patterns, like avoiding dereferences of dangling pointers. Besides practically

motivated properties, we also show how to automatically check for those properties under the

smaller semantics. We summarize our contributions.

Contribution 1: SMR Specifications and Compositional Verification

We propose a compositional verication technique [de Roever et al. 2001]. We split up the single,

monolithic task of verifying a non-blocking data structure together with its SMR implementation

into two separate tasks: verifying the SMR implementation and verifying the data structure

implementation without the SMR implementation. At the heart of our approach is a specication

of the SMR behavior. Crucially, this specication has to capture the inuence of the SMR

implementation on the data structure. Our main observation is that there is no inuence. More

precisely, there is no direct inuence. The SMR algorithm inuences the data structure only

indirectly: the data structure retires to-be-reclaimed memory, the SMR algorithm eventually

reclaims the memory, and then the data structure can reuse the reclaimed memory.

In order to come up with an SMR specication, we exploit the above observation as follows.

We let the specication dene when reclaiming retired memory is allowed. Then, the SMR

implementation is correct if the reclamations it performs are a subset of the reclamations allowed

by the specication. For verifying the data structure, we use the SMR specication to over-

approximate the reclamations of the SMR implementation. This way we over-approximate the

inuence the SMR implementation has on the data structure, provided the SMR implementation

is correct. Hence, our approach is sound for solving the original verication task.

Towards lightweight SMR specications, we rely on the insight that SMR implementations,

despite their complexity, implement rather simple temporal properties [Gotsman et al. 2013].

These temporal properties are incognizant of the actual SMR implementation. Instead, they

3

reason about those points in time when a call of an SMR API function is invoked or returns.

We exploit this by having SMR specications judge when reclamation is allowed based on the

history of SMR function invocations and returns. Technically, we introduce SMR automata to

specify SMR implementations. SMR automata are similar to ordinary nite-state automata plus

more powerful acceptance criteria.

With SMR automata at hand, we are ready for compositional verication. Given an SMR au-

tomaton, we rst check that the SMR implementation is correct wrt. that automaton. Second,

we verify the data structure. To that end, we strip away the SMR implementation and let the

SMR automaton execute the reclamation. More precisely, we non-deterministically delete those

parts of the memory which are allowed to be reclaimed according to the SMR automaton. The

verication result is sound since the SMR automaton over-approximates the inuence the SMR

implementation can have on the data structure.

Contribution 2: Ownership for Manual Memory Reclamation

Data structures are typically implemented as part of concurrency libraries. Hence, we aim to

verify them for all possible future use cases. In particular, this means to verify them for an

arbitrary number of concurrent client threads, rather than a xed number of clients. To do

so, thread-modular reasoning is employed [Berdine et al. 2008; Flanagan and Qadeer 2003b;

Jones 1983; Owicki and Gries 1976]: threads are veried individually, abstracting away from the

relation between threads. Intuitively, the technique splits up system states into partial states that

reect a single thread’s perception of the overall state. To account for the interaction among

threads, the updates of each thread are recorded in a so-called interference set. Partial thread

states are then subject to spontaneous updates from that set. Applying an interference update,

however, suers from imprecision. For example, parts of a thread’s partial state may be modied

despite being inaccessible to other threads in the original system state. Such spurious updates

arise since the relation between threads got lost due to the abstraction. The imprecision leads to

false alarms in practice.

To rule out false alarms, spurious interference updates need to be identied and discarded.

Ownership reasoning is a well-known and widely applied technique for that purpose [Castegren

and Wrigstad 2017; Dietl and Müller 2013; Gotsman et al. 2007; O’Hearn 2004; Vafeiadis and

Parkinson 2007]. Under garbage collection, ownership refers to the fact that a thread has exclusive

access to parts of the memory. Here, exclusivity means that other threads can neither write

nor read the owned memory. Hence, ownership entails a strict separation of owned memory

when applying interference updates. The separation makes thread-modularity precise enough

for verication to be practical under GC.

4 Chapter 1 Introduction

When memory is managed manually, however, the strong exclusivity guarantees of the above

notion of ownership do not apply. The reason for this are dangling pointers. They can observe

another thread’s reallocation of previously reclaimed memory and subsequently access the

now owned memory. Altogether, this means that ownership reasoning as applied under GC is

unsound under MM. This inapplicability of well-performing GC techniques makes MM veriers

imprecise and scale poorly [Abdulla et al. 2013; Vafeiadis 2010a,b].

We overcome the issue of lacking ownership that makes automated techniques under MM

imprecise. We reintroduce ownership in a weakened form: ownership may be broken by dangling

pointers but retains the strong exclusivity guarantees for non-dangling pointers. We substantiate

the claims of improved precision with experimental evidence. Interestingly, our experiments

reveal that it is less relevant whether or not dangling pointers challenge the exclusivity, that

is, read or write owned memory. It is the exclusivity wrt. non-dangling pointers that improves

existing analyses, both in terms of precision and scalability.

Contribution 3: Avoiding Reallocations

Although our compositional approach localizes the verication eort, it leaves the verication

tool with a hard task: verifying shared-memory programs with memory reuse. Even with

ownership reasoning, the task remains too hard for automated verication to be practical for

complex data structures or complex SMR algorithms. To overcome this problem, we suggest

verication under a simpler semantics, a semantics that tames the complexity of reasoning about

memory reuse. More specically, we prove sound that it suces to consider reusing a single

memory location only. The rational behind this result is the following. From the literature we

know that avoiding memory reuse altogether is not sound for verication [Michael and Scott

1996]. Put dierently, correctness under garbage collection does not imply correctness under

manual memory management via SMR. The discrepancy becomes evident in the ABA problem.

An ABA is a scenario where a pointer to address 𝑎 is changed to point to address 𝑏 and back

to 𝑎 again. Under MM, a thread might erroneously conclude that the pointer has never changed

if the intermediate value was not seen due to a certain interleaving. Typically, the root of the

problem is that address 𝑎 is removed from the data structure, reclaimed, reallocated, and reenters

the data structure. Under GC, the exact same code does not suer from this problem. A pointer

to address 𝑎 prevents it from being reused.

FromABAswe learn that avoidingmemory reuse does not allow for a sound analysis. Surprisingly,

it turns out that any discrepancy between GC and MM manifests as an ABA. So our goal is to

check with little overhead to a GC analysis whether or not the program under scrutiny suers

from the ABA problem. If not, correctness under GC implies correctness under MM. Otherwise,

we reject the program and verication fails.

5

We propose a lightweight ABA check that requires reallocations of a single address only. Note

that a program is free from ABAs if it is free from rst ABAs. Fixing the problematic address 𝑎

of such a rst ABA allows us to avoid reuse of any address except 𝑎 while retaining the ability to

detect the ABA. Intuitively, this is the case because the rst ABA is the rst time the program

reacts dierently on a reused address than on a fresh address. Hence, replacing reallocations

with allocations of fresh addresses before the rst ABA retains the behavior of the program.

We implemented the ABA check and a GC analysis in a tool to verify data structures and SMR

implementations. Our experiments conrm the usefulness of the reduction. To the best of our

knowledge, our tool is the rst to automatically verify non-blocking data structures which use

intricate SMR algorithms.

Contribution 4: Verification under Garbage Collection

The above result comes with a promising generalization that we already hinted at: the actual

verication task can be conducted under garbage collection. This suggests the use o-the-shelf GC

veriers. Soundness, however, requires the program to be free from ABAs. To check this requires

us to inspect memory deletions and reallocations of at least a single address. Deletions and

reallocations, in turn, prohibit the use of GC veriers. Even worse: we need custom veriers with

techniques tailored towards manual memory management, techniques that are still inecient

and imprecise despite the eort that the research community puts forward [Abdulla et al. 2013;

Holík et al. 2017].

We seek to overcome the limited applicability of MM veriers and their customization in order to

establish ABA freedom. To that end, we present a type system a successful type check of which

guarantees the absence of ABAs. The key insight behind the type system is that in every ABA at

least one dangling pointer participates. Indeed, for a pointer to observe that an address is retired,

reclaimed, and reused, the pointer has to continuously reference that address—the pointer is

dangling. If a dangling pointer is used, we let the type check fail. As a result, a successful type

check entails ABA freedom. In fact, a successful type check also guarantees memory safety in

the sense that all dereferences are safe.

The main challenge for the type system is to syntactically detect the semantic property of

whether or not a pointer is dangling. Due to the lack of synchronization in non-blocking data

structures, a pointer may become dangling without a thread noticing. Programmers are aware

of the problem. They use the protection mechanism of the SMR algorithm in such a way that

the deletion of retired objects is guaranteed to be deferred, eectively preventing pointers from

becoming dangling. To cope with this, our types integrate knowledge about the SMR algorithm.

More specically, a pointer’s type at some program location over-approximates the reclamation

behavior of the SMR algorithm for the address held by the pointer, for all executions reaching the

6 Chapter 1 Introduction

program location. Consequently, types allow us to detect when a pointer may become dangling.

Technically, we assume we are given an SMR automaton specifying the SMR algorithm in use

and let types denote sets of states of the SMR automaton. A core aspect of our development

is that the actual SMR automaton is an input to our type system—it is not tailored towards a

specic SMR automaton.

In practice, a pure syntactic approach as the one described above lacks precision. To guide the

type check’s detection of dangling pointers, we exploit shape invariants [Jones and Muchnick

1979], i.e, invariants capturing the correlation of pointers and objects in memory at runtime. Type

systems, however, typically cannot detect such invariants. We embrace this weakness. A design

decision of our type system is that it does not track shape information nor alias information.

Instead, we rely on light-weight annotations to mark pointers referencing non-retired objects. To

relieve the programmer from arguing about annotations, we automatically prove their correctness

and place them in a guess-and-check manner [Flanagan and Leino 2001]. Surprisingly, we can

refute incorrect annotations under GC with o-the-shelf veriers.

We implemented a tool that performs a type check, checks annotations for correctness, and

invokes an existing GC verier for the actual analysis. Our experiments conrm that the type

check is highly ecient. Furthermore, we conrm the practicality of discharging annotations

with an o-the-shelf verier. To the best of our knowledge, our tool is the rst to automatically

verify non-blocking set data structures which use SMR algorithms.

Outlook

The remainder of the thesis is structured in three parts.

Preliminaries are discussed in Part I. Chapter 2 gives a primer on non-blocking data structures

and their memory management. Chapter 3 makes precise the programming model, i.e., the

syntax and semantics of programs. Chapter 4 reviews an existing analysis for non-blocking data

structures that we reuse and expand.

The contributions are presented in detail in Part II. Chapter 5 introduces SMR automata and

a compositional verication approach. Chapter 6 lifts ownership to apply to manual memory

management. Chapter 7 presents an analysis that need not explore all reallocations. Chapter 8

reduces the verication to a type check and verication under GC.

The thesis is concluded in Part III. Chapter 9 discusses related work. Chapter 10 oers directions

for future work. Chapter 11 summarizes the results.

7

8

Part I

Preliminaries

9

10

Non-blocking Data Structures 2
The present thesis is concerned with the verication of high-performance concurrent data

structures, more specically, with non-blocking implementations [Herlihy and Shavit 2008;

Michael and Scott 1996; Treiber 1986]. Non-blocking refers to the use of ne-grained, low-level

synchronization rather than traditional locking techniques. To avoid ambiguities, we clarify the

terminology. In the literature, there are three so-called progress guarantees [Herlihy and Shavit

2008, Section 3.7]: obstruction-freedom, lock-freedom, and wait-freedom. Obstruction-freedom is

the weakest guarantee and requires, intuitively, that at any given point any given thread canmake

progress if it is executed in isolation, i.e., without interference from other threads. Lock-freedom

requires obstruction freedom and that there always is a thread that can make progress even in

the presence of interference. Wait-freedom is the strongest guarantee. It requires that all threads

can make progress at any given point in time. Since we are concerned with verication, we need

not distinguish between these progress guarantees. We stick with non-blocking to uniformly

refer to any of the above progress guarantees. While we follow this convention hereafter, note

that some works use the terms lock-free and non-blocking interchangeably [Agesen et al. 2000;

Cohen and Petrank 2015a; Greenwald 1999] or use the term lock-free to refer to the absence of

locks/mutexes [Barnes 1993; Michael and Scott 1996].

The remainder of this chapter gives a primer on non-blocking data structures—it is not strictly

necessary for the understanding of the contributions presented in Chapters 5 to 8 but details

the practical concepts that shaped them. The structure is as follows. Section 2.1 introduces the

correctness criterion for concurrent data structures that we aim to verify. Section 2.2 examines

low-level synchronization. Section 2.3 discusses memory management, a critical aspect in non-

blocking data structures. Section 2.4 gives non-blocking data structure implementations from

the literature which we use as benchmarks throughout this thesis.

2.1 Linearizability

We introduce linearizability [Herlihy and Wing 1990], the de-facto standard correctness criterion

for concurrent data structures [Zhu et al. 2015]. Intuitively, linearizability asks for each method of

a data structure to take eect instantaneously at some point—the linearization point—between the

method’s invocation and response. This makes linearizability appealing from a user’s perspective.

Section 2.1 Linearizability 11

It provides the illusion of atomicity, allowing the user to rely on a much simpler sequential

specication of the data structure. Such sequential specications are called the abstract data

type (ADT) of the data structure. ADTs can be given as simple sequential programs or in more

general mathematical terms [Abdulla et al. 2013; Vafeiadis 2010b]. Our development does not

depend on the formalism used for describing ADTs. For verication, linearizability is appealing

as well. The composition of two linearizable components is linearizable again [Herlihy and

Shavit 2008, Section 3.5], allowing for the components to be veried individually.

For a formal denition of linearizability we need some denitions. An execution E is a sequence

of method invocation and response events evt. Invocations take the form evt = in∶meth(𝑡, 𝑣)
where meth is the invoked method, 𝑡 is the invoking thread, and 𝑣 are the actual parameters.

Responses take the form evt = re∶meth(𝑡, 𝑣) where meth is the returning method, 𝑡 is the

executing thread, and 𝑣 are the return values. An invocation and a response match if they refer to

the same method meth and are executed by the same thread 𝑡 . An execution is complete if every

invocation has a matching response. A complete execution is sequential if every invocation is

immediately followed by a matching response. Two executions E and E′ are equivalent if all

per-thread subsequences of E and E′ coincide. More precisely, E and E′ are equivalent if E∣𝑡 = E′∣𝑡
for all threads 𝑡 , where E∣𝑡 is the subsequence of all events of thread 𝑡 in E and similarly for E′.

To achieve linearizability, we require that every execution E can be mapped to an equivalent

sequential execution S such that the real-time behavior is preserved, that is, the order of non-

overlapping method calls in E is preserved in S. More formally, we say that S preserves the

real-time behavior of E, if for all response events evt1 that precede an invocation event evt2
in E, evt1 precedes evt2 in S. Additionally, we require that the sequential execution S is legal, i.e.,

contained in the set of executions produced by the ADT. For this exposition of linearizability, we

assume a procedure to check membership for that set.

Lastly, we need to take care of incomplete executions. As they might contain multiple invocations

with pending responses, they cannot be mapped to a sequential execution. A completion of E is a

complete execution E′ that coincides with E up to invocations without matching responses being

removed or receiving a matching response at the end of E′. The following denition summarizes

the discussion.

Denition 2.1 (Linearizability [Herlihy andWing 1990]). An execution E is linearizable

if there are executions E′ and S such that: (i) E′ is a completion of E, (ii) E′ is equivalent to S,

(iii) S is sequential, (iv) S is legal, and (v) S preserves the real-time behavior of E′.

12 Chapter 2 Non-blocking Data Structures

Figure 2.2: Standard, double-word, and two-word compare-and-swap (CAS) mock implemen-
tations for a placeholder type T. Modern processors implement CAS in hardware, like the
CMPXCHG instruction on x86 [Intel Corporation 2016].

1 bool CAS(T& dst, T cmp, T src) { // standard

2 atomic {

3 if (dst == cmp) { dst = src; return true; }

4 else { return false; }

5 } }

6 bool CAS(T& dst1, T cmp1, T src1, T& dst2, T cmp2, T src2) { // double-word / two-word

7 // double-word version assumes that ’dst1’ and ’dst2’ are subsequent words in memory

8 atomic {

9 if (dst1 == cmp1 && dst2 == cmp2) { dst1 = src1; dst2 = src2; return true; }

10 else { return false; }

11 } }

2.2 Fine-grained Synchronization

Non-blocking implementations avoid traditional locking techniques in favor of ne-grained,

low-level synchronization primitives. Those primitives are ne-grained in that they operate over

a single or a small, xed number of words,1 rather than critical sections of mutual exclusion

which may operate over unboundedly many such words. Low-level synchronization primitives

typically correspond to atomic read-modify-write operations, implemented directly in hardware.

As such, ne-grained synchronization promises better performance than locking.

Compare-and-swap (CAS) [IBM 1983] is the most common synchronization primitive in non-

blocking data structures. Pseudo code for a placeholder type T is given in Figure 2.2. A stan-

dard CAS takes three arguments: &dst, cmp, and src. The rst argument, &dst, is a reference to a

word in memory. The remaining arguments, cmp and src, are values. A CAS compares the word

referenced by &dst with cmp. If equal, the word referenced by &dst is replaced by src and true

is returned. Otherwise, no update is performed and false is returned. Double-word CAS is

a variant which operates over two words stored consecutively in memory instead of a single

word &dst. Another variant is two-word CAS. It is similar to double-word CAS, however, operates

over two arbitrary words. While the distinction between consecutive and arbitrary words may

seem unnecessarily cumbersome, it is important for data structure designers. Many modern

hardware architectures, like x86, support standard and double-word CAS, but do not implement

two-word CAS [Intel Corporation 2016, p. 3-181 .]. The more powerful two-word CAS and its

1 A memory word is loosely dened as a unit of the underlying hardware architecture which it can transfer in a
single step [Stallings 2013, p. 14]. Modern commodity hardware usually has a word size of 32 or 64 bits [Arm
Limited 2020; Intel Corporation 2016].

Section 2.2 Fine-grained Synchronization 13

generalization to 𝑘-word CAS require slower software solutions, like RDCSS [Harris et al. 2002].

Hence, data structure designers avoid them. We write 2CAS to point out two-word CAS usages.

It is worth pointing out that locks can be implemented using CAS [Herlihy and Shavit 2008, Sec-

tion 7.2]. As a result, avoiding locks in favor of CAS does not necessarily make an implementation

non-blocking.

Besides CAS, load-link/store-conditional (LL/SC) [Jensen et al. 1987] is another common synchro-

nization primitive. It is available, for instance, on ARM processors [Arm Limited 2020, p. B2-166].

Intuitively, a load-link and subsequent store-conditional to the same address behaves like an

ordinary load-store pair with the dierence that the store-conditional fails if the address has

been updated since the load-link was executed. Since LL/SC can be used to implement any of the

above CAS [Anderson and Moir 1995] and since it is less common in the data structure literature,

we restrict our presentation to CAS.

2.3 Manual Memory Reclamation

In the absence of a garbage collector, which runs in the background and automatically reclaims

unused memory, it is the programmer’s task to reclaim unused memory manually. In C/C++,

for instance, this is done using the primitives free or delete. While manual reclamation

tends to be rather simple when lock-based synchronization is used [Brown 2015; Nikolaev and

Ravindran 2020], it becomes substantially harder for ne-grained, non-blocking synchronization.

As discussed in Section 2.2, ne-grained synchronization relies on CAS and the like. This leads

to optimistic update patterns [Moir and Shavit 2004] where threads (i) create a local snapshot

of the current state of the data structure, (ii) compute an update based on the local snapshot,

and (iii) publish via CAS the update if the data structure has not changed since the snapshot

was taken or retry otherwise. Optimistic update patterns, in turn, lead to unsynchronized

readers. The mentioned local snapshot is typically created without regard for the updates of

other threads. For memory reclamation, this means that it is the reclaiming thread’s task to ensure

that deletions do not harm other threads. To that end, the reclaiming thread needs to ensure

that all unsynchronized readers of the to-be-deleted memory have nished their accesses. This,

however, requires an unexpectedly complicated machinery [Brown 2015; Cohen and Petrank

2015a; Fraser 2004; Michael 2002b].

We illustrate the problems with non-blocking manual memory reclamation on an example.

Therefore, consider the implementation of a simple counter from Figure 2.3. It consists of

a shared pointer variable Counter, Line 16, which points to an object storing a single int.

The Counter’s value is initialized to 0, Lines 19 and 20, by method init which we assume

is executed atomically once before the counter implementation is used. Method increment

14 Chapter 2 Non-blocking Data Structures

Figure 2.3: A simple counter with unsynchronized readers. The implementation is awed
in that it leaks memory. Naively deleting the leaked memory in Line 29, however, is unsafe.

12 struct Container {

13 int data;

14 }

15

16 shared Container* Counter;

17

18 atomic init() {

19 Counter = new Container();

20 Counter->data = 0;

21 }

22 int increment() {

23 Container* inc = new Container();

24 while (true) {

25 Container* curr = Counter;

26 int out = curr->data;

27 inc->data = out+1;

28 if (CAS(Counter, curr, inc)) {

29 // delete curr;

30 return out;

31 } } }

proceeds in the aforementioned optimistic manner. It reads out the current Counter into the local

pointer curr, Line 25. Next, it stores the incremented value of curr->data in a newly allocated

object inc, Line 27. Then, increment tries to install inc as the new Counter. This is done via

a CAS, Line 28, which ensures that Counter is still equal to curr. Observe that this CAS ensures

that inc indeed contains the incremented value of the current Counter. If the CAS succeeds,

the pre-increment value of the counter is returned, Line 30. Otherwise, increment restarts and

retries the procedure.

Despite its simplicity, the counter implementation is awed. It leaks memory. The object

referenced by curr is not reclaimed after a successful CAS. The naive x for this leak is to

uncomment the deletion from Line 29. This x, however, is unsafe. Other threads might access

the counter concurrently. Since they do so without (read) synchronization, they will access the

to-be-deleted object without any precautions. In C/C++, for example, such use-after-free accesses

have undened behavior and can result in a system crash due to a segfault [ISO 2011].

To avoid both memory leaks and unsafe operations, programmers employ so-called safe memory

reclamation (SMR). SMR algorithms provide means for deferring deletions until it is safe, that is,

until all concurrent readers have nished their accesses. To that end, SMR algorithms commonly

oer a function2 retire to request the deferred deletion of an object, replacing ordinary deletion

via delete. As is standard for delete, no object must be retired multiple times in order to

avoid malicious double frees—all SMR implementations we are aware of rely on this. The actual

deferring mechanism varies vastly among SMR algorithms. It relies on feedback from the data

structure the form of which also varies among SMR algorithms.

It is worth pointing out that deferred deletion is the only viable solution for data structures to be

non-blocking when manually managing their memory. The alternative would be to integrate

2 To avoid ambiguities, we refer to the operations oered by a data structure as methods and to the operations
oered by an SMR algorithm as functions.

Section 2.3 Manual Memory Reclamation 15

Figure 2.4: An implementation of free lists (FL) for a placeholder type T. Retired objects are
added to a (sequential) thread-local list. Objects from that list can be reused immediately.

32 threadlocal List<T*> freeList;

33

34 void retire(T* pointer) {

35 freeList.push(pointer);

36 }

37 T* reuse() {

38 if (freelist.empty()) return NULL;

39 T* result = freeList.pop();

40 return result;

41 }

into the dereference of a pointer a check for its integrity, i.e., a check if the referenced object

has not yet been deleted. Such a check, however, typically relies on reading out part of the data

structure (shared memory). Hence, it cannot be done atomically together with the dereference

when relying on ne-grained synchronization primitives.

In the remainder of this section we survey essential SMR algorithms that most other techniques

build upon or are derived from: free-lists (Section 2.3.1), epoch-based reclamation (Section 2.3.2),

and hazard pointers (Section 2.3.3). Traditional garbage collection is not among the techniques

as it is blocking [Cohen 2018]. See Chapter 9 for a broader overview of existing techniques.

2.3.1 Free Lists

The simplest approach to deferred deletion is indenite deferral, i.e., avoiding memory recla-

mation altogether. To avoid leaks, retired objects are stored in a thread-local free list (FL) [IBM

1983; Treiber 1986]. The objects from that list can be reused in favor of allocating new memory.

Figure 2.4 gives an example implementation. Notably, the implementation relies on an initially

empty list, Line 32, which may be sequential as it is accessed by a single thread only.

To use FL with the counter implementation from above, we have to retire unused objects and, if

possible, reuse retired objects instead of allocating new ones. Moreover, we have to carefully

revise the CAS installing the new counter value (cf. Line 28). The possibility for memory being

reused immediately after its retirement allows for the infamous ABA problem [Michael and

Scott 1996]. Generally speaking, an ABA is a scenario where a pointer referencing address 𝑎 is

changed to point to address 𝑏 and changed back to point to 𝑎 again. A thread might erroneously

conclude that the pointer has never changed if the intermediate value goes unnoticed due to

a certain interleaving. Typically, the root of the problem is that address 𝑎 is removed from the

data structure, reused, and reenters the data structure. More specically, an ABA may arise

in the counter implementation as follows. Let thread 𝑡 execute increment up to Line 28. That

is, 𝑡 has read out the current Counter, say at address 𝑎, has read out its value out, and is about

to install out+1 as the new value of the counter. Assume 𝑡 is interrupted by another thread 𝑡 ′.

16 Chapter 2 Non-blocking Data Structures

Figure 2.5: An adaption of the simple counter to reuse memory via FL. Tagged pointers are
used to avoid the ABA problem. Modications wrt. Figure 2.3 are marked in bold font.

42 struct Container {

43 int data;

44 }

45

46 shared int Tag;
47 shared Container* Counter;

48

49 atomic init() {

50 Tag = 0;
51 Counter = new Container();

52 Counter->data = 0;

53 }

54 int increment() {

55 Container* inc = reuse();
56 if (inc == NULL) inc = new Container();
57 while (true) {

58 int tag = Tag;
59 Container* curr = Counter;

60 int out = curr->data;

61 inc->data = out+1;

62 if (CAS(Tag, tag, tag+1,
63 Counter, curr, inc)) {

64 retire(curr);
65 return out;

66 } } }

Let thread 𝑡 ′ increment the counter, installing value out+1 and retiring address 𝑎. If 𝑡 ′ performs

another increment, it might reuse address 𝑎 to install out+2. Now, the CAS of 𝑡 succeeds although

the counter has been updated: 𝑡 erroneously decreases the counter’s value from out+2 to out+1

where an increase to out+3 was expected. It is readily checked that this violates linearizability.

Under garbage collection, the exact same code does not suer from ABAs: a pointer referencing

address 𝑎 would prevent it from being reused. To overcome the problem under manual memory

management, pointers are instrumented to carry an integer tag, or modication counter [IBM

1983; Michael and Scott 1996; Treiber 1986]. To avoid ABAs then, (i) updating a pointer also

increases the tag, and (ii) comparisons of pointers take their tags into account. The solution

is amenable for ne-grained synchronization: pointers and tags can be handled atomically

with double-word CAS [Michael 2002a] or by stealing unused bits of pointers to use as storage

for the tag [Herlihy and Shavit 2008, Section 9.8]. Consider Figure 2.5 for a modied counter

implementation using FL and tags.

A signicant drawback of FL is the fact it does not support arbitrary reuse [Michael 2002b]. Once

allocated, memory always remains allocated for the process. Even worse, the use of tagged

pointers mandates that the memory must not be used outside the data structure as otherwise

tags might get corrupted and ABAs resurface. This may make FL unfavorable in practice. The

SMR algorithms discussed next address this issue.

Section 2.3 Manual Memory Reclamation 17

Figure 2.6: An adaption of the simple counter to reuse memory via EBR. Modications wrt.
Figure 2.3 are marked in bold font.

67 struct Container {

68 int data;

69 }

70

71 shared Container* Counter;

72

73 atomic init() {

74 Counter = new Container();

75 Counter->data = 0;

76 }

77 int increment() {

78 leaveQ();
79 Container* inc = new Container();

80 while (true) {

81 Container* curr = Counter;

82 int out = curr->data;

83 inc->data = out+1;

84 if (CAS(Counter, curr, inc)) {

85 retire(curr);
86 enterQ();
87 return out;

88 } } }

2.3.2 Epoch-Based Reclamation

Epoch-based reclamation (EBR) [Fraser 2004; Harris 2001] implements a simple form of time-

stamping to identify when retired objects cannot be accessed anymore and their reclamation is

safe. To that end, EBR oers the two functions leaveQ and enterQ. Threads use the former to

announce that they are going to access the data structure and use the latter to announce that they

have nished the access. The function names, in particular the Q, refer to the fact that the threads

are quiescent [McKenney and Slingwine 1998] between enterQ and leaveQ, meaning they do

not modify the data structure. During the non-quiescent period, EBR guarantees that shared

reachable objects are not reclaimed, even if they are removed from the data structure and retired.

This makes EBR easy to apply, as illustrated by the counter implementation from Figure 2.6.

Technically, EBR relies on two assumptions to realize the aforementioned guarantee: (i) threads

do not have pointers to any object during their quiescent phase, and (ii) objects are retired only

after being removed from the data structure, i.e., after being made unreachable from the shared

variables. Those assumptions imply that no thread has or can acquire a pointer to a removed

object if every thread has been quiescent at some point since the removal. So it is safe to delete a

retired object if every thread has been quiescent at some point since the retire. To detect this,

EBR introduces epoch counters, a global one and one for each thread. Thread-local epochs are

single-writer multiple-reader counters. Whenever a thread invokes a method, it reads the global

epoch 𝑒 and announces this value by setting its thread epoch to 𝑒 . Then, it scans the epochs

announced by the other threads. If all agree on 𝑒 , the global epoch is advanced to 𝑒 + 1. The fact

that all threads must have announced the current epoch 𝑒 for it to be updated to 𝑒 + 1means that

all threads have invoked a method after the epoch was changed from 𝑒−1 to 𝑒 . That is, all threads

have been in-between calls. Thus, deleting objects retired in the global epoch 𝑒 − 1 becomes safe

18 Chapter 2 Non-blocking Data Structures

Figure 2.7: An implementation of epoch-based reclamation (EBR) for a placeholder type T.
The implementation supports dynamic thread joining and parting.

89 struct EbrRec {

90 EbrRec* next;

91 bool used;

92 int epoch;

93 List<T*> retired0, retired1, retired2;

94 }

95

96 shared int GEpoch;

97 shared EbrRec* LEpochs;

98 threadlocal EbrRec* myEpoch;

99

100 atomic init() {

101 Epochs = NULL;

102 GlobalEpoch = 0;

103 }

104

105 void join() {

106 myEpoch = new EbrRec();

107 myEpoch->used = true;

108 myEpoch->epoch = GEpoch;

109

110 while (true) {

111 EbrRec* recs = LEpochs;

112 myEpoch->next = recs;

113 if (CAS(LEpochs, recs, myEpoch)) {

114 break;

115 } } }

116

117 void part() {

118 myEpoch->used = false;

119 }

120 void retire(T* ptr) {

121 myEpoch->retired0.push(ptr);

122 }

123

124 void leaveQ() {

125 int epoch = GEpoch;

126 myEpoch->epoch = epoch;

127

128 EbrRec* tmp = LEpochs;

129 while (tmp != NULL) {

130 if (!tmp->used) continue;

131 if (epoch != tmp->epoch) return;

132 tmp = tmp->next;

133 }

134

135 int nextEpoch = (epoch + 1) % 3;

136 if (!CAS(GEpoch, epoch, nextEpoch)) {

137 return;

138 }

139

140 myEpoch->epoch = nextEpoch;

141 for (T* ptr : myEpoch->retired2) {

142 delete ptr;

143 }

144 retired2.clear();

145 retired2.swap(retired1);

146 retired1.swap(retired0);

147 }

148

149 void enterQ() {

150 }

from the moment when the global epoch is updated from 𝑒 to 𝑒 + 1. To perform those deletions,

every thread keeps a list of retired objects for every epoch and stores objects passed to retire in

the list for the current thread-local epoch. For the actual deletion it is important to note that the

thread-local epoch may lack behind the global epoch by up to 1. As a consequence, a thread may

put a object retired during the global epoch 𝑒 into its retired-list for epoch 𝑒 − 1. So for a thread

during its local epoch 𝑒 it is not safe to delete the objects in the retired-list for 𝑒 − 1 because they

may have been retired during the global epoch 𝑒 . It is only safe to delete the objects contained

in the retired-list for epochs 𝑒 − 2 and smaller. Hence, it suces to maintain three retired-lists.

Progressing to epoch 𝑒 + 1 allows for deleting the objects from the local epoch 𝑒 − 2 and to reuse

that retired-list for epoch 𝑒 + 1.

Section 2.3 Manual Memory Reclamation 19

An example EBR implementation is given in Figure 2.7. The thread-local epochs and retired-lists

are stored in a singly-linked list of EbrRec objects rooted in the shared pointer LEpochs, Line 97.

For a proper initialization, we assume that every thread invokes join as part of its construction

and part during its tear down. Function retire simply places the to-be-deleted object in the

thread-local retired-list retire0, Line 121. Function leaveQ implements the epoch progression,

Lines 128 to 138, and deferred deletion process, Lines 140 to 146, as described above. Besides the

core EBR functionality, the implementation supports dynamic thread joining and parting. That is,

new threads may be created and existing threads may be destroyed while the implementation is

in use—there is no need for dedicated start up and tear down phases where all threads are present

that ever wish to participate. Joining threads allocate and publish a new epoch entry, Lines 106

to 114. Parting threads mark their epoch entry as inactive via the used ag of EbrRec, Line 118.

Inactive entries are skipped by leaveQ when scanning the epoch entry list for consensus with

the global epoch. This is crucial as otherwise epoch entries of parted threads would prevent

the global epoch from being progressed, thus preventing reclamation. Notably, inactive entries

are never removed and reclaimed as this would require means of safe memory reclamation. We

leave it to the reader to improve the implementation so that it reuses marked entries for joining

threads.

EBR improves on FL from Section 2.3.1 in many aspects. First of all, it allows for arbitrary

reuse. Second, it is easier to use than FL as it usually prevents the ABA problem (given proper

usage). Lastly, quite ecient implementations exist in practice [Brown 2015; Hart et al. 2007].

On the downside, EBR does not support thread failures, or more generally threads that stop

executing leaveQwithout having called part. As noted above, this prevents reclamation3 because

the global epoch cannot be progressed anymore. Hazard pointers, which we discuss next, do not

suer from this problem.

2.3.3 Hazard Pointers

The hazard pointer (HP) [Michael 2002b] method provides a protection mechanism for individual

objects. Protections signal that an object is still in use and that its deletion should be deferred.

To be precise, HP guarantees that the deletion of an object is deferred if it has been continuously

protected since before it was retired [Gotsman et al. 2013]. Figure 2.8 gives a simplied version of

the HP implementation due to Michael [2004]. The implementation equips every thread with

a xed number of single-writer multiple-reader pointers, the eponymous hazard pointers. We

refer to the 𝑖-th hazard pointer of thread 𝑡 by hp𝑡[𝑖] and may drop the thread subscript if clear

3 The literaturemay deemmemory reclamation schemes blocking if they allow for an unbounded number of objects
awaiting reclamation [Balmau et al. 2016]. The reason for this is that an unbounded backlog of reclamation is
assumed to result in the system running out of memory, making subsequent allocations block/wait until memory
is reclaimed. The issue is irrelevant for the present thesis: we do not suggest how to construct non-blocking
data structures but verify the correctness of existing ones. EBR remains an essential technique as many SMR
algorithms are derived from it or are drop-in replacements for it (cf. Chapter 9).

20 Chapter 2 Non-blocking Data Structures

Figure 2.8:A simplied version of the hazard pointer (HP) implementation byMichael [2004]
for a placeholder type T and K hazard pointers per thread. The implementation supports
dynamic thread joining and parting.

151 struct HpRec {

152 HpRec* next;

153 Array<T*, K> hp; // 0-indexed

154 List<T*> retired;

155 }

156

157 shared HpRec* HPtrs;

158 threadlocal HpRec* myHP;

159

160 atomic init() {

161 HPtrs = NULL;

162 }

163

164 void join() {

165 myHP = new HpRec();

166 while (true) {

167 HpRec* recs = HPtrs;

168 myHP->next = recs;

169 if (CAS(HPtrs, recs, myHP)) {

170 break;

171 } } }

172

173 void part() {

174 for (int i = 0; i < K; ++i) {

175 hp[i] = NULL;

176 } }

177 void protect(T* ptr, int index) {

178 assert(0 <= index < K);

179 myHP->hp[index] = ptr;

180 }

181

182 void unprotect(int index) {

183 protect(NULL, index);

184 }

185

186 void retire(T* ptr, int index) {

187 myHP->retired.push(ptr);

188 if (*) reclaim();

189 }

190

191 void reclaim() {

192 List<T*> defer;

193 HpRec* tmp = HPtrs;

194 while (tmp != NULL) {

195 for (int i = 0; i < K; ++i) {

196 defer.push(tmp->hp[i]);

197 }

198 tmp = tmp->next;

199 }

200

201 for (T* ptr : myHP->retired) {

202 if (defer.contains(ptr)) continue;

203 myHP->retired.remove(ptr);

204 delete ptr;

205 } }

from the context. Protections are issued by a call to function protect. It takes as parameters an

object and a hazard pointer index, and simply writes the object to the hazard pointer with the

given index, Line 179. Protections can be revoked by unprotect which takes a hazard pointer

index and resets the corresponding hazard pointer by writing NULL to it, Line 183. Protections are

respected as follows. Function retire stores the passed object into a thread-local list of retired

objects, Line 187. Moreover, it periodically tries to reclaim the objects from that list, Line 188.

To do so, it scans the hazard pointers of all threads, collecting all the objects that are currently

protected, Lines 192 to 199. Then, a retired object is reclaimed if it is not in the list of protected

objects, Lines 201 to 205. Similar to the EBR implementation from Section 2.3.2, HP supports

dynamic thread joining and parting. Again, parting threads do not reclaim internal HpRec objects.

Unlike for EBR, thread failures do not stop reclamation; failures may only prevent reclamation

of objects protected by crashed thread.

Section 2.3 Manual Memory Reclamation 21

Figure 2.9: An adaption of the simple counter to reuse memory via HP. A single hazard
pointer per thread is required. Modications wrt. Figure 2.3 are marked in bold font.

206 struct Container {

207 int data;

208 }

209

210 shared Container* Counter;

211

212 atomic init() {

213 Counter = new Container();

214 Counter->data = 0;

215 }

216 int increment() {

217 Container* inc = new Container();

218 while (true) {

219 Container* curr = Counter;

220 protect(curr, 0);
221 if (curr != Counter) continue;
222 int out = curr->data;

223 inc->data = out+1;

224 if (CAS(Counter, curr, inc)) {

225 retire(curr);
226 unprotect(0);
227 return out;

228 } } }

Figure 2.9 presents a version of the simple counter from Figure 2.3 adapted to reclaim memory

using HP with a single hazard pointer per thread. While the HP method is conceptually simple,

it may be non-trivial to detect whether or not an object has been protected successfully, i.e., if

an object has been protected before it was retired. In the counter implementation, we need to

protect curr because it is subsequently accessed. To that end, a protection is issued using hazard

pointer hp[0]. At this point, we cannot guarantee that a dereference of curr is safe. Between
reading out curr in Line 219 and protecting it in Line 220, an interfering thread might have

updated the counter and retired the object referenced by curr. Because the protection was not

yet announced, currmight have already been reclaimed. Line 221 checks that this is not the case.

It does so by ensuring that curr coincides with the shared Counter. It is worth pointing out that

this check relies on the invariant that Counter is never retired. Only after both Lines 220 and 221

have been executed, curr can be accessed safely. As we will see in Section 2.4, this procedure

for successfully protecting pointers is common in non-blocking data structures. Unfortunately,

we will also see that there are data structures that are fundamentally incompatible with this

procedure and the HP method in general [Brown 2015; Michael 2002b].

The alert reader readily realizes that the counter implementation using HP, more precisely the

protection check from Line 221, is prone to the ABA problem. Indeed, as noted above the object

referenced by curr could have been reclaimed. Consequently, it could have been reused and

installed as the shared Counter again. Those scenarios are not problematic since we just ensure

that curr contains the current value of Counter and that is has been protected successfully. Put

dierently, Lines 219 to 221 appear as if they were executed atomically. Accesses to the content

of curr happen only later.

22 Chapter 2 Non-blocking Data Structures

Figure 2.10: Node type for singly-linked data structures. Member elds mark and next are
stored consecutively in memory, so both elds can be modied with a single double-word CAS.

229 struct Node {

230 int data;

231 bool mark;

232 Node* next;

233

234 Node(int value) { data = value; mark = false; next = NULL; } // constructor

235 }

Finally, we revisit the guarantee that the deletion of an object is deferred if it has been continuously

protected since before it was retired. It is imperative to make precise the notion of continuous

protections. A single hazard pointer’s protection is continuous. More involved data structures,

however, use multiple hazard pointers to protect a single object [Michael 2002a]. A common

pattern rst issues a protection per hp[𝑖] and later, in order to reuse hp[𝑖], issues a protection
per hp[𝑖 + 1] and resets hp[𝑖]. We say that the protection is transfered from hp[𝑖] to hp[𝑖 + 1].
The order is important [Michael 2002a]: a protection can be transferred from hp[𝑖] to hp[𝑗] only
if 𝑖 < 𝑗 . This is because of the scanning process from method reclaim, Lines 192 to 199 in Fig-

ure 2.8. It reads out hazard pointers in ascending order. Hence, protections can go unrecognized

when attempting to transfer from hp[𝑗] to hp[𝑖] with 𝑖 < 𝑗 . To see this, consider a thread 𝑡

protecting an object o with hp𝑡[1]. Assume that another thread 𝑡 ′ executes function reclaim up

to the point where it scans hp𝑡[0] but not hp𝑡[1]. Now, let 𝑡 protect o per hp𝑡[0] and reset hp𝑡[1].
Then, 𝑡 ′ misses the protection of o—it is not transferred from hp𝑡[1] to hp𝑡[0]. Altogether, this
means that a protection is continuous only if it is due to a single hazard pointer or due to transfers

among multiple hazard pointers.

2.4 Data Structure Implementations

We give an overview of the non-blocking data structures from the literature that are used as

benchmarks throughout this thesis. We focus on singly-linked stacks, queues, and sets with

manual memory management via the SMR algorithms discussed in Section 2.3. All implemen-

tations use objects of type Node from Figure 2.10 as internal representation. A Node contains a

single data value, eld data, a boolean ag for marking purposes, eld mark, and a pointer for

establishing the link structure, eld next. Some implementations do not use the mark eld; for

simplicity, we do not introduce another type without the mark eld.

Section 2.4 Data Structure Implementations 23

Regarding the presentation, we do not give individual implementations for each SMR technique.

Instead, we mark with bold font the lines of code that are needed for SMR usage and prex

them with F, E, or H if they are specic to FL, EBR, or HP, respectively. For FL, we simplify the

presentation further: we do not make explicit the use of tags and memory reuse. Instead, we

implicitly assume that all pointers are equipped with tags and that new tries to reuse memory

before allocating new one.

2.4.1 Stacks

Stack data structures are simple collections of data items with last-in-rst-out behavior. Elements

are added to and removed from the top of the stack.

Treiber’s Stack. The earliest documented non-blocking data structure implementation is

the stack due to Treiber [1986], given in Figure 2.11. The implementation maintains a NULL-

terminated singly-linked list of nodes rooted in the shared top-of-stack pointer ToS. If the stack

is empty, ToS points to NULL. New nodes are pushed to the stack by creating a local copy top

of ToS, Line 244, linking the new node as a predecessor of top, Line 247, and installing node as

the new ToS via a CAS, Line 248. The CAS checks that the stack has not changed since top was

read out. This ensures that node, which coincides with the new value of ToS after the update,

links to the old value of ToS. Existing values are popped as follows. First, a local copy top

of ToS is created, Line 257. If top equals NULL, then the implementation signals that the stack

is empty, Line 258. Otherwise, the implementation attempts to remove the top node. To that

end, a pointer next to the second node of the stack is read out, Line 261. Then, a CAS tries to

install next as the new value of ToS if the stack has not changed. In the case the CAS succeeds,

the value stored in the removed top node is returned. Otherwise, the implementation retries.

Treiber’s stack can be combined with SMR algorithms easily. Common to all SMR algorithms is

the need to retire popped elements, Line 264. The SMR specic modications follow. FL requires

explicit reuse of retired nodes and tags to avoid the ABA problem—as stated above, we do not

make this explicit in the code, it is analogous to what we have seen in Figure 2.5. For EBR,

we need to add leaveQ and enterQ calls to the methods. For HP, we have to protect the top

pointer. Similarly to the counter from Figure 2.9, we do so by issuing protect for hp[0] and
ensure that the protected top coincides to ToS, Lines 245 and 246 in push as well as Lines 259

and 260 in pop [Michael 2002b]. It is an invariant of Treiber’s stack (and all data structures that

follow) that the shared reachable nodes are never retired. Hence, the protection is guaranteed to

be successful: we can safely access the pointer and avoid the ABA problem.

24 Chapter 2 Non-blocking Data Structures

Figure 2.11: Treiber’s non-blocking stack [Treiber 1986] with SMR. The extension to HP is
due to Michael [2002b].

236 shared Node* ToS;

237

238 atomic init() { ToS = NULL; }

239

240 void push(int input) {

241 E leaveQ();
242 Node* node = new Node(input);

243 while (true) {

244 Node* top = ToS;

245 H protect(top, 0);
246 H if (top != ToS) continue;
247 node->next = top;

248 if (CAS(&ToS, top, node)) break;

249 }

250 H unprotect(0);
251 E enterQ();
252 }

253 int pop() {

254 E leaveQ();
255 int output = EMPTY;

256 while (true) {

257 Node* top = ToS;

258 if (top == NULL) break; // empty

259 H protect(top, 0);
260 H if (top != ToS) continue;
261 Node* next = top->next;

262 if (CAS(&ToS, top, next)) {

263 output = top->data;

264 F E H retire(top);
265 } }

266 H unprotect(0);
267 E enterQ();
268 return output;

269 }

Figure 2.12: Optimized version of Treiber’s non-blocking stack with HP [Michael 2002b].
Compared to the original version, Figure 2.11, the push operation does not take any precau-
tions wrt. memory reclamation and the ABA problem. Yet the implementation is correct.

270 shared Node* ToS;

271

272 atomic init() { ToS = NULL; }

273

274 void push(int input) {

275 // no SMR needed

276 Node* node = new Node(input);

277 while (true) {

278 Node* top = ToS;

279 node->next = top;

280 if (CAS(&ToS, top, node))

281 break

282 } }

283 int pop() {

284 int output = EMPTY;

285 while (true) {

286 Node* top = ToS;

287 if (top == NULL) break; // empty

288 H protect(top, 0);
289 H if (top != ToS) continue;
290 Node* next = top->next;

291 if (CAS(&ToS, top, next)) {

292 output = top->data;

293 H retire(top);
294 } }

295 H unprotect(0);
296 return output;

297 }

Optimized Treiber’s Stack. Michael [2002b] proposed an optimized version of Treiber’s

stack with HP, given in Figure 2.12. The implementation avoids protections in the push method

altogether. This results in an ABA: when installing node as the new value of ToS with the CAS

from Line 280 (Line 248 in the original version) the stack might have changed. More precisely,

interfering threads may have inserted or deleted elements. Interestingly, this does not void the

correctness of the implementation. It suces that the newly added node is linked to ToS.

Section 2.4 Data Structure Implementations 25

Figure 2.13: Michael&Scott’s non-blocking queue [Michael and Scott 1996] with SMR. The
extension to HP is due to Michael [2002b].

298 shared Node* Head, Tail;

299

300 atomic init() { Head = Tail = new Node(_); }

301

302 void enqueue(int input) {

303 E leaveQ();
304 Node* node = new Node(input);

305 while (true) {

306 Node* tail = Tail;

307 H protect(tail, 0);
308 H if (tail != Tail) continue;
309 Node* next = tail->next;

310 if (tail != Tail) continue;

311 if (next != NULL) {

312 CAS(&Tail, tail, next);

313 continue;

314 }

315 if (CAS(&tail->next, next, node)) {

316 CAS(&Tail, tail, node);

317 break;

318 } }

319 H unprotect(0);
320 E enterQ();
321 }

322 int dequeue() {

323 E leaveQ();
324 int output = EMPTY;

325 while (true) {

326 Node* head = Head;

327 H protect(head, 0);
328 H if (head != Head) continue;
329 Node* tail = Tail;

330 Node* next = head->next;

331 H protect(next, 1);
332 if (head != Head) continue;

333 if (next == NULL) break; // empty

334 if (head == tail) {

335 CAS(&Tail, tail, next); continue;

336 } else {

337 output = next->data;

338 if (CAS(&Head, head, next)) {

339 F E H retire(head);
340 break;

341 } } }

342 H unprotect(0); unprotect(1);
343 E enterQ();
344 return output;

345 }

2.4.2 Queues

Queue data structures are collections of data items with rst-in-rst-out behavior. New elements

are added to the end (tail) and existing elements are removed from the front (head) of a queue.

Michael&Scott’sQueue. Figure 2.13 gives thewell-known implementation due toMichael and

Scott [1996]. It is a practical example in that it is used for Java’s ConcurrentLinkedQueue [Oracle

2020] and C++ Boost’s lockfree::queue [Blechmann 2011], for instance. The queue is organized

as a NULL-terminated singly-linked list of nodes. The rst node in the list is a dummy node, its

content is not logically part of the queue. The enqueue method appends new nodes to the end of

the list. To do so, an enqueuer rst moves Tail to the last node as it may lack behind, Line 312.

Then, the new node is appended by pointing Tail->next to it, Line 315. Last, the enqueuer tries

to move Tail to the new node, Line 316. This can fail as another thread may have moved Tail

already to avoid waiting for the enqueuer. The dequeue method removes the rst node from

the list. Since the rst node is a dummy node, dequeue reads out the data value of the second

node in the list, Line 337, and then moves the Head to that node, Line 338. Additionally, dequeue

26 Chapter 2 Non-blocking Data Structures

Figure 2.14: The DGLM non-blocking queue [Doherty et al. 2004b] with SMR. It is similar
to Michael&Scott’s non-blocking queue but allows the Head to overtake the Tail.

346 shared Node* Head, Tail;

347

348 atomic init() { Head = Tail = new Node(_); }

349

350 void enqueue(int input) {

351 E leaveQ;
352 Node* node = new Node(input);

353 while (true) {

354 Node* tail = Tail;

355 H protect(tail, 0);
356 H if (tail != Tail) continue;
357 Node* next = tail->next;

358 if (tail != Tail) continue;

359 if (next != NULL) {

360 CAS(&Tail, tail, next);

361 continue;

362 }

363 if (CAS(&tail->next, next, node))

364 break

365 }

366 CAS(&Tail, tail,node);

367 H unprotect(0);
368 E enterQ;
369 }

370 int dequeue() {

371 E leaveQ;
372 int output = EMPTY;

373 while (true) {

374 Node* head = Head;

375 H protect(head, 0);
376 H if (head != Head) continue;
377 Node* next = head->next;

378 H protect(next, 1);
379 if (head != Head) continue;

380 if (next == NULL) break; // empty

381 output = next->data;

382 if (CAS(&Head, head, next)) {

383 Node* tail = Tail;

384 if (head == tail) {

385 CAS(Tail, tail, next);

386 }

387 F E H retire(head);
388 break;

389 } }

390 H unprotect(0); unprotect(1);
391 E enterQ;
392 return output;

393 }

maintains the property that Head does not overtake Tail by moving Tail towards the end of the

list if necessary, Line 335.

Memory management can be added to Michael&Scott’s queue as follows. Dequeued nodes are

retired after they have been made unreachable from Head, Line 339. The modications required

for FL and EBR are straight-forward, see Figure 2.13. Using HP requires more care [Michael 2002b,

2004]. We focus on the more involved dequeue method; the protections for enqueue are similar.

First, head is protected with hp[0], Line 327. As before, the success of the protection needs to

be ensured. This is done by checking that the shared Head still equals the local copy head. If so,

the subsequent dereference of head is safe, as required for acquiring pointer next to the rst

non-dummy node of the queue, Line 330. Otherwise, the operation is restarted. Second, next

is protected with hp[1], Line 331. If head and Head coincide, Line 332, then the queue has not

changed and next is reachable from the shared pointer Head. This guarantees that next has not

been retired. That is, the protection of next is successful. It is worth pointing out that ensuring

the equality of next and head->next does not suce: the fact that next is still linked to the

successfully protected head does not prevent updates to the queue, removing head and next, and

thus allows for next being retired.

Section 2.4 Data Structure Implementations 27

Figure 2.15: Example memory layout of a singly-linked set. A removal of node b must
ensure that the successor of b has not changed. Otherwise, an interfering insertion of node d
after b (dashed line) could be lost. A simple CAS(a->next, b, c) is prone to this problem.

a⋯ b d c ⋯

Observe that dequeue reads out the to-be-returned data value next->value, Line 337, before the

actual dequeuing, Line 338. This is done because of FL. There, it is possible that immediately

after the CAS from Line 338 the node referenced by next is dequeued, retired, and reused. The

reuse leads to next->value being overwritten by an interferer before the dequeuing thread can

access the value that is supposed to be returned. Under garbage collection, EBR, and HP, the

implementation can be optimized: moving the data read after the CAS is correct because the reuse

of next is prevented.

DGLMQueue. Doherty et al. [2004b] proposed a variation of Michael&Scott’s implementation,

see Figure 2.14. Their dequeue method avoids congestion on the Tail pointer. It does so by

ignoring the Tail until an element has been dequeue. (Michael&Scott’s queue reads out Tail in

every iteration, no matter if an element is successfully dequeued or if the operation is restarted.)

As a consequence, Head may overtake Tail. If so, dequeue moves Tail forward.

2.4.3 Sets

Set data structures provide collections of unique data items with insertion, removal, and lookup

functionality. Singly-linked implementations typically maintain a sorted list. Sortedness poses a

major challenge: unlike in stacks and queues, insertions and removals may happen anywhere in

the list. To see why this is challenging, consider the list from Figure 2.15 containing subsequent

nodes a, b, and c. The removal of node b requires to update the next eld of node a from b to c.

However, a simple CAS(a->next, b, c) is insucient. Interfering threads might tamper with

the link between nodes b and c. An insertion, for instance, might add a new node d after b by

updating b->next to d (dashed line in Figure 2.15). Then, the above CAS would remove b but

would also remove d unintentionally.

Several solutions for the above problem have been proposed. We present some of them, sorted

by complexity in ascending order. Interestingly, however, this order opposes the chronological

order of publication. Some of the simpler algorithms were proposed later in the verication

literature to simplify the verication task.

28 Chapter 2 Non-blocking Data Structures

Vechev&Yahav’s 2CAS Set. As demonstrated by the above example, a removal needs to

check the consistency of two pointers atomically. Vechev and Yahav [2008] suggested to do

so with a two-word CAS. Their implementation is given in Figure 2.16. The backbone of the

implementation is the method locate. It is an internal helper that is not exposed to the clients

of the set. For a given data value, locate nds two adjacent nodes pred and curr such that the

value is either stored in curr or should be inserted between pred and curr. To nd those nodes,

the implementation traverses the singly-linked list from front to back. The operation restarts if a

traversed node has been removed by an interfering thread. This is the case if a node’s next eld

is NULL, Line 454.

Lookups via contains check if a given value is in the set. This is done with locate and testing

whether or not curr contains the searched value, Line 457. Method insert uses locate to nd

the appropriate insertion location. If a node with the to-be-inserted datum already exists, nothing

needs to be done, Line 418. Otherwise, a new node is linked in-between pred and curr, Lines 419

and 420. Method remove works similarly. To ensure a correct unlinking, two-word CAS is used,

Line 435. It unlinks curr only if curr->next has not changed. Moreover, the next eld of the

unlinked curr is set to NULL, making interfering threads aware of the removal.

In terms of memory management, the implementation can be adapted to use FL and EBR in

the standard way. For HP, protections are issued by locate and revoked by the corresponding

caller method, i.e., at the end of contains, insert, and remove. The protections in locate are

more involved than the ones we have seen so far. The reason for this is that unboundedly many

nodes may be traversed while threads have only a bounded number of hazard pointers at their

disposal. To that end, locate uses two hazard pointers to issue protections in a hand-over-hand

fashion [Bayer and Schkolnick 1977]. More specically, the loop from Lines 449 to 456 assumes

that pointer curr is protected with hp[0]. The protection is transferred to hp[1]. Recall from
Section 2.3.3 that this transfer is recognized by HP. Then, curr is advanced to the successor node

and protected with hp[0]. The check in Line 454 guarantees that the protection is successful

as it ensures that curr has not been removed. For the rst iteration of the loop, note that curr

points to Head. Thus, no protection is needed since the dummy node Head is always accessible

and never retired.

ORVYY Set. O’Hearn et al. [2010] presented a solution similar to Vechev&Yahav’s 2CAS

set. Instead of indicating removed nodes via setting next elds to NULL, they use the marking

technique by Prakash et al. [1994]. That is, they use the boolean mark bit of type Node and set it

to true upon removal. This signals to other threads that the node is being removed and that

its next eld must not be changed. The implementation is given in Figure 2.17. We stick to the

original atomic update proposed by O’Hearn et al. [2010], Lines 500 to 505. It can be implemented

by two-word CAS. While the two-word CAS remains impractical, the marking technique brings

us closer to practicality as it is essential for a standard/double-word CAS solution.

Section 2.4 Data Structure Implementations 29

Figure 2.16: Vechev&Yahav’s 2CAS set [Vechev and Yahav 2008, Figures 8 and 9] with SMR.
The implementation of remove relies on a two-word CAS, Line 435.

394 shared Node* Head, Tail;

395

396 atomic init() {

397 Head = new Node(-∞);

398 Tail = new Node(∞);

399 Head->next = Tail;

400 }

401

402 bool contains(int value) {

403 Node* pred; Node* curr; int found;

404 E leaveQ();
405 <pred, curr, found> = locate(value);

406 H unprotect(0); unprotect(1);
407 E enterQ();
408 return found == value;

409 }

410

411 bool insert(int value) {

412 Node* pred; Node* curr; int found;

413 Node* entry = new Node(value);

414 E leaveQ();
415 bool success = false;

416 while (!success) {

417 <pred, curr, found> = locate(value);

418 if (found == value) break;

419 entry->next = curr;

420 success = CAS(pred->next, curr, entry);

421 }

422 F E H if (!success) retire(entry);
423 H unprotect(0); unprotect(1);
424 E enterQ();
425 return success;

426 }

427 bool remove(int value) {

428 Node* pred; Node* curr; int found;

429 E leaveQ();
430 bool success = false;

431 while (!success) {

432 <pred, curr, found> = locate(value);

433 if (found > value) break;

434 Node* next = curr->next;

435 success = 2CAS(pred->next, curr, next,

436 curr->next, next, NULL);

437 }

438 F E H if (success) retire(curr);
439 H unprotect(0); unprotect(1);
440 E enterQ();
441 return success;

442 }

443

444 <Node*, Node*, int> locate(int value) {

445 Node* pred; Node* curr; int found;

446 assert(-∞ < value < ∞);

447 retry: // jump label

448 curr = Head;

449 do {

450 pred = curr;

451 H protect(pred, 1);
452 curr = pred->next;

453 H protect(curr, 0);
454 if (curr == NULL) goto retry;

455 found = curr->data;

456 } while (found < value);

457 return <pred, curr, found>;

458 }

30 Chapter 2 Non-blocking Data Structures

Figure 2.17: The ORVYY set [O’Hearn et al. 2010] with SMR. The implementation of remove
relies on a two-word CAS, Lines 500 to 505.

459 shared Node* Head, Tail;

460

461 atomic init() {

462 Head = new Node(-∞);

463 Tail = new Node(∞);

464 Head->next = Tail;

465 }

466

467 bool contains(int value) {

468 Node* pred; Node* curr; int found;

469 E leaveQ();
470 <pred, curr, found> = locate(value);

471 H unprotect(0); unprotect(1);
472 E enterQ();
473 return found == value;

474 }

475

476 bool insert(int value) {

477 Node* pred; Node* curr; int found;

478 Node* entry = new Node(value);

479 E leaveQ();
480 bool success = false;

481 while (!success) {

482 <pred, curr, found> = locate(value);

483 if (found == value) break;

484 entry->next = curr;

485 success = CAS(pred->mark, false, false,

486 pred->next, curr, entry);

487 }

488 F E H if (!success) retire(entry);
489 H unprotect(0); unprotect(1);
490 E enterQ();
491 return success;

492 }

493 bool remove(int value) {

494 Node* pred; Node* curr; int found;

495 E leaveQ();
496 bool success = false;

497 while (!success) {

498 <pred, curr, found> = locate(value);

499 if (found > value) break;

500 atomic { if (!pred->mark

501 && pred->next == curr) {

502 pred->next = curr->next;

503 curr->mark = true;

504 success = true;

505 } } }

506 F E H if (success) retire(curr);
507 H unprotect(0); unprotect(1);
508 E enterQ();
509 return success;

510 }

511

512 <Node*, Node*, int> locate(int value) {

513 Node* pred; Node* curr; int found;

514 assert(-∞ < value < ∞);

515 retry: // jump label

516 curr = Head;

517 do {

518 pred = curr;

519 H protect(pred, 1);
520 curr = pred->next;

521 H protect(curr, 0);
522 H if (pred->mark) goto retry;
523 found = curr->data;

524 } while (found < value);

525 return <pred, curr, found>;

526 }

Section 2.4 Data Structure Implementations 31

Vechev&Yahav’s CAS Set. Towards both practical and non-blocking implementations, Vechev

and Yahav [2008] showed that the aforementioned marking technique allows for removals with

double-word CAS (or standard single-word CAS if the mark is implemented using bit stealing).

Consider Figure 2.18 for the implementation. The removal of a node curr is performed in

two steps. First, a double-word CAS sets the mark ag, Line 570. As for the ORVYY set, this

prevents other threads from updating node curr. Then, another double-word CAS unlinks curr by

redirecting pred->next, Lines 573 and 574. The latter CAS goes through only if pred is unmarked,

ensuring that the removal does not interfere with concurrent removals of pred.

It is worth pointing out that the removal is considered successful only if curr is unlinked.

The operation is restarted if any of the above CAS instructions fail. While this does not spoil

correctness, it spoils the non-blocking property [Vechev and Yahav 2008]. Marking a node

prevents updates of its next eld. Hence, insertions and removals are blocked until the node is

removed. Other threads cannot help to unlink the node since the unlinking (and not the marking)

constitutes a successful removal. The next implementation overcomes this problem.

Michael’s Set. The non-blocking implementation by Michael [2002a], a simplied version of

which is given in Figure 2.19, achieves lock-freedom as follows. The rst step of the removal,

the marking, is considered the logical removal. The second step, the unlinking, is considered the

physical removal. If the rst step succeeds, then the overall removal succeeds. To allow for other

threads making progress despite a node being marked, any thread may physically remove a

logically removed node. To be precise, method locate eagerly performs physical removals of all

logically removed nodes it encounters during its traversal, Lines 616 to 622, and method remove

may return if it logically removed but failed to physically remove a node.

Harris’s Set. Harris [2001] proposed a lazy version of the locate method for Micheal’s set:

instead of removing individually all logically removed nodes, sequences of subsequent logically

removed nodes are deleted. To that end, locate traverses over logically removed nodes to nd the

last unmarked node before and the rst unmarked node after a sequence of marked nodes. Then,

a single CAS can be used to physically remove the entire sequence. The implementation is given

in Figure 2.20. Notably, the implementation is incompatible with HP [Michael 2002b]: logically

removed nodes cannot be traversed with HP since one cannot guarantee that the protections

of marked nodes are successful. Similarly, FL cannot be used since the retirement of logically

removed nodes results in immediate reuse, potentially breaking the link structure while threads

are still traversing the removed nodes.

32 Chapter 2 Non-blocking Data Structures

Figure 2.18: Vechev&Yahav’s CAS set [Vechev and Yahav 2008, Figure 2] with SMR.

527 shared Node* Head, Tail;

528

529 atomic init() {

530 Head = new Node(-∞);

531 Tail = new Node(∞);

532 Head->next = Tail;

533 }

534

535 bool contains(int value) {

536 Node* pred; Node* curr; int found;

537 E leaveQ;
538 <pred, curr, found> = locate(value);

539 H unprotect(0); unprotect(1);
540 E enterQ;
541 return found == value;

542 }

543

544 bool insert(int value) {

545 Node* pred; Node* curr; int found;

546 Node* entry = new Node(value);

547 E leaveQ();
548 bool success = false;

549 while (!success) {

550 <pred, curr, found> = locate(value);

551 if (found == value) break;

552 entry->next = curr;

553 success = CAS(pred->mark, false, false,

554 pred->next, curr, entry);

555 }

556 F E H if (!success) retire(entry);
557 H unprotect(0); unprotect(1);
558 E enterQ();
559 return success;

560 }

561 bool remove(int value) {

562 Node* pred; Node* curr; int found;

563 E leaveQ();
564 bool success = false;

565 while (!success) {

566 <pred, curr, found> = locate(value);

567 if (found > value) break;

568 bool flag = curr->mark;

569 Node* next = curr->next;

570 if (!CAS(curr->mark, flag, true,

571 curr->next, next, next))

572 continue;

573 success = CAS(pred->mark, false, false,

574 pred->next, curr, next);

575 }

576 F E H if (success) retire(curr);
577 H unprotect(0); unprotect(1);
578 E enterQ();
579 return success;

580 }

581

582 <Node*, Node*, int> locate(int value) {

583 Node* pred; Node* curr; int found;

584 assert(-∞ < value < ∞);

585 retry: // jump label

586 curr = Head;

587 do {

588 pred = curr;

589 H protect(pred, 1);
590 curr = pred->next;

591 H protect(curr, 0);
592 H if (pred->mark) goto retry;
593 found = curr->data;

594 } while (found < value);

595 return <pred, curr, found>;

596 }

Section 2.4 Data Structure Implementations 33

Figure 2.19: Michael’s set [Michael 2002a] with SMR. The extension to HP is adapted from
the original implementation by Michael [2002a].

597 shared Node* Head;

598

599 atomic init() {

600 Head = new Node(-∞);

601 }

602

603 <Node*, Node*, int> locate(int value) {

604 Node* pred; Node* curr; int found;

605 assert(-∞ < value < ∞);

606 retry: // jump label

607 curr = Head;

608 do {

609 pred = curr;

610 H protect(pred, 1);
611 curr = pred->next;

612 H protect(curr, 0);
613 if (pred->mark) goto retry;

614 if (pred->next != curr) goto retry;

615 found = curr->data;

616 if (curr->mark) {

617 Node* next = curr->next;

618 if (CAS(pred->mark, false, false

619 pred->next, curr, next)) {

620 H E F retire(curr);
621 goto retry;

622 } }

623 } while (found < value);

624 return <pred, curr, found>;

625 }

626

627 bool contains(int value) {

628 Node* pred; Node* curr; int found;

629 E leaveQ();
630 <pred, curr, found> = locate(value);

631 H unprotect(0); unprotect(1);
632 E enterQ();
633 return found == value;

634 }

635 bool insert(int value) {

636 Node* pred; Node* curr; int found;

637 Node* entry = new Node(value);

638 E leaveQ();
639 bool success = false;

640 while (!success) {

641 <pred, curr, found> = locate(value);

642 if (found == value) break;

643 entry->next = curr;

644 success = CAS(pred->mark, false, false,

645 pred->next, curr, entry);

646 }

647 H E F if (!success) retire(entry);
648 H unprotect(0); unprotect(1);
649 E enterQ();
650 return success;

651 }

652

653 bool remove(int value) {

654 Node* pred; Node* curr; int found;

655 E leaveQ();
656 bool success = false;

657 while (!success) {

658 <pred, curr, found> = locate(value);

659 if (found > value) break;

660 Node* next = curr->next;

661 success = CAS(curr->mark, false, true

662 curr->next, next, next);

663 }

664 if (success) {

665 if (!CAS(pred->mark, false, false

666 pred->next, curr, next))

667 locate(value);

668 F E H else retire(curr);
669 }

670 H unprotect(0); unprotect(1);
671 E enterQ();
672 return success;

673 }

34 Chapter 2 Non-blocking Data Structures

Figure 2.20: Harris’ set [Harris 2001] with EBR. The algorithm does not support the use of
HP and FL since locate traverses marked and potentially unlinked nodes.

674 shared Node* Head, Tail;

675

676 atomic init() {

677 Head = new Node(-∞);

678 Tail = new Node(∞);

679 Head->next = Tail;

680 }

681

682 bool unlink(Node* left, Node* lnext,

683 Node* right) {

684 if (lnext == right) return true;

685 if (CAS(left->mark, false, false

686 left->next, lnext, right)) {

687 E while (lnext != right) {
688 E retire(lnext);
689 E lnext = lnext->next;
690 E }
691 return true;

692 }

693 return false;

694 }

695

696 <Node*, Node*, int> locate(int value) {

697 Node* left; Node* lnext; int found;

698 assert(-∞ < value < ∞);

699 while (true) {

700 Node* right = Head;

701 bool rmark = Head->mark;

702 Node* rnext = Head->next;

703 do {

704 if (!rmark) {

705 left = right;

706 lnext = rnext;

707 }

708 right = rnext;

709 if (right == Tail) break;

710 rmark = right->mark;

711 rnext = right->next;

712 found = right->data;

713 } while (rmark || found < value);

714 if (unlink(left, lnext, right)

715 if (right == Tail || !right->mark)

716 return <left, right, found>;

717 } }

718 bool contains(int value) {

719 Node* left; Node* right; int found;

720 E leaveQ();
721 <left, right, found> locate(value);

722 E enterQ();
723 return found == value;

724 }

725

726 bool insert(int value) {

727 Node* left; Node* right; int found;

728 Node* entry = new Node(value);

729 E leaveQ();
730 bool success = false;

731 while (!success) {

732 <left, right, found> locate(value);

733 if (found == value) break;

734 entry->next = right;

735 success = CAS(left->mark, false, false,

736 left->next, right, entry);

737 }

738 E if (!success) retire(entry);
739 E enterQ();
740 return success;

741 }

742

743 bool remove(int value) {

744 Node* left; Node* right; Node* rnext;

745 int found; bool success = false;

746 E leaveQ();
747 while (!success) {

748 <left, right, found> locate(value);

749 if (found != value) break;

750 if (right->mark) continue;

751 rnext = right->next;

752 success = CAS(right->mark, false, true,

753 right->next, rnext, rnext);

754 }

755 if (success) {

756 if (!CAS(left->mark, false, false

757 left->next, right, rnext))

758 locate(value);

759 E else retire(right);
760 }

761 E enterQ();
762 return success;

763 }

Section 2.4 Data Structure Implementations 35

36

Model of Computation 3
We give a formal account of the programs that the reminder of this thesis reasons about. More

specically, we introduce concurrent shared-memory programs that employ a library for safe

memory reclamation (SMR).

Hereafter, we use • for irrelevant terms and values to abbreviate the exposition.

3.1 Memory, or Heaps and Stacks

Programs operate over addresses from Adr that are assigned to pointer expressions PExp. Pointer

expressions are either pointer variables from PVar or pointer selectors 𝑎.next ∈ PSel. The set

of shared pointer variables accessible by every thread is shared ⊆ PVar . Additionally, we allow

pointer expressions to hold the special value seg ∉ Adr denoting undened/uninitialized pointers.

There is also an underlying data domain Dom to which data expressions DExp = DVar ⊎ DSel

evaluate. Data expressions are either data variables from DVar or data selectors 𝑎.data ∈ DSel.

A generalization of our development to further selectors is straightforward—we stress that our

results do not rely and thus are not limited to singly-linked graph structures as the single pointer

selector next might suggest.

We do not distinguish between the stack and the heap. Instead, we refer to both as the memory.

It is a partial function that respects the typing:

𝑚 ∶ (PExp ↛ Adr ⊎ { seg }) ⊎ (DExp ↛ Dom) .

The initial memory is𝑚𝜖 . Pointer variables 𝑝 are uninitialized,𝑚𝜖(𝑝) = seg. Data variables 𝑢

have a default value,𝑚𝜖(𝑢) = 0. We modify the memory with updates up of the form [exp ↦ 𝑣].
Applied to a memory𝑚, the result is the memory𝑚′

= 𝑚[exp ↦ 𝑣] dened by𝑚′(exp) = 𝑣

and𝑚′(exp′) =𝑚(exp′) for all exp′ ≠ exp. Below, we dene computations 𝜏 which give rise to

sequences of updates. We write𝑚𝜏 for the memory resulting from the initial memory𝑚𝜀 when

applying the sequence of updates in 𝜏 .

Section 3.1 Memory, or Heaps and Stacks 37

3.2 Syntax of Programs

We dene a core language for concurrent shared-memory programs that rely on an SMR library.

Programs P using SMR implementation R, written P(R), are comprised of statements stmt which

are dened by the following grammar:

stmt F stmt; stmt ∣ stmt ⊕ stmt ∣ stmt∗ ∣ beginAtomic; stmt; endAtomic ∣ com

com F 𝑝 ∶= 𝑞 ∣ 𝑝 ∶= 𝑞.next ∣ 𝑝.next ∶= 𝑞 ∣ 𝑢 ∶= op(𝑢) ∣ 𝑢 ∶= 𝑞.data ∣ 𝑝.data ∶= 𝑢

∣ assume cond ∣ 𝑝 ∶= malloc ∣ free(𝑝) ∣ in∶func(𝑟) ∣ re∶func ∣ skip ∣ env(𝑎)

cond F 𝑝 = 𝑞 ∣ 𝑝 ≠ 𝑞 ∣ pred(𝑢)

We assume a strict typing that distinguishes between data variables 𝑢,𝑢 ′ ∈ DVar and pointer

variables 𝑝, 𝑞 ∈ PVar . Functions take pointer and data variables as parameters, 𝑟 ∈ PVar ∪ DVar .

Notation 𝑟 is short for 𝑟1, . . . , 𝑟𝑛 and similarly for𝑢. The language includes sequential composition,

non-deterministic choice, Kleene iteration, and atomic blocks. The primitive commands include

assignments, memory accesses, assumptions, memory allocations and deallocations, and non-

nested SMR function invocations and responses. Additionally, there are non-deterministic

updates of unallocated addresses 𝑎. We assume that those updates are not part of the program

itself but performed by the environment.

3.3 Semantics of Commands

We dene a semantics where program P(R) is executed by a possibly unbounded number of

concurrently operating threads. Formally, the standard semantics1 of P(R) is the set ⟦P(R)⟧𝑌𝑋
of computations. It is dened relative to two sets 𝑌 ⊆ 𝑋 ⊆ Adr of addresses allowed to be

reallocated and freed, respectively. A computation is a sequence 𝜏 of actions act that are of

the form act = ⟨𝑡, com, up⟩. The action indicates that thread 𝑡 executes command com which

results in the memory update up. To make the semantics precise, let fresh𝜏 ⊆ Adr be the set

of addresses which have never been allocated in 𝜏 and let freed𝜏 ⊆ Adr be the set of addresses

which have been freed since their last allocation. Then, the denition of the standard semantics

is by induction. The empty computation is always contained, 𝜖 ∈ ⟦P(R)⟧𝑌𝑋 . An action act can

be appended to a computation 𝜏 ∈ ⟦P(R)⟧𝑌𝑋 , denoted by 𝜏 .act ∈ ⟦P(R)⟧𝑌𝑋 , if act respects the
control ow of P(R) and one of the rules from Figure 3.1 applies. The semantics of commands is

standard. Note that we assume a sequentially consistent memory model [Lamport 1979]. That is,

memory reads always obtain the latest value written. Weaker memory models are beyond the

scope of this thesis.

1 In Chapter 5 we will dene a non-standard semantics that is benecial for verication, see Figure 5.9.

38 Chapter 3 Model of Computation

Figure 3.1: Semantics of commands.

(Skip) If act = ⟨𝑡, skip,∅⟩.

(Assign1) If act = ⟨𝑡, 𝑝.next ∶= 𝑞, [𝑎.next ↦ 𝑏]⟩ then𝑚𝜏(𝑝) = 𝑎 and𝑚𝜏(𝑞) = 𝑏.

(Assign2) If act = ⟨𝑡, 𝑝 ∶= 𝑞, [𝑝 ↦𝑚𝜏(𝑞)]⟩.

(Assign3) If act = ⟨𝑡, 𝑝 ∶= 𝑞.next, [𝑝 ↦𝑚𝜏(𝑎.next)]⟩ with𝑚𝜏(𝑞) = 𝑎 ∈ Adr .

(Assign4) If act = ⟨𝑡, 𝑢 ∶= op(𝑢 ′1, . . . , 𝑢 ′𝑛), [𝑢 ↦ 𝑑]⟩ with 𝑑 = op(𝑚𝜏(𝑢 ′1), . . . ,𝑚𝜏(𝑢 ′𝑛)).

(Assign5) If act = ⟨𝑡, 𝑝.data ∶= 𝑢, [𝑎.data ↦𝑚𝜏(𝑢)]⟩ with𝑚𝜏(𝑝) = 𝑎 ∈ Adr .

(Assign6) If act = ⟨𝑡, 𝑢 ∶= 𝑞.data, [𝑢 ↦𝑚𝜏(𝑎.data)]⟩ with𝑚𝜏(𝑞) = 𝑎 ∈ Adr .

(Assume) If act = ⟨𝑡, assume exp ≜ exp′,∅⟩ then𝑚𝜏(exp) ≜𝑚𝜏(exp′).

(Malloc) If act = ⟨𝑡, 𝑝 ∶= malloc, [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]⟩ then address 𝑎 is
allocatable, that is, 𝑎 ∈ fresh𝜏 or 𝑎 ∈ freed𝜏 ∩ 𝑌 .

(Free) If act = ⟨𝑡, free(𝑝),∅⟩ then𝑚𝜏(𝑝) ∈ 𝑋 .

(Call) If act = ⟨𝑡, in∶func(𝑟),∅⟩, then𝑚𝜏(𝑟) ∈ Adr ⊎ Dom for every 𝑟 in 𝑟 .

(Return) If act = ⟨𝑡, re∶func,∅⟩.

(Atomic) If act = ⟨𝑡, beginAtomic,∅⟩ or act = ⟨𝑡, endAtomic,∅⟩.

(Env) If act = ⟨⊥, env(𝑎), [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]⟩ with 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

The above denition of the standard semantics focuses on how commands interact with the

memory. What it means for an action to respect the control ow is made precise next. We

separate the two aspects since the methods we propose in Chapters 5 to 8 exploit the semantics

of commands rather than the structure and control ow of programs.

3.4 Semantics of Programs

We give a small-step operational semantics (SOS) for programs [Plotkin 1981]. To than end, we

dene a transition relation⇢⇢ among pairs (pc, 𝜏) of control locations pc and computations 𝜏 .

Intuitively, ⇢⇢ produces the reachable control locations together with the computation that led

there. A control location pc is a map from threads 𝑡 to statements st. We understand st as the

code that remains to be executed by 𝑡 . For the SOS rules, we extend ordinary statements to:

st F stmt ∣ inatomic st ∣ st1 ◦ st2 ∣ await func

Section 3.4 Semantics of Programs 39

Figure 3.2: SOS rules for the standard semantics, ⟦P(R)⟧𝑌𝑋 .

(a) Control-ow relation −−⇀com for ordinary statements and atomic blocks.

(sos-std-com)

com −−⇀com skip

(sos-std-seq1)

skip; st −−−⇀
skip st

(sos-std-seq2)

st1 −−⇀
com st ′1

st1; st2 −−⇀
com st ′1; st2

(sos-std-choice)
𝑖 ∈ { 1, 2 }

st1 ⊕ st2 −−−⇀
skip st𝑖

(sos-std-loop1)

st∗ −−−⇀
skip

skip

(sos-std-loop2)

st∗ −−−⇀
skip st; st∗

(sos-std-atomic3)

inatomic endAtomic −−−−−−⇀endAtomic skip

(sos-std-atomic1)

beginAtomic; st; endAtomic −−−−−−−−⇀
beginAtomic

inatomic st

(sos-std-atomic2)

st −−⇀com st ′

inatomic st −−⇀com inatomic st ′

(b) Control-ow relation −−⇀com for managing the explicit call stack.

(sos-std-call)

st −−−−−−−⇀
in∶func(𝑟)

st ′

st ◦ skip −−−−−−−⇀
in∶func(𝑟)

st ′ ◦ R.func; await func

(sos-std-return)

st −−−−−⇀
re∶func

st ′

st ◦ await func −−−−−⇀
re∶func

st ′ ◦ skip

(sos-std-ds)

st1 −−⇀
com st ′1 in∶• /≡ com /≡ re∶•

st1 ◦ st2 −−⇀
com st ′1 ◦ st2

(sos-std-smr)

st2 −−⇀
com st ′2 in∶• /≡ com /≡ re∶•

st1 ◦ st2 −−⇀
com st1 ◦ st

′
2

(c) SOS transition relation ⇢⇢.

(sos-std-env)
act ∈ Act(𝜏,⊥, env(𝑎))
(pc, 𝜏) ⇢⇢ (pc, 𝜏 .act)

(sos-std-par)

st −−⇀com st ′ act ∈ Act(𝜏, 𝑡, com)
∄𝑡
′
. 𝑡 ≠ 𝑡

′
∧ locked(pc(𝑡 ′))

(pc[𝑡 ↦ st], 𝜏) ⇢⇢ (pc[𝑡 ↦ st ′], 𝜏 .act)

40 Chapter 3 Model of Computation

in order to make explicit the execution of atomic blocks and the call stack of functions. The com-

mands that appear in the actions of computations remain unchanged. The transition relation ⇢⇢

is based on a control-ow relation −−⇀com among statements st. More precisely, st −−⇀com st ′ indicates

that performing a step of st executes command com after which st ′ remains to be executed. For-

mally,⇢⇢ and−−⇀com are the smallest relations that satises the rules from Figure 3.2. The rst set of

rules, Figure 3.2a, addresses ordinary statements stmt and atomic blocks. The rules are standard.

The second set of rules, Figure 3.2b, manages the explicit call stack st1 ◦ st2. Here, st1 is the caller,

i.e., code of the data structure P , and st2 is the callee, i.e., code of an invoked SMR function from R

or skip if no function is invoked at the moment. Rule (sos-std-call) looks up the code of the

invoked function, R.func, and appends command await func. We use await func to synchronize

the callee with the caller, Rule (sos-std-return). This ensures that invocations in∶func(𝑟)
receive a matching response re∶func. Rules (sos-std-ds) and (sos-std-smr) handle the

cases where the call stack is irrelevant, falling back to the rules from Figure 3.2a. In fact, method

invocations are asynchronous as we do not impose an order in which the caller and the callee

execute. Our development is oblivious to this fact. Lastly, the third set of rules, Figure 3.2c,

denes the SOS transition relation. To turn commands com executed by threads 𝑡 into actions,

we write Act(𝜏, 𝑡, com) to obtain the set of actions act = ⟨𝑡, com, up⟩ such that 𝜏 .act satises the

semantics of commands dened in Section 3.3 above. Rule (sos-std-env) updates unallocated

memory non-deterministically, simulating the environment. Rule (sos-std-par) executes a

step of thread 𝑡 if no other thread is currently within an atomic block, as dened by:

locked(inatomic st) ≔ true

locked(st1; st2) ≔ locked(st1)

locked(st1 ◦ st2) ≔ locked(st1) ∨ locked(st2)

locked(st) ≔ false otherwise .

Now, we say that a computation 𝜏 respects the control ow of a program P(R) if there is a control
location pc that witnesses 𝜏 , that is, if:

(pcinit, 𝜖) ⇢⇢
∗ (pc, 𝜏) with pcinit = 𝜆𝑡 . P[𝑡] ◦ skip .

Here,⇢⇢∗ is the reexive transitive closure of⇢⇢. The initial control location pcinit maps every

thread to execute P . Since memories do not consider threads when valuating variables, we need

to rename the local variables in P . The 𝑡-renamed version of P is P[𝑡]. For simplicity, we omitted

this renaming when calling functions, Rule (sos-std-call). Instead, we assume that P[𝑡] also

renames functions and that R contains an appropriately 𝑡-renamed function copy. Later, it will

be convenient to access the witnesses of 𝜏 :

ctrl(𝜏) ≔ { pc ∣ (pcinit, 𝜖) ⇢⇢
∗ (pc, 𝜏) } .

Section 3.4 Semantics of Programs 41

42 Chapter 3 Model of Computation

Thread-Modular Analysis 4
Proving a data structure correct for an arbitrary number of client threads requires a thread-

modular analysis [Berdine et al. 2008; Jones 1983; Owicki and Gries 1976]. Such an analysis

abstracts a system state into so-called views, partial congurations reecting a single thread’s

perception of the system state. A view includes a thread’s control location and, in the case of

shared-memory programs, the memory reachable from the shared and thread-local variables. An

analysis then saturates a set 𝑉 of reachable views. This is done by computing the least solution

to the recursive equation

𝑉 = 𝑉 ∪ seq(𝑉) ∪ int(𝑉) .

Function seq computes a sequential step, the views obtained from letting each thread execute an

action on its own views. Function int accounts for interference among threads. It updates the

memory of views by actions from other threads. We follow the analysis proposed by Abdulla

et al. [2013, 2017]. There, int is computed by combining two views, letting one thread perform an

action, and projecting the result to the other thread. More precisely, computing int(𝑉) requires
for every pair of views 𝜐1, 𝜐2 ∈ 𝑉 to (i) compute a combined view 𝜔 of 𝜐1 and 𝜐2, (ii) perform

for 𝜔 a sequential step for the thread of 𝜐2, and (iii) project the result of the sequential step to the

perception of the thread from 𝜐1. This process is required only for views 𝜐1 and 𝜐2 thatmatch, i.e.,

agree on the shared memory both views have in common. Otherwise, the views are guaranteed

to reect dierent system states so that interference is not needed for an exhaustive state space

exploration.

To check for linearizability, we assume that the program under scrutiny is annotated with

linearization points. Whether or not the sequence of emitted linearization is legal, we verify

with the ADTs used by Abdulla et al. [2013, 2017]. They capture sequential stack, queue, and set

ADTs in form of automata. The state of this specication-checking automaton is stored in the

views. If they signal a specication violation by reaching a nal state, verication fails.

To arrive at views of nite size, we apply a memory abstract. The abstraction we use tracks

reachability predicates among the objects referenced by the local and shared pointer variables.

The reachability predicates encode equality, reachability in one step, reachability in two or more

steps, and unreachability. Here, a step refers to following an object’s next eld. We do not go

into the details of the memory abstraction as it is orthogonal to the results presented in the

present thesis. For more details, we refer the reader to [Abdulla et al. 2013, 2017].

43

We stress that the analysis by Abdulla et al. [2013, 2017]—at the time of writing—is the most

promising for fully automatically verifying non-blocking data structures with manual memory

reclamation.

44 Chapter 4 Thread-Modular Analysis

Part II

Contributions

45

46

Compositional Verification 5
Verication of non-blocking data structures with manual memory management via an SMR

algorithm is prohibitive with state-of-the-art techniques. The reason for this is the complexity

that is added to the verication task by SMR implementations. As seen in Chapter 2, data

structures and SMR implementations are equally complex.

To allow for verication nevertheless, we exploit the design of data structures and SMR algorithms.

Typically, data structures use SMR algorithms through a well-dened API which does not expose

the implementation details of the SMR algorithm. The resulting system design is depicted in

Figure 5.1. This encapsulation suggests a verication approach for data structures where we

replace the SMR implementation with a simpler one. For a sound approach, we have to ensure

that the replacement over-approximates the behaviors of the original SMR implementation. This

way, we can separate the verication of the data structure from the SMR implementation. More

specically, we (i) introduce a means for specifying SMR implementations, then (ii) verify the

SMR implementation R against its specication, and (iii) verify the data structure P relative to

the SMR specication rather than the SMR implementation. If both verication tasks succeed,

then the data structure using the SMR implementation, P(R), is correct.

Towards our result, we rst introduce SMR automata for specifying SMR algorithms. Then, we

discuss the two new verication tasks and show that they imply the desired correctness.

Figure 5.1: Typical system design and the interaction among components. Non-blocking
data structures perform their reclamation through an SMR algorithm. The SMR algorithm
does not inuence the data structure directly, only indirectly through the Allocator.

Non-blocking Data Structure

SMR algorithm

AllocatorAPI

malloc

free

7

47

5.1 SMR Automata

An SMR automaton O consists of a nite set of locations, a nite set of variables, and a nite set

of transitions. There is a dedicated initial location and some accepting locations. Transitions are

of the form 𝑙−−−−→
𝑓 (𝑟), 𝑔

𝑙
′ with locations 𝑙, 𝑙 ′, event 𝑓 (𝑟), and guard 𝑔. Events 𝑓 (𝑟) consist of a type 𝑓

and parameters 𝑟 = 𝑟1, . . . , 𝑟𝑛 . The guard is a Boolean formula over equalities of variables and

the parameters 𝑟 . An SMR automaton state 𝑠 is a tuple (𝑙, 𝜑) where 𝑙 is a location and 𝜑 maps

variables to values. Such a state is initial if 𝑙 is initial, and similarly accepting if 𝑙 is accepting.

Then, (𝑙, 𝜑)−−−→𝑓 (𝑣) (𝑙 ′, 𝜑) is an SMR automaton step, if 𝑙−−−−→
𝑓 (𝑟), 𝑔

𝑙
′ is a transition and 𝜑(𝑔[𝑟 ↦ 𝑣])

evaluates to true. With 𝜑(𝑔[𝑟 ↦ 𝑣]) we mean 𝑔 where the formal parameters 𝑟 are replaced

with the actual values 𝑣 and where the variables are replaced by their 𝜑-mapped values. Initially,

the valuation 𝜑 is chosen non-deterministically; it is not changed by steps.

A history ℎ = 𝑓1(𝑣 1) . . . 𝑓𝑛(𝑣𝑛) is a sequence of events. If there are steps 𝑠−−−−→
𝑓1(𝑣1) ⋯−−−−→

𝑓𝑛(𝑣𝑛)
𝑠
′,

then we write 𝑠−→ℎ 𝑠
′. If 𝑠 ′ is accepting, we say that ℎ is accepted by 𝑠 . We use SMR automata to

characterize bad behavior. So we say ℎ is in the specication of 𝑠 , denoted by ℎ ∈ S(𝑠), if it is
not accepted by 𝑠 . Then, the specication of O, denoted by S(O), is the set of histories that are
not accepted by any initial state of O. Formally, we dene:

S(𝑠) ≔ { ℎ ∣ ∀𝑠 ′. 𝑠−→ℎ 𝑠
′
⟹ 𝑠

′ not nal } and S(O) ≔⋂ { S(𝑠) ∣ 𝑠 initial } .

The cross-product O1 ×O2 denotes an SMR automaton with S(O1 ×O2) = S(O1)∩ S(O2).

To simplify our development, we assume that SMR automata are complete and deterministic in

the sense that each state has a unique post state for all possible events.

Assumption 5.2 (Well-formedness). SMR automata O satisfy the following: (i) for all 𝑠1

and all ℎ there is 𝑠2 with 𝑠1−→
ℎ
𝑠2, and (ii) if 𝑠1−→

ℎ
𝑠2 and 𝑠1−→

ℎ
𝑠3, then 𝑠2 = 𝑠3.

Hereafter, it will be useful to check specication inclusions of the form S(𝑠) ⊆ S(𝑠 ′) for SMR

automata O. To accomplish this eciently, we compute a simulation relation [Milner 1971] ≤O

among the locations of O which entails the desired inclusion. Technically, ≤O is the largest

relation such that for all locations 𝑙1 ≤O 𝑙2 the following conditions are met: (i) if 𝑙1 is not

accepting, then 𝑙2 is not accepting, and (ii) for all transitions 𝑙1−−−→
evt, 𝑔

𝑙
′
1 and 𝑙2−−−→

evt, 𝑔′
𝑙
′
2 with 𝑔 ∧ 𝑔

′

satisable we have 𝑙 ′1 ≤O 𝑙
′
2. Relation ≤O can be computed by a greatest xed point in the

standard way [Baier and Katoen 2008, Section 7.6; Cleaveland and Steen 1991; Henzinger

et al. 1995]. As for ordinary nite-state automata, the simulation relation is stronger than the

specication inclusion [Baier and Katoen 2008, Section 7.4]. However, we found the simulation

easier to implement and sucient in practice.

Proposition 5.3. If 𝑙 ≤O 𝑙
′, then S((𝑙, 𝜑)) ⊆ S((𝑙 ′, 𝜑)) for all 𝜑 .

48 Chapter 5 Compositional Verification

5.2 SMR Specifications

To use SMR automata for specifying SMR algorithms, we have to instantiate appropriately

the histories they observe. Our instantiation crucially relies on the fact that programmers of

non-blocking data structures rely solely on simple temporal properties that SMR algorithms

implement [Gotsman et al. 2013]. These properties are typically incognizant of the actual SMR

implementation. Instead, they allow reasoning about the implementation’s behavior based on the

temporal order of function invocations and responses. With respect to our programming model,

in and re actions provide the necessary means to deduce from the data structure computation

how the SMR implementation behaves.

We instantiate SMR automata for specifying SMR algorithms as follows. Let func1, . . . , func𝑛 be

the API functions oered by the SMR algorithm. The event types are (i) in∶func1, . . . , in∶func𝑛 ,

(ii) re∶func1, . . . , re∶func𝑛 , and (iii) free. The parameters to the events depend on the type of

the event. They are (i) the executing thread and the parameters to the call for type in∶func𝑖 ,

(ii) the executing thread for type re∶func𝑖 , and (iii) the parameters to the call for type free.

For simplicity, we consider the hazard pointer index passed to protect and unprotect a part

of the name/type. That is, we write protect𝑘(𝑝) and unprotect𝑘() instead of protect(𝑝, 𝑘)
and unprotect(𝑘), respectively.

To give an example, consider the EBR specication OBase ×OEBR from Figure 5.4. It consists of

two SMR automata. First,OEBR implements the temporal property that a retired address must not

be freed until all threads end their ongoing non-quiescent phase, i.e., until they invoke enterQ

for the rst time after the retire. Second, OBase species that no address must be freed that

has not been retired yet. Further, OBase species that no address must be freed twice unless

the address is retired in-between the frees. For the automaton to properly restrict the frees in

a program, the program should not perform double retires, that is, not retire an address again

before it is freed. The point is that SMR algorithms typically misbehave after a double retire

(perform double frees), which is not reected in OBase (it does not allow for double frees after a

double retire). Our verication techniques will establish this property. To make double retires

precise, let retired𝜏 ⊆ Adr be the addresses that have been retired in 𝜏 but not freed since.

Denition 5.5 (Double Retire). Computation 𝜏 .⟨𝑡, in∶retire(𝑝), up⟩ performs a double

retire of address 𝑎 if 𝑎 ∈ retired𝜏 and 𝑎 =𝑚𝜏(𝑝).

The specication of HP is a bit more involved. For two hazard pointers per thread, a rst attempt

is the automaton OBase ×O0
HP ×O1

HP . Here, O
𝑘
HP implements the HP-specic property that no

address must be freed if it has been protected continuously since before being retired. However,

the specication treats hazard pointers individually and thus misses transfers of protections

among multiple hazard pointers (cf. Section 2.3.3). To briey reiterate the issue, if a thread

Section 5.2 SMR Specifications 49

Figure
5.4:SM

R
autom

ata
specications

for
EB

R
resp.H

P:O
Base

×
O

EBR
resp.O

Base
×
O

0H
P
×
O

1H
P .T

he
autom

ata
are

negative
specications,they

accept
those

histories
thatviolate

the
desired

property.Tw
o
autom

ata-localvariables,𝑧
𝑡
resp.𝑧

𝑎 ,are
used

to
capture

a
thread

resp.an
address.For

better
legibility

w
e
om

itself-loops
for

every
location

and
every

eventthatis
m
issing

an
outgoing

transition
from

thatlocation.

(a)SM
R
autom

aton
O

Base
species

thataddress
𝑧
𝑎
m
ay

be
freed

only
ifithas

been
retired

and
notbeen

freed
since.

O
Base𝐿

1
𝐿
2

𝐿
3

free(𝑎),
𝑎
=
𝑧
𝑎

in∶retire(𝑡,𝑎),
𝑎
=
𝑧
𝑎

free(𝑎),
𝑎
=
𝑧
𝑎

(b)SM
R
autom

aton
O

EBR
species

how
EBR

defers
frees:a

retired
address

𝑧
𝑎
m
ay

notbe
freed

ifithas
been

retired
during

a
non-quiescentphase

ofthread
𝑧
𝑡 .

O
EBR𝐿

4
𝐿
5

𝐿
6

𝐿
7

re∶leaveQ(𝑡),
𝑡
=
𝑧
𝑡

in∶retire(𝑡,𝑎),
𝑎
=
𝑧
𝑎

free(𝑎),
𝑎
=
𝑧
𝑎

in∶enterQ(𝑡),
𝑡
=
𝑧
𝑡

(c)SM
R
autom

aton
O

𝑘H
P
species

how
H
P
defers

frees:a
retired

address
𝑧
𝑎
m
ay

notbe
freed

ifithas
been

protected
continuously

by
the

𝑘-th
hazard

pointer
ofthread

𝑧
𝑡

since
before

being
retired.

O
𝑘H
P𝐿

8
𝐿
9

𝐿
10

𝐿
11

𝐿
12

in∶protect
𝑘 (𝑡,𝑎),

𝑡
=
𝑧
𝑡
∧
𝑎
=
𝑧
𝑎

re∶protect
𝑘 (𝑡),

𝑡
=
𝑧
𝑡

in∶retire(𝑡,𝑎),
𝑎
=
𝑧
𝑎

free(𝑎),
𝑎
=
𝑧
𝑎

in∶protect
𝑘 (𝑡,𝑎),

𝑡
=
𝑧
𝑡
∧
𝑎
≠
𝑧
𝑎

in∶unprotect
𝑘 (𝑡),

𝑡
=
𝑧
𝑡

50 Chapter 5 Compositional Verification

protects an address rst with its 0-th hazard pointer, later with its 1-st hazard pointer, and resets

the 0-th hazard pointer, then the address is continuously protected by some hazard pointer but

not by a single hazard pointer. The above specication would allow for a spurious free. To

come up with an appropriate specication that resolves the issue, we have to track all hazard

pointers of a thread simultaneously. Intuitively, we have to compute a more involved cross

product than O0
HP ×O1

HP to account for transferring protections among hazard pointers. The

resulting SMR automaton isO0,1
HP . Due to the size of the automaton (it consists of 16 states) we do

not present it here, it can be found in Appendix A.2. It is worth noting that O0
HP ×O1

HP is useful

nevertheless: it is smaller than O0,1
HP and might thus speed up verication for data structures that

do not transfer hazard pointers.

The only SMR technique we are aware of that does not t into the SMR automaton framework

out of the box is FL. Recall that FL does not free the memory it manages. Instead, it simply stores

the addresses that have been retired and redistributes them for threads to reuse. This resembles

a direct inuence of the SMR algorithm on the client data structure, which cannot be encoded

with SMR automata as they do not support return values. In order to support FL, we adopt the

practice of Abdulla et al. [2013, 2017]. We assume that (i) retired addresses are freed immediately,

and that (ii) freed addresses may be accessed safely. With those assumptions, we can use OBase

as a specication for FL.

While every SMR implementation has its own SMR automaton, the practically relevant SMR

automata are products of OBase with further SMR automata. Our development relies on this.

Assumption 5.6. SMR automata O are of the form O = OBase ×OSMR for some OSMR.

With an SMR specication in form of an SMR automatonO at hand, our task is to check whether

or not a given SMR implementation R satises this specication. We do this by converting a

computation 𝜏 of R into its induced history H(𝜏) and check inclusion in S(O). The induced
history H(𝜏) is a projection of 𝜏 to in, re, and free commands. The projection replaces formal

parameters with actual values.

Denition 5.7 (Induced Histories). The history induced by a computation 𝜏 , denoted

by H(𝜏), is:

H(𝜖) = 𝜖

H(𝜏 .⟨𝑡, free(𝑝), up⟩) =H(𝜏) .free(𝑚𝜏(𝑝))

H(𝜏 .⟨𝑡, in∶func(𝑟), up⟩) =H(𝜏) .in∶func(𝑡,𝑚𝜏(𝑟))

H(𝜏 .⟨𝑡, re∶func, up⟩) =H(𝜏) .re∶func(𝑡)

H(𝜏 .act) =H(𝜏) otherwise.

Section 5.2 SMR Specifications 51

Then, 𝜏 satises O ifH(𝜏) ∈ S(O). SMR implementation R satises O if every possible usage

of R produces a computation satisfying O. To generate those computations, we use a most

general client (MGC) for R which concurrently executes arbitrary sequences of SMR functions.

Denition 5.8 (SMRCorrectness). An SMR implementation R is correct wrt. a specication

O, written R ⊧ O, if for all 𝜏 ∈ ⟦𝑀𝐺𝐶(R)⟧AdrAdr we haveH(𝜏) ∈ S(O).

From the above denition follows the rst new verication task: prove that the SMR implemen-

tation R cannot possibly violate the specication O. Intuitively, this boils down to a reachability

analysis of accepting states in the cross-product of𝑀𝐺𝐶(R) and O. Since we can understand R

as a non-blocking data structure itself, this task is similar to our next one, namely verifying the

data structure relative to O. We focus on this second task because it is harder than the rst

one. The reason for this lies in that SMR implementations typically do not reclaim the memory

they use. This holds true even if the SMR implementation supports dynamic thread joining and

parting. The absence of reclamation greatly simplies the analysis. Our experiments conrm this

intuition: in Chapter 7 we automatically verify the EBR and HP implementations from Chapter 2

against the corresponding SMR automaton specications presented above.

5.3 Verification Relative to SMR Automata

The next task is to verify the data structure P(R) avoiding the complexity of R. We have

already established the correctness of R wrt. a specication O. Intuitively, we now replace

implementation R with its specication O. Because O is an SMR automaton, and not program

code like R, we cannot just executeO in place of R. Instead, we remove the SMR implementation

from P(R). The result is P(𝜖) the computations of which correspond to the ones of P(R) with
the SMR implementation-specic actions between in and re being removed. To account for the

frees that R executes, we introduce environment steps. We non-deterministically check for every

address 𝑎 whether or not O allows freeing it. If so, we free the address. Formally, the new SMR

semantics isO⟦P⟧𝑌𝑋 and corresponds to the standard semantics ⟦P(𝜖)⟧𝑌𝑋 as dened in Section 3.3

except for an updated rule for frees from the environment.

(Free) If 𝜏 ∈ ⟦P(𝜖)⟧𝑌𝑋 and 𝑎 ∈ Adr can be freed, i.e., 𝑎 ∈ 𝑋 and H(𝜏).free(𝑎) ∈ S(O),
then we have 𝜏 .act ∈ O⟦P⟧𝑌𝑋 with act = ⟨𝑡, free(𝑎),∅⟩.

The new semantics considers O only when freeing memory, all other rules remain unaected.

With this denition, O⟦P⟧𝑌𝑋 performs more frees than ⟦P(R)⟧𝑌𝑋 , provided R ⊧ O. In analogy

to P(R), we write P(O) to refer to P(𝜖) relative to O. Figure 5.9 gives the full SMR semantics.

With the semantics of data structures relative to an SMR specication rather than an SMR imple-

mentation set up, we can turn to the main result of this section. It states that the correctness of R

52 Chapter 5 Compositional Verification

Figure 5.9: Semantics of programs relative to an SMR automaton, O⟦P⟧𝑌𝑋 .

(a) SMR semantics of commands. We write act ∈ Act(𝜏, 𝑡, com) if one of the following rules applies.

(Skip) If act = ⟨𝑡, skip,∅⟩.

(Assign1) If act = ⟨𝑡, 𝑝.next ∶= 𝑞, [𝑎.next ↦ 𝑏]⟩ then𝑚𝜏(𝑝) = 𝑎 and𝑚𝜏(𝑞) = 𝑏.

(Assign2) If act = ⟨𝑡, 𝑝 ∶= 𝑞, [𝑝 ↦𝑚𝜏(𝑞)]⟩.

(Assign3) If act = ⟨𝑡, 𝑝 ∶= 𝑞.next, [𝑝 ↦𝑚𝜏(𝑎.next)]⟩ with𝑚𝜏(𝑞) = 𝑎 ∈ Adr .

(Assign4) If act = ⟨𝑡, 𝑢 ∶= op(𝑢 ′1, . . . , 𝑢 ′𝑛), [𝑢 ↦ 𝑑]⟩ with 𝑑 = op(𝑚𝜏(𝑢 ′1), . . . ,𝑚𝜏(𝑢 ′𝑛)).

(Assign5) If act = ⟨𝑡, 𝑝.data ∶= 𝑢, [𝑎.data ↦𝑚𝜏(𝑢)]⟩ with𝑚𝜏(𝑝) = 𝑎 ∈ Adr .

(Assign6) If act = ⟨𝑡, 𝑢 ∶= 𝑞.data, [𝑢 ↦𝑚𝜏(𝑎.data)]⟩ with𝑚𝜏(𝑞) = 𝑎 ∈ Adr .

(Assume) If act = ⟨𝑡, assume exp ≜ exp′,∅⟩ then𝑚𝜏(exp) ≜𝑚𝜏(exp′).

(Malloc) If act = ⟨𝑡, 𝑝 ∶= malloc, [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]⟩ then address 𝑎 is
allocatable, that is, 𝑎 ∈ fresh𝜏 or 𝑎 ∈ freed𝜏 ∩ 𝑌 .

(Free) If act = ⟨𝑡, free(𝑎),∅⟩ then 𝑎 ∈ Adr ∩ 𝑋 andH(𝜏).free(𝑎) ∈ S(O).

(Call) If act = ⟨𝑡, in∶func(𝑟),∅⟩, then𝑚𝜏(𝑟) ∈ Adr ⊎ Dom for every 𝑟 in 𝑟 .

(Return) If act = ⟨𝑡, re∶func,∅⟩.

(Atomic) If act = ⟨𝑡, beginAtomic,∅⟩ or act = ⟨𝑡, endAtomic,∅⟩.

(Env) If act = ⟨⊥, env(𝑎), [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]⟩ then 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

(b) SMR semantics of programs. We dene a SOS transition relation ⇢ relative to a control-ow
relation −−⇁com such that 𝜏 ∈ O⟦P⟧𝑌𝑋 i ctrl(𝜏) ≠ ∅ with ctrl(𝜏) ≔ { pc ∣ (𝜆𝑡 . P[𝑡], 𝜖) ⇢∗ (pc, 𝜏) }.

(sos-com)

com −−⇁com skip

(sos-seq1)

skip; st −−−⇁
skip st

(sos-seq2)

st1 −−⇁
com st ′1

st1; st2 −−⇁
com st ′1; st2

(sos-choice)
𝑖 ∈ { 1, 2 }

st1 ⊕ st2 −−−⇁
skip st𝑖

(sos-loop1)

st∗ −−−⇁
skip

skip

(sos-loop2)

st∗ −−−⇁
skip st; st∗

(sos-atomic3)

inatomic skip −−−−−−⇁endAtomic skip

(sos-atomic1)

beginAtomic; st; endAtomic −−−−−−−−⇁
beginAtomic

inatomic st

(sos-atomic2)

st −−⇁com st ′

inatomic st −−⇁com inatomic st ′

(sos-env)
act ∈ Act(𝜏,⊥, env(𝑎))
(pc, 𝜏) ⇢ (pc, 𝜏 .act)

(sos-free)
act ∈ Act(𝜏,⊥, free(𝑎))
(pc, 𝜏) ⇢ (pc, 𝜏 .act)

(sos-par)

st −−⇁com st ′ act ∈ Act(𝜏, 𝑡, com) ∄𝑡
′
. 𝑡 ≠ 𝑡

′
∧ locked(pc(𝑡 ′))

(pc[𝑡 ↦ st], 𝜏) ⇢ (pc[𝑡 ↦ st ′], 𝜏 .act)

Section 5.3 Verification Relative to SMR Automata 53

wrt. O and the correctness of P(𝜖) under O entail the correctness of the original program P(R).
Here, we focus on the verication of safety properties. It is known that this reduces to control

location reachability [Vardi 1987].1 So we can assume that there are dedicated bad control

locations in P the unreachability of which is equivalent to the correctness of P(R). If the bad
control locations are unreachable in a computation 𝜏 , we write good(𝜏); the predicate naturally
extends to sets. For the overall result to hold, we require that the interaction between P and

R follows the one depicted in Figure 5.1 and seen on practical examples in Chapter 2. That is,

frees are the only inuence that R has on P . In particular, this means that R does not modify

the memory accessed by P . We found this restriction satised by many SMR algorithms from

the literature. We believe that our development can be generalized to incorporate memory

modications performed by the SMR algorithm. A proper investigation, however, is beyond

the scope of this thesis.

Theorem 5.10 (Compositionality). If R ⊧ O and good(O⟦P⟧AdrAdr), then good(⟦P(R)⟧AdrAdr).

Compositionality is a powerful tool for verication. It allows us to verify the data structure and

the SMR implementation independently of each other. Although this simplies the verication,

reasoning about non-blocking programs operating on a shared memory remains hard. In Chap-

ters 6 to 8 we build upon the above result and propose sound verication techniques forO⟦P⟧AdrAdr

that need not consider the full semantics but subsets thereof. Reductions to simpler semantics

are imperative as compositionality alone makes verication hardly tractable with state-of-the-art

techniques, as we will see in Section 6.3.

Besides verifying the actual correctness property of P , i.e., establishing good(O⟦P⟧AdrAdr), we will
also establish the absence of double retires, as required for a reasonable application of OBase. As

expected, compositionality allows us to rely on the simpler SMR semantics.

Theorem 5.11. If R ⊧ O, then ⟦P(R)⟧AdrAdr is free from double retires if O⟦P⟧AdrAdr is.

1 Bouajjani et al. [2015b] show that linearizability reduces to control location reachability as well.

54 Chapter 5 Compositional Verification

Ownership and Reclamation 6
Ownership reasoning is a well-known technique that is vital for thread-modular analyses: it

brings the necessary precision required for successful verication. Traditionally, it is assumed that

references to owned memory exist only within the owning thread. While this strong exclusivity

assumption is guaranteed to hold under garbage collection, it is unsound when memory is

reclaimed and reused. The reason for this are dangling pointers. They may observe how another

thread reclaims and reallocates, thus owns, some part of the memory. To overcome this problem,

we introduce a weaker notion of ownership. We relax the traditional exclusivity assumption for

dangling pointers, and for dangling pointers only. The resulting approach is sound and makes

thread-modular analyses suciently precise. Moreover, it comes with a relatively small overhead

compared to existing solutions.

The remainder of the chapter is structured as follows. Section 6.1 demonstrates both the need

for and the unsoundness of ownership reasoning for manual memory management. Section 6.2

introduces a novel notion of weak ownership and shows how it can be used to increase the

precision of thread-modular analyses. Section 6.3 evaluates our approach and compares it to

existing ones.

6.1 Reclamation breaks Ownership

Thread-modular analyses [Berdine et al. 2008; Jones 1983; Owicki and Gries 1976] verify each

thread individually. On the one hand, this yields an ecient analysis for programs with a xed

number of threads as it avoids an explicit cross-product of all threads. On the other hand, it makes

verication for an arbitrary number of threads possible. The downside of thread-modularity is

its imprecision in computing thread interferences. Since threads are veried individually, the

relation among thread-local information gets lost. We discuss this problem and why its common

solution does not apply for manual memory management.

As we have seen in Chapter 4, thread-modular analyses abstract program congurations into

sets of views which capture a thread’s perception of the conguration. To compute the eect

that an interfering thread has on a victim thread, the views for the two threads are combined,

the interfering thread takes a step in the resulting view, which is then projected to the victim

thread. Combining two views is more problematic than one might think. As already noted, views

Section 6.1 Reclamation breaks Ownership 55

abstract away the relation among the interfering and victim threads. For an analysis to be sound,

it has to consider all possible relations among those two threads. This introduces imprecision

and may ultimately lead to false alarms. We illustrate the problem on an example.

Example 6.1. Consider the views from Figure 6.2 which arise during a thread-modular analysis

of Michael&Scott’s queue. The threads captured by views 𝜐1 and 𝜐2 from Figure 6.2a are 𝑡1 and 𝑡2,

respectively. Thread 𝑡1 is executing enqueue. It has already allocated a new node 𝑏, referenced by

its local pointer variable 𝑡1 ∶node, and is about to execute the CAS from Line 315 in order to insert

the new node after Tail. Thread 𝑡2 is executing dequeue. It has removed node 𝑐 , referenced

by 𝑡2 ∶head. Its next step is to retire 𝑐 .1

Let us consider the interference 𝑡1 is exposed to due to the actions of 𝑡2. The goal is to compute a

new view for 𝑡1 which captures the eect of 𝑡2 performing the insertion. To that end, we combine

the two views from Figure 6.2a. The result is given in Figure 6.2b. View 𝜐3 is the expected

one: 𝑡1 ∶node points to 𝑏 and 𝑡2 ∶head points to 𝑐 with 𝑏 ≠ 𝑐—the threads hold pointers to distinct

nodes. In 𝜐4, however, both threads alias the exact same node. Although peculiar, we have to

consider view 𝜐4 as well to guarantee soundness of the overall analysis, that is, guarantee that

all possible views are explored. Indeed, just from inspecting 𝜐1 and 𝜐2 we cannot conclude that

the memory layout of 𝜐4 is spurious in the sense that it does not occur in any execution of

Michael&Scott’s queue. Unfortunately, the spurious view will lead to a false alarm.

To see why view 𝜐4 is problematic, we continue to compute the inference. To that end, we let 𝑡2

execute its next command in 𝜐4. The result is view 𝜐
′
4 from Figure 6.2c. In 𝜐 ′4, node 𝑏 has been

retired. Here, we assume that the retirement is followed immediately by a free(𝑏). Next, we
project away thread 𝑡2 from 𝜐

′
4 and let 𝑡1 execute its next command. In the resulting view, 𝜐 ′′4

from Figure 6.2c, the deleted node 𝑏 has become the new Tail, breaking the shape invariant of

the queue. Subsequent enqueue operations can now reallocate 𝑏 and update it. The updates lead

to unintended updates of the overall queue, changing the queue’s content or losing elements if

the next eld of 𝑏 is modied. This constitutes a linearizability violation, verication fails. �

A well-known and common technique to avoid such spurious views during thread-modular

analyses is ownership reasoning [Castegren and Wrigstad 2017; Dietl and Müller 2013; Gotsman

et al. 2007; O’Hearn 2004; Vafeiadis and Parkinson 2007]. The allocation of a new node grants

the allocating thread ownership over the new node. Ownership is removed as soon as the new

node is published, that is, made accessible to other threads. Typically, this happens when a

pointer to a node is written to a shared pointer variable or to a pointer eld of another node

that is reachable from the shared variables. (We refrain from a formal denition of ownership

at this point.) Then, we exploit ownership to avoid spurious views and increase the precision

1 The attentive reader of Chapter 2 might observe that, unlike presented in Figure 6.2 here, the next eld 𝑐.next
of the removed but not yet retired node 𝑐 is never NULL in Michael&Scott’s queue. To obtain such a view
where 𝑐.next is NULL, we require a preceding interference step which suers from the same imprecision as the
interference step presented here. For simplicity, we stick with 𝑐.next being NULL in this example.

56 Chapter 6 Ownership and Reclamation

Figure 6.2: Views encountered during a thread-modular analysis of Michael&Scott’s queue.
Imprecision in interference steps leads to spurious verication failure.

(a) Two views the interference among which is computed. View 𝜐1 captures thread 𝑡1 which has
allocated a new node 𝑏 and is about to append it to the Tail of the queue via the CAS from Line 315.
View 𝜐2 captures thread 𝑡2 which has removed node 𝑐 from the queue and is about to retire it, Line 339.

𝑎⋯

Tail

𝑏

𝑡1 ∶node

View 𝜐1 𝑡1 ∶pc = Line 315

𝑐

𝑡2 ∶head

View 𝜐2 𝑡2 ∶pc = Line 339

(b) Possible combinations of views 𝜐1 and 𝜐2. Judging from the view abstraction alone, a vanilla thread-
modular analysis cannot know whether nodes 𝑏 and 𝑐 coincide in the actual program conguration
the views abstract from. Interference has to consider both 𝜐3 and 𝜐4, although 𝜐4 spurious.

𝑎⋯

Tail

𝑏

𝑡1 ∶node

𝑐𝑡2 ∶head

View 𝜐3 𝑡1 ∶pc = Line 315
𝑡2 ∶pc = Line 339

𝑎⋯

Tail

𝑏

𝑡1 ∶node

𝑡2 ∶head

View 𝜐4 𝑡1 ∶pc = Line 315
𝑡2 ∶pc = Line 339

(c) Continuing the interference computation for 𝜐4, we let thread 𝑡2 take a step and retire 𝑏, Line 339.
The result is 𝜐 ′4 where the retirement of 𝑏 has immediately freed it (marked with †). Next, we project
away 𝑡2 and let 𝑡1 execute Line 315. The result is 𝜐

′′
4 where the freed node 𝑏 has been inserted into the

queue. Subsequent reallocations of 𝑏 may thus change the queue’s content unknowingly, leading to
verication failure. Note that the verication failure is spurious since it is a result of the spurious 𝜐4.

𝑎⋯

Tail

𝑏
†

𝑡1 ∶node

𝑡2 ∶head

View 𝜐
′
4 𝑡1 ∶pc = Line 315

𝑡2 ∶pc = Line 344

𝑎⋯

Tail

𝑏
†

𝑡1 ∶node

View 𝜐
′′
4 𝑡1 ∶pc = Line 317

Section 6.1 Reclamation breaks Ownership 57

of thread-modular analyses. To that end, we extend views to track ownership information and

prevent combinations of views where an owned node is referenced by another non-owning

thread. That is, we ensure that the access exclusivity granted by ownership is respected. For

the above example, this means that thread 𝑡2 cannot have a pointer to 𝑏. Hence, we can rule out

view 𝜐4 as a combination of 𝜐1 and 𝜐2 because 𝑏 = 𝑐 is guarantee to be no longer possible.

While ownership reasoning is elegantly simple and yet eective, we cannot use it in our setting.

The above approach is sound only under garbage collection, when nodes are neither reused

nor reclaimed, but unsound otherwise. We demonstrate this with an example. Thereafter, in

Section 6.2, we introduce a new variant of ownership that applies to our setting.

Example 6.3. To see why traditional ownership reasoning breaks when memory is reclaimed

and reused, consider the congurations of Micheal&Scott’s queue with hazard pointers depicted

in Figure 6.4a. Conguration cfg corresponds to the scenario where node 𝑏 used to be the Tail of

the queue, however, it has subsequently been removed from the queue, reclaimed, and reallocated.

The reallocating thread and owner of 𝑏 is 𝑡1. Thread 𝑡2 started its operation while 𝑏 was still

the Tail and acquired a pointer to it, 𝑡2 ∶tail. Node 𝑏 was removed and reallocated before 𝑡2

could protect it. Hence, 𝑡2 ∶tail is a dangling pointer to the now 𝑡1-owned𝑏. The view abstraction

of cfg is the expected one: views 𝜐1 and 𝜐2 from Figure 6.4b. To make explicit that we lose any

relation among threads in the abstraction, we renamed node 𝑏 to 𝑐 in 𝜐2 (in practice, memory

abstractions are unlikely to maintain the addresses explicitly [Chang et al. 2020]).

If we let thread 𝑡1 continue its execution in cfg, it appends 𝑏 to the end of the queue and then

swings Tail to the newly added node. The result is cfg′ from Figure 6.4a. For an analysis to

be sound, interference has to produce from 𝜐1 and 𝜐2 a new view for 𝑡2 that captures the eect

of 𝑡1’s actions. The rst step of interference is to combine 𝜐1 and 𝜐2. Intuitively, we expect

the combined view to correspond to cfg. The fact that 𝑡1 owns 𝑏, however, makes traditional

ownership reasoning ignore the relevant case 𝑏 = 𝑐 . That is, 𝜐1 and 𝜐2 do not produce cfg

although they were obtained from it. Consequently, it is not guaranteed that a view for 𝑡2 is

explored which reects cfg′. This compromises soundness.

It is worth pointing out that under GC the same problem does not arise. Node 𝑏 would have not

been reclaimed due to 𝑡2 ∶tail pointing to it. �

To overcome the problem of an unsound analysis, we introduce a variant of ownership that

allows for both soundness and precision in the presence of memory reclamation and reuse.

58 Chapter 6 Ownership and Reclamation

Figure 6.4: Reallocation scenario from Michael&Scott’s queue with hazard pointers where
traditional ownership reasoning, as done under garbage collection, is unsound.

(a) Program congurations without view abstraction. In cfg, thread 𝑡1 owns node 𝑏 while 𝑡2 holds a
dangling pointer to it. The scenario arises if 𝑏 is reclaimed and subsequently reallocated in-between 𝑡2
acquiring and protecting pointer 𝑡2 ∶tail. Next, 𝑡1 inserts 𝑏 into the queue. The result is cfg′.

owned(𝑡1)

𝑎⋯

Tail

𝑏

𝑡1 ∶node

𝑡2 ∶tail

Conguration cfg 𝑡1 ∶pc = Line 315
𝑡2 ∶pc = Line 308

𝑎⋯

Tail

𝑏

𝑡1 ∶node

𝑡2 ∶tail

Conguration cfg′ 𝑡1 ∶pc = Line 317
𝑡2 ∶pc = Line 308

(b) View abstraction for cfg gives views 𝜐1 and 𝜐2. Applying traditional ownership reasoning prevents
a combined view where nodes 𝑏 and 𝑐 coincide, because 𝑏 is owned. Hence, conguration cfg′ is not
guaranteed to be covered by any view. The analysis is unsound.

owned(𝑡1)

𝑎⋯

Tail

𝑏

𝑡1 ∶node

View 𝜐1 𝑡1 ∶pc = Line 315

𝑎⋯

Tail

𝑐

𝑡2 ∶tail

View 𝜐2 𝑡2 ∶pc = Line 308

Section 6.1 Reclamation breaks Ownership 59

6.2 Regaining Ownership

The previous section demonstrated the dilemma of thread-modular analyses: interference without

ownership is too imprecise for successful verication, however, exploiting ownership makes

the analysis unsound. We propose a novel notion of ownership to overcome this problem. The

key observation is the following: traditional ownership reasoning breaks soundness because of

dangling pointers. When memory is reallocated, all preexisting pointers to the newly allocated

node are dangling. We suggest to keep track of this fact and allow dangling pointers to reference

nodes owned by other threads when combining views for interference. All remaining, non-

dangling pointers are treated in the traditional way: they are prevented from referencing nodes

owned by other threads during interference.

Tomake precise which pointers in a computation are dangling, we introduce the notion of validity.

That is, we dene a set of valid pointers. The dangling pointers are then the complement of the

valid pointers. We take this detour since we found it easier to formalize the valid pointers.

Initially, all pointer variables are valid. A pointer variable/selector becomes valid if it receives its

value from an allocation or another valid pointer. A pointer becomes invalid if its referenced

memory location is deleted or it receives its value from an invalid pointer. A deletion of an

address makes invalid its pointer selectors and all pointers referencing that address. A subsequent

reallocation of the address makes valid only the receiving pointer; all other pointers to the

address remain invalid. Assumptions of the form 𝑝 = 𝑞 validate 𝑝 if 𝑞 is valid, and vice versa.

The following denition makes this precise.

Denition 6.5 (Valid Expressions). The valid expressions in 𝜏 , valid𝜏 ⊆ PExp, are:

valid𝜖 ≔ PVar

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞,up⟩ ≔ valid𝜏 ∪ {𝑝 } if 𝑞 ∈ valid𝜏

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞,up⟩ ≔ valid𝜏 \ { 𝑝 } if 𝑞 ∉ valid𝜏

valid𝜏 .⟨𝑡,𝑝.next ∶= 𝑞,up⟩ ≔ valid𝜏 ∪ {𝑎.next } if𝑚𝜏(𝑝) = 𝑎 ∈ Adr ∧ 𝑞 ∈ valid𝜏

valid𝜏 .⟨𝑡,𝑝.next ∶= 𝑞,up⟩ ≔ valid𝜏 \ {𝑎.next } if𝑚𝜏(𝑝) = 𝑎 ∈ Adr ∧ 𝑞 ∉ valid𝜏

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞.next,up⟩ ≔ valid𝜏 ∪ {𝑝 } if 𝑞 ∈ valid𝜏 ∧𝑚𝜏(𝑞).next ∈ valid𝜏

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞.next,up⟩ ≔ valid𝜏 \ { 𝑝 } if 𝑞 ∉ valid𝜏 ∨𝑚𝜏(𝑞).next ∉ valid𝜏

valid𝜏 .⟨𝑡,free(𝑎),up⟩ ≔ valid𝜏 \ invalid𝑎
valid𝜏 .⟨𝑡,𝑝 ∶= malloc,up⟩ ≔ valid𝜏 ∪ {𝑝, 𝑎.next } if [𝑝 ↦ 𝑎] ∈ up

valid𝜏 .⟨𝑡,assume 𝑝=𝑞,up⟩ ≔ valid𝜏 ∪ {𝑝, 𝑞 } if { 𝑝, 𝑞 } ∩ valid𝜏 ≠ ∅

valid𝜏 .act ≔ valid𝜏 otherwise

with invalid𝑎 ≔ { 𝑝 ∣ 𝑚𝜏(𝑝) = 𝑎 } ∪ { 𝑏.next ∣ 𝑚𝜏(𝑏.next) = 𝑎 } ∪ {𝑎.next }.

60 Chapter 6 Ownership and Reclamation

We turn to the denition of ownership. It follows our previous discussion that allocations

grant ownership while publishing removes it. Technically, we remove ownership of published

addresses not in the moment they are published, but later upon the rst access. This reduces the

computational eort of tracking ownership information in tools since there is no need to compute

the reachability of addresses in order to check if ownership is lost. To prevent ownership getting

lost prematurely due to dangling pointers accessing owned addresses, our ownership denition

takes validity into account: only rst accesses through valid pointers remove ownership. The

discussion yields the following denition.

Denition 6.6 (Ownership). The addresses owned by thread 𝑡 in 𝜏 , owned𝜏(𝑡) ⊆ Adr , are:

owned𝜖(𝑡) ≔ ∅

owned𝜏 .⟨𝑡 ′,𝑝 ∶= 𝑞,[𝑝↦𝑎]⟩(𝑡) ≔ owned𝜏(𝑡) \ {𝑎 } if 𝑝 ∈ shared ∧ 𝑞 ∈ valid𝜏

owned𝜏 .⟨𝑡 ′,𝑝 ∶= 𝑞.next,[𝑝↦𝑎]⟩(𝑡) ≔ owned𝜏(𝑡) \ {𝑎 } if 𝑡 ≠ 𝑡
′
∧ 𝑞,𝑚𝜏(𝑞).next ∈ valid𝜏

owned𝜏 .⟨𝑡 ′,𝑝 ∶= 𝑞.next,[𝑝↦𝑎]⟩(𝑡) ≔ owned𝜏(𝑡) \ {𝑎 } if 𝑡 = 𝑡
′
∧ 𝑝 ∈ shared

owned𝜏 .⟨𝑡 ′,𝑝 ∶= malloc,[𝑝↦𝑎,•]⟩(𝑡) ≔ owned𝜏(𝑡) ∪ {𝑎 } if 𝑡 = 𝑡
′
∧ 𝑝 ∉ shared

owned𝜏 .⟨𝑡 ′,free(𝑎),∅⟩(𝑡) ≔ owned𝜏(𝑡) \ {𝑎 }

owned𝜏 .act(𝑡) ≔ owned𝜏(𝑡) otherwise .

With the above notion of ownership, we are ready to give the main result of the section. It states

that a thread 𝑡 can reference/access the addresses owned by another thread 𝑡 ′, 𝑡 ≠ 𝑡
′, only if the

pointer of 𝑡 is invalid, i.e., dangling. This validates the soundness of ownership reasoning when

combining views during interference. With respect to the example from Figure 6.2, it prevents

the spurious view 𝜐4 and thus avoids the associated false alarm.

Theorem 6.7 (Ownership Guarantee). Consider 𝜏 ∈O⟦P⟧AdrAdr with𝑚𝜏(𝑝) ∈ owned𝜏(𝑡).
Then, 𝑝 ∈ valid𝜏 implies 𝑝 ∈ local𝑡 .

It is worth pointing out that the above theorem does not impose any restrictions on the analyzed

program, like if/how it accesses freed memory. Ownership is a universal technique to make

thread-modular verication more precise. That it makes thread-modular verication suciently

precise to establish correctness for the data structures of our interest is demonstrated below.

6.3 Evaluation

We devise an automated analysis to check linearizability of non-blocking data structures. Sec-

tion 6.3.1 extends the thread-modular framework from Chapter 4 to safe memory reclamation

and ownership reasoning. Section 6.3.2 evaluates the approach.

Section 6.3 Evaluation 61

6.3.1 Integrating Safe Memory Reclamation

We extend the analysis from Chapter 4 to integrate SMR. To that end, we add SMR automata

to views. Note that SMR automata have a pleasant interplay with thread-modularity. In a view

for thread 𝑡 only those automaton states are needed where 𝑡 is observed. For OBase ×OEBR, for

example, this means that only states with 𝑧𝑡 = 𝑡 need to be stored in the view for 𝑡 . Similarly,

the memory abstraction induces a set of reachable addresses that need to be observed (in the

case of OBase × OEBR by 𝑧𝑎). To keep the number of SMR automaton states per view small in

practice, we do not keep states for shared addresses, i.e., addresses that are reachable from the

shared variables. Instead, we maintain the invariant that they are never retired nor freed. For

the analysis, we then assume that the ignored states are arbitrary (but not in locations implying

retiredness or freedness). We found that all benchmark programs satised this invariant and

that the resulting precision allowed for successful verication.

As discussed in Section 5.2, we need to check for double retires so that the use of OBase is sound.

We integrate an appropriate check: verication fails upon in∶retire(𝑝) if 𝑝 points to 𝑎 and 𝑎 is

currently retired, that is, if OBase is in state (𝐿3, 𝜑) with 𝜑 = { 𝑧𝑎 ↦ 𝑎 } prior to the call.

Ownership reasoning based on Theorem 6.7 is integrated easily by tracking validity and own-

ership information in views. Then, combined views can be discarded during interference if a

thread holds a valid pointer to an addresses owned by another thread.

6.3.2 Linearizability Experiments

We implemented the approach presented in this chapter in a C++ tool called tmrexp2 and

empirically evaluated it on Treiber’s stack, Michael&Scott’s queue, and the DGLM queue. For a

base line, we also evaluated a naive stack and a naive queue implementation both of which use a

single lock. Our benchmarks do not include set implementations since the memory abstraction we

built on cannot handle sortedness [Abdulla et al. 2013, 2017]; we stress that this is a shortcoming

of the memory abstraction, not a shortcoming of the results we have established in this chapter.

As SMR algorithm we used FL. Recall from Section 5.2 that we specify FL with OBase and assume

that freed addresses can be accessed safely.

The ndings are listed in Table 6.8. They include (i) the size of the explored state space, i.e.,

the number of reachable views, (ii) the number of interference steps that were performed as

well as the number of interference steps that were omitted due to ownership reasoning, and

(iii) the running time and result of verication (3 for success and 7 for failure). Besides the

novel ownership reasoning presented in this chapter, we include benchmarks for traditional

and no ownership reasoning. For traditional ownership reasoning, as done under garbage

2 tmrexp is freely available at: https://wolff09.github.io/phd/

62 Chapter 6 Ownership and Reclamation

https://wolff09.github.io/phd/

Table 6.8: Experimental results for verifying singly-linked data structures using FL. The
experiments were conducted on an Intel i5-8600K@3.6GHz with 16GB of RAM using
Ubuntu 16.04 and Clang 6.0.

Program Ownershipa States Interferences (pruned) Time

Single lock stack

GC 328 3.2𝑘 (10𝑘) 0.006𝑠 3

New 703 7𝑘 (22𝑘) 0.21𝑠 3

None 16𝑘 183𝑘 (0) 5.34𝑠 3

Single lock queue

GC 100 0.7𝑘 (5𝑘) 0.04𝑠 3

New 520 0.7𝑘 (31𝑘) 0.56𝑠 3

None 27𝑘 442𝑘 (0) 32𝑠 3

Treiber’s stack

GC 269 3.5𝑘 (16𝑘) 0.06𝑠 3

New 744 44𝑘 (96𝑘) 2.36𝑠 3

None 117𝑘 7920𝑘 (0) 602𝑠 3

Michael&Scott’s queue

GC 3134 47k (1237k) 2.52𝑠 3

New 19553 6678k (20748k) 3ℎ 3

None ≥ 69000 — 2𝑠 7
b

DGLM queue

GC 3134 47k (1237k) 2.52𝑠 3

New ≥ 6500 — 30𝑠 7
b

None ≥ 64000 — 2𝑠 7
b

a The ownership reasoning technique used: traditional reasoning as done under garbage collection, the new
approach from this chapter, or none.

b False positive due to imprecision in the memory abstraction.

collection, we also prevent memory from being reallocated in order to achieve a sound analysis.

Without ownership reasoning, we maintain two threads per view in order to achieve acceptable

precision, as proposed by Abdulla et al. [2013, 2017]. All experiments were conducted on an

Intel i5-8600K@3.6GHz with 16GB of RAM using Ubuntu 16.04 and Clang 6.0.

Our experiments substantiate the usefulness of the proposed ownership technique. It gives a

speed-up of up to two orders of magnitude for Treiber’s stack and the naive implementations.

The running times are a middle ground between a GC analysis and the full analysis as suggested

by Abdulla et al. [2013]. The size of the state space explored by the new technique is much closer

to GC than to the full analysis. Comparing the results for Treiber’s stack and Michael&Scott’s

queue, however, suggests that the blow up introduced by memory reclamation and subsequent

reuse is too severe to handle more elaborate data structures or more elaborate SMR algorithms.

In the following chapters we propose new methods to ght this problem.

Section 6.3 Evaluation 63

64

Pointer Races 7
While the compositional verication approach from Chapter 5 abstracts away the implementation

details of the SMR algorithm, it leaves the verier with a hard task, as seen in Chapter 6: memory

reclamation in the presence of ne-grained concurrency. To alleviate the impact of memory

reclamation on the analysis, we show that one can soundly verify a data structure P(O) by

considering only those computations where at most a single address is reused. This avoids the need

for an exploration of full O⟦P⟧AdrAdr which suers from a severe state space explosion. In fact,

we were not able to make an analysis go through with only the compositional approach from

Chapter 5; we need the reduction result presented in the following. The analysis from Chapter 6

as well as previous works on automated data structure verication [Abdulla et al. 2013; Holík

et al. 2017] have not required such a reduction since they considered FL rather than full-featured

SMR algorithms like EBR and HP.

Our results are independent of the actual safety property and the actual automatonO specifying

the SMR algorithm. To achieve this, we establish that for every computation from O⟦P⟧AdrAdr

there is a similar computation which reuses at most a single address. We construct the similar

computation by eliding reuse in the original computation. With elision we mean that we replace

in a computation a freed address with a fresh one. This allows a subsequent allocation to malloc

the elided address fresh instead of reusing it. Our notion of similarity makes sure that both

computations reach the same control locations. This allows for verifying safety properties.

The remainder of the chapter is structured as follows. Section 7.1 introduces our notion of

computation similarity. Section 7.2 formalizes requirements on P(O) such that similarity suces

to prove the desired reduction result. Section 7.3 discusses how the ABA problem can aect

the soundness of our approach and shows how to detect those cases. Section 7.4 presents the

reduction result. Section 7.5 evaluates our approach.

7.1 Similarity of Computations

Our goal is to mimic a computation 𝜏 where memory is reused arbitrarily with a computation 𝜎

where memory reuse is restricted. As noted before, we want the threads in 𝜏 and 𝜎 to reach the

same control locations in order to verify safety properties of 𝜏 in 𝜎 . We introduce a similarity

relation among computations such that 𝜏 and 𝜎 are similar if they can execute the same actions.

Section 7.1 Similarity of Computations 65

This results in both computations reaching the same control locations, as desired. However,

control location equality alone is insucient for 𝜎 to mimic subsequent actions of 𝜏 , that is,

to preserve similarity for subsequent actions. This is because most actions involve memory

interaction. Since 𝜎 reuses memory dierently than 𝜏 , the memory of the two computations is

not equal. Similarity requires a non-trivial correspondence wrt. the memory. Towards a formal

denition let us consider an example.

Example 7.1. Let 𝜏1 be a computation of a data structure P(OBase ×O0
HP ×O1

HP) using HP:

𝜏1 = ⟨𝑡, 𝑝 ∶= malloc, [𝑝 ↦ 𝑎, . . .]⟩ .⟨𝑡, in∶retire(𝑝),∅⟩ .⟨𝑡, free(𝑎),∅⟩ .⟨𝑡, re∶retire,∅⟩ .

⟨𝑡, 𝑞 ∶= malloc, [𝑞 ↦ 𝑎, . . .]⟩ .

In this computation, thread 𝑡 uses pointer 𝑝 to allocate address 𝑎. The address is then retired and

freed. In the subsequent allocation, 𝑡 acquires another pointer 𝑞 to 𝑎; 𝑎 is reused.

If 𝜎1 is a computation where 𝑎 shall not be reused, then 𝜎1 is not able to execute the exact same

sequence of actions as 𝜏1. However, it can mimic 𝜏1 as follows:

𝜎1 = ⟨𝑡, 𝑝 ∶= malloc, [𝑝 ↦ 𝑏, . . .]⟩ .⟨𝑡, in∶retire(𝑝),∅⟩ .⟨𝑡, free(𝑏),∅⟩ .⟨𝑡, re∶retire,∅⟩ .

⟨𝑡, 𝑞 ∶= malloc, [𝑞 ↦ 𝑎, . . .]⟩ ,

where 𝜎1 coincides with 𝜏1 up to replacing the rst allocation of 𝑎 with another address 𝑏. We

say that 𝜎1 elides the reuse of 𝑎. The memories of 𝜏1 and 𝜎1 dier on 𝑝 and agree on 𝑞. �

In the above example, 𝑝 is a dangling pointer. Programmers typically avoid using such pointers

because it is unsafe. For a denition of similarity, this practice suggests that similar computations

must coincide only on the non-dangling pointers and may dier on the dangling ones. To make

this precise, recall the notion of validity, Denition 6.5: the non-dangling pointers are precisely

the valid pointers.

Example 7.2 (Continued). In both 𝜏1 and 𝜎1 from the previous example, the last allocation

renders valid pointer 𝑞. On the other hand, the free to 𝑎 in 𝜏1 renders 𝑝 invalid. The reallocation

of 𝑎 does not change the validity of 𝑝 , it remains invalid. In 𝜎1, address 𝑏 is allocated and freed

rendering 𝑝 invalid. It remains invalid after the subsequent allocation of 𝑎. That is, both 𝜏1 and 𝜎1

agree on the validity of 𝑞 and the invalidity of 𝑝 . Moreover, 𝜏1 and 𝜎1 agree on the valuation of

the valid 𝑞 and disagree on the valuation of the invalid 𝑝 . �

The above example illustrates that eliding reuse of memory leads to a dierent memory valuation.

However, the elision can be performed in such a way that the valid memory is not aected. So we

say that two computations are similar if they agree on the resulting control locations of threads

and the valid memory. The valid memory includes the valid pointer variables, the valid pointer

selectors, the data variables, and the data selectors of addresses that are referenced by a valid

66 Chapter 7 Pointer Races

pointer variable/selector. Formally, this is a restriction of the entire memory to the valid pointer

expressions, written𝑚𝜏 ∣valid𝜏 .

Denition 7.3 (Restrictions). A restriction of memory𝑚 to a set 𝑃 ⊆ PExp, written𝑚∣𝑃 ,
is a new memory𝑚′ with domain dom(𝑚′) ≔ 𝑃 ∪ DVar ∪ { 𝑎.data ∈ DExp ∣ 𝑎 ∈𝑚(𝑃) }
such that𝑚(𝑒) =𝑚

′(𝑒) for all 𝑒 ∈ dom(𝑚′).

We are now ready to formalize the notion of similarity among computations. Two computations

are similar if they agree on the control location of threads and the valid memory.

Denition 7.4 (Computation Similarity). Two computations 𝜏 and 𝜎 are similar, denoted

by 𝜏 ∼ 𝜎 , if we have ctrl(𝜏) = ctrl(𝜎) and𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎 .

If two computations 𝜏 and 𝜎 are similar, then each action enabled after 𝜏 can be mimicked in 𝜎 .

More precisely, action act = ⟨𝑡, com, up⟩ after 𝜏 can be mimicked by act ′ = ⟨𝑡, com, up′⟩ after 𝜎 .
Both actions agree on the executing thread and the executed command, but may dier in the

memory update. The reason for this is that similarity does not relate the invalid parts of the

memory. This may give another update in 𝜎 if com involves invalid pointers.

Example 7.5 (Continued). Consider the following continuation of 𝜏1 and 𝜎1:

𝜏2 = 𝜏1 .⟨𝑡, 𝑝 ∶= 𝑝, up⟩ and 𝜎2 = 𝜎1 .⟨𝑡, 𝑝 ∶= 𝑝, up′⟩

where we append an assignment of 𝑝 to itself. The prexes 𝜏1 and 𝜎1 are similar, 𝜏1 ∼ 𝜎1.

Nevertheless, the updates up and up′ dier because they involve the valuation of the invalid

pointer 𝑝 which diers in 𝜏1 and 𝜎1. The updates are up = [𝑝 ↦ 𝑎] and up′ = [𝑝 ↦ 𝑏]. Since
the assignment leaves 𝑝 invalid, similarity is preserved by the appended actions, 𝜏2 ∼ 𝜎2. We say

that act ′ mimics act.

Altogether, similarity does not guarantee that the exact same actions are executable. It guarantees

that every action can be mimicked such that similarity is preserved. �

In the above we omitted an integral part of the program semantics. Memory reclamation is

not based on the control location of threads but on an SMR automaton examining the history

induced by a computation. The enabledness of a free is not preserved by similarity. On the one

hand, this is due to the fact that invalid pointers can be (and in practice are) used in SMR calls

which leads to dierent histories. On the other hand, similar computations end up in the same

control location but may perform dierent sequences of actions to arrive there, for instance,

execute dierent branches of conditionals. That is, to mimic free actions we need to correlate

the behavior of the SMR automaton rather than the behavior of the program. We motivate the

denition of an appropriate relation.

Section 7.1 Similarity of Computations 67

Example 7.6 (Continued). Consider the computations 𝜏3 = 𝜏2.𝛾 and 𝜎3 = 𝜎2.𝛾 with

𝛾 = ⟨𝑡, in∶protect𝑘(𝑝),∅⟩ .⟨𝑡, re∶protect𝑘 ,∅⟩ .⟨𝑡, in∶retire(𝑞),∅⟩ .⟨𝑡, re∶retire,∅⟩

where thread 𝑡 issues a protection and a retirement using 𝑝 and 𝑞, respectively. The histories

induced by those computations are:

H(𝜏3) =H(𝜏2) .in∶protect𝑘(𝑡, 𝑎) .re∶protect𝑘(𝑡) .in∶retire(𝑡, 𝑎) .re∶retire(𝑡)

and H(𝜎3) =H(𝜎2) .in∶protect𝑘(𝑡, 𝑏) .re∶protect𝑘(𝑡) .in∶retire(𝑡, 𝑎) .re∶retire(𝑡) .

Recall that 𝜏2 and 𝜎2 are similar. Similarity guarantees that the events of the retire call coincide

since 𝑞 is valid. The events of the protect call dier because the valuations of the invalid 𝑝 dier.

That is, SMR calls do not necessarily emit the same event in similar computations. Consequently,

the SMR automaton reaches dierent states after 𝜏3 and 𝜎3. More precisely, automatonOHP from

Figure 5.4 takes the following steps from the initial state (𝐿8, 𝜑) with 𝜑 = { 𝑧𝑡 ↦ 𝑡, 𝑧𝑎 ↦ 𝑎 }:

(𝐿8, 𝜑)−−−−−→
H(𝜏2) (𝐿8, 𝜑)−−−−−−−−−−−−−→

in∶protect𝑘(𝑡,𝑎) (𝐿9, 𝜑) −−−−−−−−−−−−−→
re∶protect𝑘(𝑡) (𝐿10, 𝜑)

−−−−−−−−−−−−−→
in∶retire(𝑡,𝑎) (𝐿11, 𝜑)−−−−−−−−−−−−−→

re∶retire(𝑡) (𝐿11, 𝜑)

and (𝐿8, 𝜑)−−−−−→
H(𝜎2) (𝐿8, 𝜑)−−−−−−−−−−−−−→

in∶protect𝑘(𝑡,𝑏) (𝐿8, 𝜑) −−−−−−−−−−−−−→
re∶protect𝑘(𝑡) (𝐿8, 𝜑)

−−−−−−−−−−−−−→
in∶retire(𝑡,𝑎) (𝐿8, 𝜑) −−−−−−−−−−−−−→

re∶retire(𝑡) (𝐿8, 𝜑) .

This prevents 𝑎 from being freed after 𝜏3, because a free(𝑎) would lead to the nal state (𝐿12, 𝜑)
and is thus not enabled, but allows for freeing it after 𝜎3. �

The above example shows that eliding memory addresses to avoid reuse may change SMR

automaton steps. The aected steps involve freed addresses. Like for computation similarity, we

dene a relation among computations which captures the SMR behavior on the valid addresses,

i.e., those addresses that are referenced by valid pointers, and ignores all other addresses. Here,

we do not use an equivalence relation. That is, we do not require SMR automata to reach the

exact same state for valid addresses. Instead, we express that the mimicking 𝜎 allows for more

behavior on the valid addresses than the mimicked 𝜏 . We dene an SMR behavior inclusion among

computations. This is motivated by the above example. There, address 𝑎 is valid because it is

referenced by the valid pointer 𝑞. Yet the SMR automaton steps for 𝑎 dier in 𝜏3 and 𝜎3. After 𝜎3

strictly more behavior is possible: 𝜎3 can free 𝑎 while 𝜏3 cannot.

To make this intuition precise, we need a notion of behavior on an address. Recall that the goal of

the desired behavior inclusion is to enable us to mimic frees. Intuitively, the behavior allowed

by O on address 𝑎 is the set of those histories that lead to a free of 𝑎.

Denition 7.7 (SMR Behavior). The behavior allowed by automaton O on address 𝑎 after

history ℎ is the set FO(ℎ, 𝑎) ≔ { ℎ′ ∣ ℎ.ℎ
′
∈ S(O) ∧ freesℎ′ ⊆ 𝑎 }.

68 Chapter 7 Pointer Races

Note that ℎ′ ∈ FO(ℎ, 𝑎) contains free events for address 𝑎 only, as dictated by freesℎ′ ⊆ 𝑎.

This side condition is necessary because an address may become invalid before being freed if,

for instance, the address becomes unreachable from the valid pointers. Despite similarity, the

mimicking computation 𝜎 may have already freed such an address while 𝜏 has not. Hence, the

free is no longer allowed after 𝜎 but still possible after 𝜏 . To prevent such invalid addresses from

breaking the desired inclusion on valid addresses, we strip from FO(ℎ, 𝑎) all frees that do not

target 𝑎. Note that we do not even retain frees of valid addresses here. This way, only SMR-related

actions inuence FO(ℎ, 𝑎). To be more precise, we have FO(H(𝜏), 𝑎) = FO(H(𝜏 .act), 𝑎) for
all actions act which do not emit an event.

The SMR behavior inclusion among computations is dened such that 𝜎 includes at least the

behavior of 𝜏 on the valid addresses. To make this formal, we dene the addresses that are in use

in a memory𝑚 by adr(𝑚) ≔ (dom(𝑚) ∪ range(𝑚)) ∩ Adr where we use {𝑎.next } ∩ Adr = 𝑎

and likewise for data selectors. Then, the valid addresses in 𝜏 are adr(𝑚𝜏 ∣valid𝜏).

Denition 7.8 (SMR Behavior Inclusion). Computation 𝜎 includes the SMR behavior of 𝜏 ,

denoted by 𝜏 ⋖ 𝜎 , if FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎) holds for all 𝑎 ∈ adr(𝑚𝜏 ∣valid𝜏).

7.2 Preserving Similarity

The development in Section 7.1 is idealized. There are cases where the introduced relations do

not guarantee that an action can be mimicked. All such cases have in common that they involve

invalid pointers. More precisely, (i) the computation similarity may not be strong enough to

mimic actions that dereference invalid pointers, and (ii) the SMR behavior inclusion may not

be strong enough to mimic calls involving invalid pointers. For each of those cases we give an

example and restrict our development. We argue throughout this section that our restrictions

are reasonable. Our experiments conrm this. We start with the computation similarity.

Example 7.9 (Continued). Consider the following continuation of 𝜏3 and 𝜎3:

𝜏4 = 𝜏3 .⟨𝑡, 𝑞.next ∶= 𝑞, [𝑎.next ↦ 𝑎]⟩ .⟨𝑡, 𝑝.next ∶= 𝑝, [𝑎.next ↦ 𝑎]⟩

and 𝜎4 = 𝜎3 .⟨𝑡, 𝑞.next ∶= 𝑞, [𝑎.next ↦ 𝑎]⟩ .⟨𝑡, 𝑝.next ∶= 𝑝, [𝑏.next ↦ 𝑏]⟩ .

The rst appended action updates 𝑎.next in both computations to 𝑎. Since 𝑞 is valid after both 𝜏3

and 𝜎3 this assignment renders valid 𝑎.next. The second action updates 𝑎.next in 𝜏4. This results

in 𝑎.next being invalid after 𝜏4 because the right-hand side of the assignment is the invalid 𝑝 .

In 𝜎4 the second action updates 𝑏.next which is why 𝑎.next remains valid. That is, the valid

memories of 𝜏4 and 𝜎4 dier. We have executed an action that cannot be mimicked on the valid

memory despite the computations being similar. �

Section 7.2 Preserving Similarity 69

The problem in the above example is the dereference of an invalid pointer. The computation

similarity does not give any guarantees about the valuation of such pointers. Consequently, it

cannot guarantee that an action using invalid pointers can be mimicked. To avoid such problems,

we forbid programs to dereference invalid pointers.

The rational behind this is as follows. Recall that an invalid pointer is dangling. That is, the

memory it references has been freed. If thememory has been returned to the underlying operating

system, then a subsequent dereference is unsafe, i.e., prone to a system crash due to a segfault.

Hence, such dereferences should be avoided. The dereference is only safe if the memory is

guaranteed to be accessible. To decide this, the invalid pointer needs to be compared with a

denitely valid pointer. Such a comparison renders valid the invalid pointer (cf. Denition 6.5).

This means that dereferences of invalid pointers are always unsafe. We let verication fail if

unsafe accesses are performed. That performance-critical and non-blocking code is free from

unsafe accesses is conrmed by our experiments.

Denition 7.10 (Unsafe Access). A computation 𝜏 .⟨𝑡, com, up⟩ performs an unsafe access

if com contains 𝑝.data or 𝑝.next with 𝑝 ∉ valid𝜏 .

Forbidding unsafe accesses makes the computation similarity strong enough to mimic all desired

actions. A discussion of cases where the SMR behavior inclusion cannot be preserved is in order.

We start with an example.

Example 7.11 (Continued). Consider the following continuations of 𝜏1, 𝜎1 from Example 7.1:

𝜏5 = 𝜏1 .⟨𝑡, in∶retire(𝑝),∅⟩ with H(𝜏5) = H(𝜏1) .in∶retire(𝑡, 𝑎)

and 𝜎5 = 𝜎1 .⟨𝑡, in∶retire(𝑝),∅⟩ with H(𝜎5) = H(𝜎1) .in∶retire(𝑡, 𝑏) .

The SMR behavior of 𝜏1 is included in 𝜎1, that is, 𝜏1 ⋖ 𝜎1. After 𝜏5 a deletion of 𝑎 is possible

because it is retired. After 𝜎5 a deletion of 𝑎 is prevented by OBase because 𝑎 has not been retired.

Formally, we have free(𝑎) ∈ FO(𝜏5, 𝑎) and free(𝑎) ∉ FO(𝜎5, 𝑎). However, 𝑎 is a valid address

because it is referenced by the valid pointer 𝑞. That is, the behavior inclusion among 𝜏1 and 𝜎1 is

not preserved by the subsequent action. �

The above example showcases that calls to the SMR algorithm can break the SMR behavior

inclusion. This is the case because an action can emit dierent events in similar computations.

The event emitted by an SMR call diers only if it involves invalid pointers.

The naive solution would be to prevent using invalid pointers in calls altogether. In practice,

this is too strong a requirement. As seen in Chapter 2, a common pattern for protecting an

address with hazard pointers is to (i) read a pointer 𝑝 into a local variable 𝑞, (ii) issue a protection

70 Chapter 7 Pointer Races

using 𝑞, and (iii) repeat the process if 𝑝 and 𝑞 do not coincide.1 After reading into 𝑞 and before

protecting 𝑞 the referenced memory may be freed. Hence, the protection is prone to use invalid

pointers. Forbidding such protections would render our theory inapplicable to non-blocking

data structures using hazard pointers.

To ght this problem, we forbid only those calls involving invalid pointers which are prone to

break the SMR behavior inclusion. Intuitively, this is the case if there exists another call which

diers only on the invalid pointer arguments and allows for more behavior on the valid addresses

than the original call. To regain precision and support more scenarios where invalid pointers are

used, we keep unchanged the address the behavior of which is considered.

Denition 7.12 (Racy Call). Computation 𝜏 .(𝑡, in∶func(𝑟),∅) performs a racy call if the

following holds for ℎ = H(𝜏) and 𝑣 =𝑚𝜏(𝑟):

∃𝑎 ∃𝑤. (∀𝑖 . (𝑣𝑖 = 𝑎 ∨ 𝑟𝑖 ∈ valid𝜏 ∨ 𝑟𝑖 ∈ DExp) ⟹ 𝑣𝑖 = 𝑤𝑖)

∧ FO(ℎ.in∶func(𝑡,𝑤), 𝑎) /⊆ FO(ℎ.in∶func(𝑡, 𝑣), 𝑎)

It follows immediately that calls containing only valid pointers are not racy. Using the SMR

automaton for HP, OBase ×O0
HP ×O1

HP , we deem racy the call to retire from Example 7.11—we

reject the program and let verication fail. Indeed, requesting the deferred deletion of an invalid

pointer might lead to a double free, resulting in a system crash. For that reason, retire is always

called using valid pointers in practice. For protect calls one can show that they never race. We

have already seen this in Example 7.6. There, a call to protect with invalid pointers did not

break the SMR behavior inclusion. Instead, the mimicking computation 𝜎3 could perform strictly

more frees than the computation it mimicked 𝜏3.

We uniformly refer to the above situations where the usage of an invalid pointer can break

the ability to mimic an action as a pointer race. It is a race indeed because the usage and the

reclamation of a pointer are not properly synchronized.

Denition 7.13 (Pointer Race). A computation 𝜏 .act is a pointer race if act performs (i) an

unsafe access, or (ii) a racy SMR call.

With pointer races we restrict the class of supported programs. The restriction to pointer race

free programs is reasonable in that we can handle common non-blocking data structures from

the literature as shown in our experiments. Since we want to give the main result of this section

in a general fashion that does not rely on the actual SMR automaton used to specify the SMR

implementation, we have to restrict the class of supported SMR automata as well.

1 For an instantiation of this pattern, consider Lines 326 to 328 of Michael&Scott’s queue from Figure 2.13.

Section 7.2 Preserving Similarity 71

We require that the SMR automaton supports the elision of reused addresses, as done in Exam-

ple 7.1. Intuitively, elision is a two-step process the automaton must be insensitive to. First, an

address 𝑎 is swapped with a fresh address 𝑏 upon an allocation where 𝑎 should be reused but

cannot. In the resulting computation, 𝑎 is fresh and thus the allocation can be performed without

reusing 𝑎. The process of swapping 𝑎 with 𝑏 must not aect the behavior of the automaton on

addresses other than 𝑎 and 𝑏. Second, the automaton must allow for more behavior on the fresh

address than on the reused address. This is required to preserve the SMR behavior inclusion

because the allocation renders 𝑎 valid.

Additionally, we require a third property: the SMR automaton behavior on an address must not

be inuenced by frees of another address. This is needed because computation similarity and

SMR behavior inclusion do not guarantee that frees of invalid addresses can be mimicked, as

discussed before. Since such frees do not aect the valid memory, there is no need to mimic them.

The SMR automaton has to allow us to simply skip such frees when mimicking a computation.

For a formal denition of our intuition we write ℎ[𝑎/𝑏] to denote the history that is constructed

from ℎ by swapping every occurrence of 𝑎 and 𝑏. Moreover, we write 𝑎 ∈ freshℎ and mean that

address 𝑎 does not appear in any of the events of ℎ.

Denition 7.14 (Elision Support). SMR automaton O = OBase ×OSMR supports elision of

memory reuse if for all ℎ,ℎ′ ∈ S(OBase) and 𝑎, 𝑏, 𝑐 ∈ Adr the following conditions are met:

(i) 𝑎 ≠ 𝑐 ≠ 𝑏 implies FOSMR(ℎ, 𝑐) = FOSMR(ℎ[𝑎/𝑏], 𝑐),
(ii) FO(ℎ, 𝑎) ⊆ FO(ℎ′, 𝑎) and 𝑏 ∈ freshℎ′ implies FOSMR(ℎ, 𝑏) ⊆ FOSMR(ℎ

′
, 𝑏), and

(iii) 𝑎 ≠ 𝑏 and ℎ.free(𝑎) ∈ S(O) implies FOSMR(ℎ, 𝑏) = FOSMR(ℎ.free(𝑎), 𝑏).

Crucially, the above denition is concerned with the SMR-specic part OSMR only. Automa-

ton OBase does not satisfy Property (ii) for arbitrary histories ℎ,ℎ
′. The problem is that

an in∶retire(𝑡, 𝑏) in history ℎ takes OBase from its initial location 𝐿2 to location 𝐿3. In 𝐿3

a free(𝑏) is allowed. However, that 𝑏 is fresh in ℎ′ means thatOBase is in 𝐿2 where free(𝑏) is not
allowed. So, ℎ′ does not include all of ℎ’s behavior. When constructing for 𝜏 a mimicking compu-

tation 𝜎 that elides the reuse of 𝑏, the problematic scenario occurs only if 𝑏 is both freed and

retired after 𝜏 . This, in turn, gives rise to a double retire on 𝑏. To see this, observe that 𝑏 must have

been retired after being freed as otherwise OBase would be in 𝐿2 rather than 𝐿3 after ℎ = H(𝜏).
For 𝑏 to be freed, there must be a preceding retirement according to OBase. Removing the free,

we obtain a computation where 𝑏 remains retired and is thus retired twice. Hence, a check for

double retires, which Section 5.2 mandates anyways, yields a lift of Property (ii) to full O in the

relevant situations. It is worth pointing out that we cannot rely on pointer races here. While the

SMR automata we use would deem racy a retirement of a freed and thus invalid address, this is

not guaranteed in general.

72 Chapter 7 Pointer Races

We found Denition 7.14 practical in that the SMR automata for specifying HP and EBR from

Figure 5.4, which we use for our experiments in Section 7.5, support elision.

Proposition 7.15. The SMR automataOBase ×OEBR andOBase ×O0
HP ×O1

HP from Figure 5.4

as well as OBase ×O0,1
HP support elision.

7.3 Detecting ABAs

So far we have introduced restrictions, namely pointer race freedom and elision support, to rule

out cases where our idea of eliding memory reuse does not work, that is, breaks similarity or the

SMR behavior inclusion. If those restrictions were strong enough to carry out our development,

then we could remove any reuse from a computation and get a similar one where no memory

is reused. That the resulting computation does not reuse memory means, intuitively, that it is

executed under garbage collection. As shown in the literature [Michael and Scott 1996], the ABA

problem is a subtle bug caused by manual memory management which is prevented by garbage

collection. So, eliding all reuses jeopardizes soundness of the analysis—it could miss ABAs which

result in a safety violation. With this observation, we elide all reuses except for one address per

computation. This way we analyze a semantics that is close to garbage collection, can detect

ABA problems, and is much simpler than full O⟦P⟧AdrAdr .

The semantics that we suggest to analyze is O⟦P⟧oneAdr ≔ ⋃𝑎∈Adr O⟦P⟧{𝑎 }Adr . It is the set of all

computations that reuse at most a single address. A single address suces to detect the ABA

problem. The ABA problem manifests as an assumption of the form assume 𝑝 = 𝑞 where the

addresses held by 𝑝 and 𝑞 coincide but stem from dierent allocations. That is, one of the pointers

has received its address, the address was freed and then reallocated, before the pointer is used in

the assumption. Note that this implies that for an assumption to be ABA one of the involved

pointers must be invalid. Pointer race freedom does not forbid this. Nor do we want to forbid

such assumptions. In fact, most programs using hazard pointers contain ABAs. They are written

in a way that ensures that the ABA is harmless.

Example 7.16 (ABAs in Michael&Scott’s queue using hazard pointers). Consider the

following code, repeated from Michael&Scott’s queue from Figure 2.13:

326 Node* head = Head;

327 protect0(head);

328 if (head != Head) continue;

In Line 326 the value of the shared pointer Head is read into the local pointer head. Then, a

hazard pointer is used in Line 327 to protect head from being freed. In between reading and

protecting head, its address could have been deleted, reused, and reentered the queue. That is,

Section 7.3 Detecting ABAs 73

when executing Line 328 the pointers Head and head can coincide although the head pointer

stems from an earlier allocation. This scenario is an ABA. Nevertheless, the queue’s correctness

is not aected by it. The ABA prone assumption is only used to guarantee that the address

protected in Line 327 is indeed protected after Line 328. With respect to the SMR automatonOHP ,

the assumption guarantees that the protection was issued before a retirement (after the latest

reallocation) so that OHP is guaranteed to be in 𝐿10 and thus prevents future retirements from

freeing the protected memory. The ABA does not void this guarantee, it is harmless. �

The above example shows that non-blocking data structures may perform ABAs which do not

aect their correctness. To soundly verify such algorithms, our approach is to detect every ABA

and decide whether it is harmless indeed. If so, our verication is sound. Otherwise, we report

to the programmer that the implementation suers from a harmful ABA problem.

A discussion of how to detect ABAs is in order. Let 𝜏 ∈ O⟦P⟧AdrAdr and 𝜎 ∈ O⟦P⟧{𝑎 }Adr be similar

computations. Intuitively, 𝜎 is a computation which elides the reuses from 𝜏 except for address 𝑎.

Address 𝑎 can be used in 𝜎 in exactly the same way as it is used in 𝜏 . Let act be an ABA prone

assumption of the form act = ⟨𝑡, assume 𝑝 = 𝑞,∅⟩. Assume act is enabled after 𝜏 . To detect this

ABA under O⟦P⟧{𝑎 }Adr we need act to be enabled after 𝜎 . We seek to have 𝜎.act ∈ O⟦P⟧{𝑎 }Adr . This

is not guaranteed. Since act is an ABA it involves at least one invalid pointer, say 𝑝 . Computation

similarity does not guarantee that 𝑝 has the same valuation in both 𝜏 and 𝜎 . However, if 𝑝 points

to 𝑎 in 𝜏 , then it does so in 𝜎 because 𝑎 is (re)used in 𝜎 in the same way as in 𝜏 . Thus, we end up

with𝑚𝜏(𝑝) =𝑚𝜎(𝑝) although 𝑝 is invalid. In order to guarantee this, we introduce an address

alignment relation which precisely tracks how the reusable address 𝑎 is used.

Denition 7.17 (Address Alignment). Computations 𝜏 and 𝜎 are 𝑎-aligned, 𝜏 ≼𝑎 𝜎 , if:

∀𝑝 ∈ PVar . 𝑚𝜏(𝑝) = 𝑎 ⟺ 𝑚𝜎(𝑝) = 𝑎

and ∀𝑏 ∈𝑚𝜏(valid𝜏). 𝑚𝜏(𝑏.next) = 𝑎 ⟺ 𝑚𝜎(𝑏.next) = 𝑎

and 𝑎 ∈ fresh𝜏 ∪ freed𝜏 ⟺ 𝑎 ∈ fresh𝜎 ∪ freed𝜎

and FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎)

and 𝑎 ∈ retired𝜏 ⟺ 𝑎 ∈ retired𝜎 .

The rst line in this denition states that the same pointer variables in 𝜏 and 𝜎 are pointing

to 𝑎. Similarly, the second line states this for the pointer selectors of valid addresses. We have to

exclude the invalid addresses here because 𝜏 and 𝜎 may dier on the in-use addresses due to

eliding reuse. The third line states that 𝑎 can be allocated in 𝜏 i it can be allocated in 𝜎 . The

fourth line states that the SMR automaton allows for more behavior on 𝑎 in 𝜎 than in 𝜏 . These

properties combined guarantee that 𝜎 can mimic actions of 𝜏 involving 𝑎 no matter if invalid

pointers are used. The last line requires that 𝑎 is retired in 𝜏 i it is retired in 𝜎 . This property

makes double retires performed after 𝜏 visible in the mimicking 𝜎 .

74 Chapter 7 Pointer Races

The address alignment lets us detect ABAs in O⟦P⟧oneAdr . Intuitively, we can only detect rst

ABAs because we allow for only a single address to be reused. Subsequent ABAs on dierent

addresses cannot be detected. To detect ABA sequences of arbitrary length, an arbitrary number

of reusable addresses is required. To avoid this, i.e., to avoid an analysis of full O⟦P⟧AdrAdr , we

formalize the idea of harmless ABAs from before. We say that an ABA is harmless if executing it

leads to a system state which can be explored (by another computation) without performing

an ABA. That the system state can be explored without performing an ABA means that every

ABA is also a rst ABA. Thus, any sequence of ABAs is explored by considering only rst ABAs.

Note that this denition is independent of the actual correctness notion.

Denition 7.18 (Harmful ABA). The semantics O⟦P⟧oneAdr is free from harmful ABAs if:

∀𝜎𝑎 .act ∈ O⟦P⟧{𝑎 }Adr ∀𝜎𝑏 ∈ O⟦P⟧{𝑏 }Adr ∃𝜎
′
𝑏 ∈ O⟦P⟧{𝑏 }Adr .

𝜎𝑎 ∼ 𝜎𝑏 ∧ act = ⟨•, assume •, •⟩ ⟹ 𝜎𝑎 .act ∼ 𝜎
′
𝑏 ∧ 𝜎𝑏 ≼𝑏 𝜎

′
𝑏 ∧ 𝜎𝑎 .act ⋖ 𝜎

′
𝑏 .

To understand how the denition implements our intuition, consider 𝜏 .act ∈ O⟦P⟧AdrAdr where act

performs an ABA on address 𝑎. Our goal is to mimic 𝜏 .act in O⟦P⟧{𝑏 }Adr , that is, we want to

mimic the ABA without reusing address 𝑎 (for instance, to detect subsequent ABAs on address 𝑏).

Assume we are given 𝜎𝑏 ∈ O⟦P⟧{𝑏 }Adr which is similar and 𝑏-aligned to 𝜏 . This does not guarantee

that act can be mimicked after 𝜎𝑏 ; the ABA may not be enabled because it involves invalid

pointers the valuation of which diers in 𝜏 and 𝜎𝑏 . However, we can construct a computation 𝜎𝑎

which is similar and 𝑎-aligned to 𝜏 . After 𝜎𝑎 the ABA is enabled, i.e., 𝜎𝑎 .act ∈ O⟦P⟧{𝑎 }Adr . For

those two computations 𝜎𝑎 .act and 𝜎𝑏 we invoke the above denition. It yields another com-

putation 𝜎
′
𝑏 ∈ O⟦P⟧{𝑏 }Adr which, intuitively, coincides with 𝜎𝑏 but where the ABA has already

been executed. Put dierently, 𝜎 ′𝑏 is a computation which mimics the execution of act after 𝜎𝑏
although act is not enabled.

Example 7.19 (Continued). Consider the computation 𝜏 .act of Michael&Scott’s queue with:

𝜏 = 𝜏6 .⟨𝑡, head ∶= Head, [head ↦ 𝑎]⟩ .𝜏7 .free(𝑎) .𝜏8 .

⟨𝑡, in∶protect0(head),∅⟩ .⟨𝑡, re∶protect0,∅⟩

and act = ⟨𝑡, assume head = Head,∅⟩ .

This computation resembles a thread 𝑡 executing Lines 326 to 328 while an interferer frees

address 𝑎 referenced by head, reallocates it, and makes it the Head of the queue again; we assume

that 𝜏6, 𝜏7, 𝜏8 consist of the interferer’s actions the precise form of which does not matter here.

The assume in act resembles the conditional from Line 328 and states that the condition evaluates

to true. That is, act is a potential ABA on address 𝑎.

Reusing address 𝑎 allows us to mimic 𝜏 with an 𝑎-aligned computation 𝜎𝑎 ∈ O⟦P⟧{𝑎 }Adr . The ABA

prone action act is guaranteed to be enabled after 𝜎𝑎 , so 𝜎𝑎 .act mimics 𝜏 .act. Reusing another

Section 7.3 Detecting ABAs 75

address 𝑏 yields a 𝑏-aligned 𝜎𝑏 ∈ O⟦P⟧{𝑏 }Adr mimicking 𝜏 . After 𝜎𝑏 , act may not be enabled.

The reason for this is that 𝜎𝑏 elides allocations of 𝑎 to avoid it being reused. The interferer’s

reallocation of 𝑎 (in 𝜏8) forces 𝜎𝑏 to elide its previous allocation. Hence, thread 𝑡 ’s head does not

point to 𝑎 while Head still does. The ABA prone act is not enabled after 𝜎𝑏 .

To see that the above ABA is harmless, consider the following rescheduling of the actions in 𝜏 :

𝜏
′
= 𝜏6 .𝜏7 .free(𝑎) .𝜏8 .⟨𝑡, head ∶= Head, [head ↦ 𝑎]⟩ .

⟨𝑡, in∶protect0(head),∅⟩ .⟨𝑡, re∶protect0,∅⟩ .

Here, thread 𝑡 reads the latest version of Head. This gives rise to a computation 𝜎
′
𝑏 ∈ O⟦P⟧{𝑏 }Adr

mimicking 𝜏 ′. Unlike 𝜎𝑏 , however, 𝜎
′
𝑏 can execute act since the later read of head is not aected

by the elision of reallocations. Finally, 𝜎 ′𝑏 .act mimics 𝜏 .act. Requiring the existence of such a 𝜎 ′𝑏
guarantees that an analysis can see past ABAs on address 𝑎, although 𝑎 is not reused. �

A key aspect of the above denition is that checking for harmful ABAs can be done in the simpler

semantics O⟦P⟧oneAdr . Altogether, this means that we can rely on O⟦P⟧oneAdr for both the actual

analysis and a soundness (absence of harmful ABAs) check. Our experiments show that the

above denition is practical. There were no harmful ABAs in the benchmarks we considered.

7.4 Reduction Result

We show how to exploit the concepts introduced so far to soundly verify safety properties and es-

tablish the absence of double retires in the simpler semanticsO⟦P⟧oneAdr instead of fullO⟦P⟧AdrAdr .

Theorem 7.20. LetO support elision. LetO⟦P⟧oneAdr be free from pointer races, double retires,

and harmful ABAs. Then, for all 𝜏 ∈ O⟦P⟧AdrAdr and for all 𝑎 ∈ Adr there is 𝜎 ∈ O⟦P⟧{𝑎 }Adr with

𝜏 ∼ 𝜎 , 𝜏 ⋖ 𝜎 , and 𝜏 ≼𝑎 𝜎 .

Proof Sketch. We construct 𝜎 inductively bymimicking every action from 𝜏 and eliding reuses as

needed. For the construction, consider 𝜏 .act ∈ O⟦P⟧AdrAdr and assume we have already constructed,

for every 𝑎 ∈ Adr , an appropriate 𝜎𝑎 ∈ O⟦P⟧{𝑎 }Adr . Consider some address 𝑎 ∈ Adr . The task is to

mimic act in 𝜎𝑎 . If act is an assignment or an SMR call, then pointer race freedom guarantees

that we can mimic act by executing the same command with a possibly dierent update. We

discussed this in Section 7.2. The interesting cases are ABAs, frees, and allocations.

First, consider the case where act executes an ABA assumption assume 𝑝 = 𝑞. That the assump-

tion is an ABA means that at least one of the pointers is invalid, say 𝑝 . Hence, act may not be

enabled after 𝜎𝑎 . Let 𝑝 point to 𝑏 in 𝜏 . By induction, we have already constructed 𝜎𝑏 for 𝜏 . The

ABA is enabled after 𝜎𝑏 . This is due to 𝜏 ≼𝑏 𝜎𝑏 . It implies that 𝑝 points to 𝑏 in 𝜏 i 𝑝 points to 𝑏

76 Chapter 7 Pointer Races

in 𝜎𝑏 (independent of the validity), and likewise for 𝑞. That is, the comparison has the same

outcome in both computations. Now, we can exploit the absence of harmful ABAs to nd a

computation mimicking 𝜏 .act for 𝑎. Applying Denition 7.18 to 𝜎𝑏 .act and 𝜎𝑎 yields some 𝜎 ′𝑎
that satises the required properties.

Second, consider the case of act performing a free(𝑏). If act is enabled after 𝜎𝑎 nothing needs

to be shown. In particular, this is the case if 𝑏 is a valid address or 𝑎 = 𝑏. Otherwise, 𝑏 must be

an invalid address. Freeing an invalid address does not change the valid memory. It also does

not change the control location of threads as frees are performed by the environment. Hence,

we have 𝜏 .act ∼ 𝜎𝑎 . By the denition of elision support, Denition 7.14iii, the free does not

aect the behavior of the SMR automaton on other addresses. We get 𝜏 .act ⋖ 𝜎𝑎 . With the same

arguments we conclude 𝜏 .act ≼𝑎 𝜎𝑎 . That is, we do not need to mimic frees of invalid addresses.

Last, consider act executing an allocation 𝑝 ∶= malloc of address 𝑏. If 𝑏 is fresh in 𝜎𝑎 or 𝑎 = 𝑏,

then act is enabled after 𝜎𝑎 . The allocation makes 𝑏 a valid address. That ⋖ holds for this address

follows from elision support, Denition 7.14ii. As argued earlier, elision support applies to fullO
here because there are no double retires on 𝑏 by assumption: a double retire on 𝑏 in 𝜏 would

manifest as a double retire in some 𝜎𝑏 ∈ O⟦P⟧oneAdr with 𝜏 ≼𝑏 𝜎𝑏 which exists by induction.

Consider now the remaining case where act is not enabled after 𝜎𝑎 because 𝑏 is not fresh. We

replace in 𝜎𝑎 every occurrence of 𝑏 with a fresh address 𝑐 . Let us denote the result with 𝜎𝑎[𝑏/𝑐].
Relying on elision support, Denition 7.14i, one can show 𝜎𝑎 ≺ 𝜎𝑎[𝑏/𝑐] and thus 𝜏 ≺ 𝜎𝑎[𝑏/𝑐]
for all ≺ ∈ {∼,⋖,≼𝑎 }. Since 𝑏 is fresh in 𝜎𝑎[𝑏/𝑐], we conclude by enabledness of act as in the

previous case. �

From the above follows the overall reduction result. It states that safety properties can be veried

under the much simpler semantics which reuses at most a single address. We stress that the

result is independent of the actual SMR automaton used.

Theorem 7.21 (Reduction 1). If O supports elision and O⟦P⟧oneAdr is free from pointer races,

double retires, and harmful ABAs, then good(O⟦P⟧AdrAdr) ⟺ good(O⟦P⟧oneAdr).

We can also prove the absence of double retires in the simpler semantics, as mandated by SMR

algorithms in general (cf. Section 2.3) and SMR automaton OBase in particular (cf. Section 5.2).

Theorem 7.22. If O supports elision and O⟦P⟧oneAdr is free from pointer races, double retires,

and harmful ABAs, then O⟦P⟧AdrAdr is free from double retires.

In the next section, we put the results to practice and demonstrate how to verify non-blocking

data structures with memory reclamation.

Section 7.4 Reduction Result 77

7.5 Evaluation

We propose an automated analysis that is capable of checking linearizability of non-blocking

data structures as well as checking compliance of SMR implementations with SMR automaton

specications. The analysis extends the one from Section 6.3 as described in Section 7.5.1. The

linearizability benchmarks are discussed in Section 7.5.2. SMR implementations are veried

against SMR automata in Section 7.5.3.

7.5.1 Soundness checks

To guarantee that the restriction of reuse to a single address is sound, we have to check for

pointer races and harmful ABAs, as demanded by Theorem 7.21. To check for pointer races

we rely on the validity information we already integrated in Chapter 6. If a pointer race is

detected, verication fails. For this check, we rely on Proposition 7.23 below and deem racy

any invocation of retire with invalid pointers. That is, the pointer race check boils down to

scanning dereferences and retire invocations for invalid pointers. A more general check for

racy calls can be implemented by using the technique from Proposition 5.3.

Proposition 7.23. If a call is racy wrt. OBase ×OEBR or OBase ×O0
HP ×O1

HP or OBase ×O0,1
HP ,

then it is a call to function retire with an invalid pointer as its argument.

Next, we add a check for harmful ABAs on top of the state space exploration. This check has to

implement Denition 7.18. That a computation 𝜎𝑎 .act contains a harmful ABA can be detected

in the view 𝜐𝑎 for thread 𝑡 which performs act. Like for computations, the view abstraction 𝜐𝑏

of 𝜎𝑏 for 𝑡 cannot perform the ABA. To prove the ABA harmless, we seek a view 𝜐
′
𝑏 which is

similar to 𝜐𝑎 , 𝑏-aligned to 𝜐𝑏 , and includes the SMR behavior of 𝜐𝑏 . (The relations introduced in

Sections 7.1 to 7.3 naturally extend to views.) If no such 𝜐 ′𝑏 exists, verication fails.

In the thread-modular setting one has to be careful with the choice of 𝜐 ′𝑏 . It is not sucient to nd

just some 𝜐 ′𝑏 satisfying the desired relations. The reason lies in that we perform the ABA check

on a thread-modular abstraction of computations. To see this, assume the view abstraction of 𝜎𝑏

is 𝛼(𝜎𝑏) = {𝜐𝑏, 𝜐 } where 𝜐𝑏 is the view for thread 𝑡 which performs the ABA in 𝜎𝑎 .act. For just

some 𝜐 ′𝑏 it is not guaranteed that there is a computation 𝜎
′
𝑏 such that 𝛼(𝜎 ′𝑏) = {𝜐 ′𝑏, 𝜐 }. The sheer

existence of the individual views 𝜐 ′𝑏 and 𝜐 in𝑉 does not guarantee that there is a computation the

abstraction of which yields those two views. Put dierently, we cannot construct computations

from views. The existence of 𝜐 ′𝑏 does not prove the existence of the required 𝜎 ′𝑏 .

To overcome this problem, we use a method to search for a 𝜐 ′𝑏 that guarantees the existence

of 𝜎 ′𝑏 ; in terms of the above example, guarantees that there is 𝜎 ′𝑏 with 𝛼(𝜎 ′𝑏) = {𝜐 ′𝑏, 𝜐 }. We take

78 Chapter 7 Pointer Races

the view 𝜐𝑏 that cannot perform the ABA. We apply sequential steps to 𝜐𝑏 until it comes back

to the same program location. The rational behind this approach is that ABAs are typically

conditionals that restart the operation if the ABA is not executable. Restarting the operation

results in reading out pointers anew (this time without interference from other threads, cf.

Example 7.19). Consequently, the ABA is now executable. The resulting view is a candidate

for 𝜐 ′𝑏 . If it does not satisfy Denition 7.18, verication fails. Although simple, this approach

succeeded in all of our benchmarks.

7.5.2 Linearizability Experiments

We implemented the approach presented in this chapter in a C++ tool called tmrexp.2 We

empirically evaluated the tool on Treiber’s stack, Michael&Scott’s queue, and the DGLM queue.

We reiterate from Section 6.3 that the analysis we build on cannot handle sets [Abdulla et al.

2013, 2017]; this is a shortcoming of the original approach, not a shortcoming of the results

from the present chapter. As SMR algorithms we considered EBR and HP as specied by the

SMR automata OBase × OEBR and OBase × O0
HP × O1

HP , respectively. We did not consider FL.

The reason for this is that the approach suggested in Chapter 5 and implemented in Chapter 6,

namely specifying FL via OBase and having retired addresses freed, inevitably leads to pointer

races (unsafe accesses) and thus to verication failure. We believe that one can generalize and

tailor the results presented here to support FL. Such a generalization, however, is beyond the

scope of this thesis.

The ndings are listed in Table 7.24. They include (i) the size of the explored state space, i.e.,

the number of reachable views, (ii) the number of ABA prone views, i.e., views where a thread

is about to perform an assumption containing an invalid pointer, (iii) the running time and

result of verication, i.e., the exhaustive exploration of the state space and linearizability check,

and (iv) the running time and result of proving the absence of harmful ABAs. We mark tasks

with 3 if they were successful and with 7 if they failed. All experiments were conducted on an

Intel i5-8600K@3.6GHz with 16GB of RAM using Ubuntu 16.04 and Clang 6.0.

Our approach is capable of verifying non-blocking data structures using HP and EBR. We were

able to automatically verify Treiber’s stack, Michael&Scott’s queue, and the DGLM queue. To

the best of our knowledge, we are the rst to verify data structures using the aforementioned

SMR algorithms fully automatically. Moreover, we are also the rst to verify automatically the

DGLM queue under any manual memory management technique.

An interesting observation throughout the entire test suite is that the number of ABA prone views

is rather small compared to the total number of reachable views. Consequently, the time needed

to check for harmful ABAs is insignicant compared to the verication time. This substantiates

2 tmrexp is freely available at: https://wolff09.github.io/phd/

Section 7.5 Evaluation 79

https://wolff09.github.io/phd/

Table 7.24: Experimental results for verifying singly-linked data structures using SMR.
The experiments were conducted on an Intel i5-8600K@3.6GHz with 16GB of RAM using
Ubuntu 16.04 and Clang 6.0.

SMR Program States ABAs Linearizability ABA Check

EBR

Treiber’s stack 1822 0 16𝑠 3 0𝑠 3

Michael&Scott’s queue 7613 0 2630𝑠 3 0𝑠 3

DGLM queue 27132 0 3754𝑠 3
b 0𝑠 3

HP

Treiber’s stack 2606 186 19𝑠 3 0.06𝑠 3

Opt. Treiber’s stack — — 0.8𝑠 7
a —

Michael&Scott’s queue 19028 536 7075𝑠 3 0.9𝑠 3

DGLM queue 41753 2824 7010𝑠 3
b 26𝑠 3

a Pointer race due to an ABA in push. The ABA does not aect correctness.
b Imprecision in the memory abstraction required hinting.

the usefulness of ignoring ABAs during the actual analysis and checking afterwards that no

harmful ABA exists.

Our tool could not establish linearizability for the optimized version of Treiber’s stack with

hazard pointers. The reason for this is that the push operation does not use any hazard pointers.

This leads to pointer races and thus verication failure although the implementation is correct.

To see why, consider the following excerpt of push, repeated from Figure 2.12:

278 Node* top = ToS;

279 node->next = top;

280 if (CAS(&ToS, top, node))

281 break

The operation reads the top-of-stack pointer into a local variable top in Line 278, links the newly

allocated node to the top-of-stack in Line 279, and swings the top-of-stack pointer to the new

node in Line 280. Between Line 278 and Line 280 the node referenced by top can be popped,

reclaimed, reused, and reinserted by an interferer. Consequently, the CAS in Line 280 is ABA

prone. The reclamation of the node referenced by top renders both top and node->next invalid.

As specied by Denition 6.5, the comparison of the valid ToS with the invalid top in the CAS

from Line 280 makes top valid again. However, node->next remains invalid. That is, the push

succeeds and leaves the stack in a state with ToS->next being invalid. This leads to pointer races

because no thread can acquire valid pointers to the nodes following ToS. Hence, reading out data

of such subsequent nodes in the pop procedure, for example, raises a pointer race.

80 Chapter 7 Pointer Races

To solve this issue, the CAS in Line 280 has to validate the pointer node->next. One could annotate

the CAS with an invariant Tos == node-> next. Treating invariants and assumptions alike would

result in the CAS validating node->next. That the annotation is an invariant indeed, could be

checked during the analysis. We consider a proper investigation as future work.

For the DGLM queue, our tool required hints. The DGLM queue is similar to Michael&Scott’s

queue but allows the Head pointer to overtake the Tail pointer by at most one node. Due to

imprecision in the memory abstraction, our tool explored states with malformed lists where

Head overtook Tail by more than one node. We implemented a switch to increase the precision

of the abstraction and ignore cases where Head overtakes Tail by more than one node. This

simple hint made verication of the DGLM queue possible. While this change is ad hoc, it does

not jeopardize the principledness of our approach because it aects only the memory abstraction

which we took from the literature.

7.5.3 Verifying SMR Implementations

It remains to verify that a given SMR implementation is correct wrt. an SMR automaton O. As

noted in Chapter 5, an SMR implementation can be viewed as a non-blocking data structure

where the stored data are pointers. So we can reuse the above analysis. We extended our tool

tmrexp with an abstraction for (sets of) data values.3 The main insight for a concise abstraction

is that it suces to track a single SMR automaton state per view. If the SMR implementation is

not correct wrt. O, then by denition there is 𝜏 ∈ O⟦𝑀𝐺𝐶(R)⟧AdrAdr with H(𝜏) ∉ S(O). Hence,
there must be some state 𝑠 withH(𝜏) ∉ S(𝑠). Consider the specications OBase ×O0

HP ×O1
HP

and OBase × OEBR. There, state 𝑠 is of the form 𝑠 = (𝑙, 𝜑) with 𝜑 = { 𝑧𝑡 ↦ 𝑡, 𝑧𝑎 ↦ 𝑎 }. State 𝑠
induces an abstraction of data values 𝑑 : either 𝑑 = 𝑎 or 𝑑 ≠ 𝑎. Similarly, an abstraction of sets of

data values simply tracks whether or not the set contains 𝑎.

To gain adequate precision, we retain in every view the thread-local pointers of the thread 𝑡 that

violates the specication, 𝑡 = 𝜑(𝑧𝑡). With respect to the HP implementation from Figure 2.8,

this keeps the thread-𝑡-local HPRec in every view. It makes the analysis recognize that 𝑡 has

indeed protected 𝑎. Moreover, we store in every view whether or not the last retire invocation

stems from the thread of that view. With this information, we avoid unnecessary matches during

interference of views 𝜐1 and 𝜐2: if both threads 𝑡1 of 𝜐1 and 𝑡2 of 𝜐2 have performed the last retire

invocation, then 𝑡1 and 𝑡2 are the exact same thread. Hence, interference is not needed as threads

have unique identities. We found this extension necessary to gain the precision required to verify

our benchmarks.

Table 7.25 shows the experimental results for verifying the implementations of EBR from Fig-

ure 2.7 and HP with two hazard pointers per thread from Figure 2.8. Both SMR implementations

3 tmrexp is freely available at: https://wolff09.github.io/phd/

Section 7.5 Evaluation 81

https://wolff09.github.io/phd/

Table 7.25: Experimental results for verifying SMR implementations against their SMR
automaton specications. The experiments were conducted on an Intel i5-8600K@3.6GHz
with 16GB of RAM using Ubuntu 16.04 and Clang 6.0.

SMR Implementation Specication States Verication

Hazard Pointers OBase ×O0
HP ×O1

HP 5437 1.5𝑠 3

Hazard Pointers OBase ×O0,1
HP 5304 1.5𝑠 3

Epoch-Based Reclamation OBase ×OEBR 11528 11.2𝑠 3

allow threads to dynamically join and part. We conducted the experiments in the same setup

as before. Our experiments reveal that the verication of SMR implementations is simpler and

more ecient than verifying non-blocking data structures using SMR. This is unsurprising since,

as discussed in Section 2.3, SMR implementations do not reclaim the memory they use internally

for bookkeeping.

82 Chapter 7 Pointer Races

Strong Pointer Races 8
The reduction result from Chapter 7 has demonstrated that large parts of the state space can

be ignored during an analysis. Soundness of the result crucially relies on a pointer race check

and an ABA check. Upon a closer inspection, one may presume that the ABA check holds back

the reduction result. Indeed, one can establish pointer race freedom and verify the program

under scrutiny ignoring reallocations altogether, i.e., under O⟦P⟧∅Adr . The ABA check, however,

mandates an analysis of O⟦P⟧oneAdr . As we have seen, dealing with deletions and reallocations is

notoriously dicult and expensive—this was the very reason for our endeavor in Chapter 7.

In this chapter, we utilize the full potential of the reduction from Chapter 7. We show that

the actual verication can be conducted under the garbage collected semantics ⟦P⟧∅∅, using
o-the-shelf GC veriers. To avoid an expensive state space exploration (a semantic analysis)

of a semantics larger than ⟦P⟧∅∅, we present a type system a successful type check of which

guaranteesO⟦P⟧∅Adr to be free from pointer races and harmful ABAs, as required by the reduction

result. We stress that the type check is syntax-centric—it need not explore the state space

of O⟦P⟧∅Adr . To enable such a type check, we deem ABAs unsafe, whether harmless or not. This

limits applicability: allowing for harmless ABAs was motivated by real-world implementations.

To support these implementations nevertheless, we employ the theory of movers [Lipton 1975]

as an enabling technique.

The idea behind our type system is a memory life cycle common to non-blocking data structures

using SMR [Brown 2015]. The life cycle, depicted in Figure 8.1, has four stages: (i) local, (ii) active,

(iii) retired, and (iv) not allocated. Newly allocated objects are in the local stage. The object is

known only to the allocating thread; it has exclusive read/write access. The goal of the local stage

is to prepare objects for being published. When an object is published, it enters the active stage.

In this stage, accesses to the object are safe because it is guaranteed to be allocated. However, no

Figure 8.1:Memory life cycle of objects in non-blocking data structures using SMR.

Not Allocated Local Active Retired

83

thread has exclusive access and thus must fear interference by others. It is worth pointing out

that a publication is irreversible. Once an object becomes active it cannot become local again. A

thread, even if it removes the active object from the shared structures, must account for other

threads that have already acquired a pointer to that object. Removed objects are eventually

retired. Depending on the SMR algorithm, retired objects may still be safely accessible. Finally,

the SMR algorithm reclaims retired objects. Then, the memory can be reused and the life cycle

begins anew.

The main challenge our type system has to address wrt. the above memory life cycle is the

transition from the active to the retired stage. Due to the lack of synchronization, this can happen

without a thread noticing. Programmers are aware of the problem. They protect objects while

they are active such that the SMR guarantees safe access even after the object is retired. To

cope with this, our types integrate knowledge about the SMR algorithm. A core aspect of our

development is that the actual SMR algorithm is an input to our type system—it is not tailored

towards a specic SMR algorithm.

An additional challenge arises from the type system performing a thread-local analysis, it

considers the program code as if it was sequential. This means the type system is not aware of

the actual interference among threads, unlike state space explorations. To address this, we use

types that are stable under the actions of interfering threads [Owicki and Gries 1976].

In Chapter 2 we have already seen that detecting activeness of objects is non-trivial. Between

acquiring a pointer to the object and the protection, an interferer may retire the object and

thus void the protection. SMR algorithms usually oer no means to check whether or not a

protection was successful. Instead, programmers perform this check by exploiting intricate data

structure invariants, like all shared reachable objects are active. A type system, however, typically

cannot detect such data structure shape invariants. We turn this weakness into a strength. We

deliberately do not track shape invariants nor alias information. Instead, we use light-weight

annotations to mark pointers that point to active objects. To relieve the programmer from

arguing about their correctness, we automate the correctness check. Interestingly, this can be

done with o-the-shelf GC veriers. It is worth pointing out that the ability to automatically

refute incorrect annotations allows for an automated guess-and-check approach for placing

invariant annotations [Flanagan and Leino 2001].

The remainder of this chapter is structured as follows: Section 8.1 introduces invariant an-

notations, Section 8.2 presents the generalized reduction result, Section 8.3 presents the type

system, Section 8.4 applies the type system to an example, Section 8.5 shows how to verify

annotations, Section 8.6 gives a type inference algorithm, Section 8.7 discusses movers, and

Section 8.8 evaluates the approach.

84 Chapter 8 Strong Pointer Races

8.1 Annotations

We introduce invariant annotations to guide the type check. An annotation construct that is

new to our model are angels, ghost (auxiliary) variables [Owicki and Gries 1976] with an angelic

semantics. Like for ghosts, their purpose is verication: angels store information about the

computation that can be used in invariants but that cannot be used to inuence the control ow.

This information is a set of addresses, which means angels are second-order pointers. The set of

addresses is determined by an angelic choice, a non-deterministic assignment that is benecial

for the future of the computation.

The idea behind angels is the following. Consider EBR’s leaveQ function. It guarantees that the

potentially innitely many addresses accessible during a non-quiescent phase remain allocated,

i.e., will not be reclaimed even if they are retired. An angelic choice is convenient for selecting the

set. Subsequent dereferences can then use invariant annotations to ensure that the dereferenced

pointer holds an address in the set captured by the angel. With this, our type system is able to

detect that the access is safe.

To incorporate angels and invariant annotations into our programming model from Chapter 5,

we generalize the set of commands as follows

com F com ∣ @inv angel 𝑟 ∣ @inv 𝑝 = 𝑞 ∣ @inv 𝑝 in 𝑟

∣ @inv active(𝑝) ∣ @inv active(𝑟) .

Angels are local variables 𝑟 from the set AVar . Invariant annotations include allocations of angels

via the keyword angel 𝑟 . Intuitively, this maps the angel to a set of addresses. Conditionals

behave as expected. The membership assertion 𝑝 in 𝑟 checks that the address of 𝑝 is included

in the set of addresses held by the angel 𝑟 . The predicate active(𝑝) expresses that the address
pointed to by 𝑝 currently is neither freed nor retired, and similar for active(𝑟). We use 𝑥 to

uniformly refer to pointers 𝑝 and angels 𝑟 .

In the SMR semantics O⟦P⟧𝑌𝑋 , the new commands do not lead to memory updates:

(Invariant) If act = ⟨𝑡, @inv • ,∅⟩.

Invariant annotations behave like assertions, they do not inuence the semantics but it has to

be veried that they hold for all computations. To make precise what it means for invariant

annotations to hold for a computation 𝜏 , we construct a formula inv(𝜏). The invariant annotations
are dened to hold for 𝜏 i inv(𝜏) is valid. The construction of the formula is given in Figure 8.2.

There, active(𝜎) is the set of addresses that are neither freed nor retired after computation 𝜎 .1 We

1 In Section 8.3 we will additionally require active addresses to be allocated, as suggested by Figure 8.1. The type
system will take care of the discrepancy and ensure that addresses are allocated whenever it relies on active(•)
annotations. The existence of a pointer to a non-freed address, for instance, guarantees that the address is
allocated (and not fresh). Skipping the allocation check in the encoding of invariants here makes the check
simpler and more widely applicable.

Section 8.1 Annotations 85

Figure 8.2: Formula encoding the correctness of invariant annotations in a computation 𝜏 .

inv(𝜏) ≔ inv𝜖(𝜏)

inv𝜎(𝜖) ≔ true

inv𝜎(act .𝜏) ≔ ∃𝑟 .inv𝜎.act(𝜏) if act = ⟨𝑡, @inv angel 𝑟,∅⟩

inv𝜎(act .𝜏) ≔ 𝑚𝜎(𝑝) =𝑚𝜎(𝑞) ∧ inv𝜎.act(𝜏) if act = ⟨𝑡, @inv 𝑝 = 𝑞,∅⟩

inv𝜎(act .𝜏) ≔ 𝑚𝜎(𝑝) ∈ 𝑟 ∧ inv𝜎.act(𝜏) if act = ⟨𝑡, @inv 𝑝 in 𝑟,∅⟩

inv𝜎(act .𝜏) ≔ 𝑚𝜎(𝑝) ∈ active(𝜎) ∧ inv𝜎.act(𝜏) if act = ⟨𝑡, @inv active(𝑝),∅⟩

inv𝜎(act .𝜏) ≔ 𝑟 ⊆ active(𝜎) ∧ inv𝜎.act(𝜏) if act = ⟨𝑡, @inv active(𝑟),∅⟩

inv𝜎(act .𝜏) ≔ inv𝜎.act(𝜏) otherwise.

only consider programs leading to closed formulas, meaning every angel is allocated (and hence

quantied) before it is used. The semantics of the formula is as expected: angels evaluate to sets

of addresses, equality of addresses is the identity, and membership is as usual for sets. With

this understanding, we let memories evaluate angels:𝑚𝜏(𝑟) gives the largest set of addresses
that inv(𝜏) allows for. It remains to verify annotations. Section 8.5 shows how to automatically

prove the correctness of invariant annotations for all computations.

8.2 Avoiding All Reallocations

Our goal is to strengthen the reduction from Chapter 7 such that verication of full O⟦P⟧AdrAdr

becomes possible under ⟦P⟧∅∅. Recall that the soundness of the previous reduction crucially

relied on a semantics exploring reallocations (of a single address) in order to detect harmful

ABAs, i.e., assumptions involving invalid pointers. In order to avoid reallocations altogether, we

forbid ABA prone assumptions in addition to pointer race freedom. Section 8.7 will bridge the

gab to implementations that perform harmless ABAs, like the ones we have seen in Chapter 7.

In order to detect ABA prone assumptions in a computation 𝜏 , we need a lookahead of commands

that could be executed next, whether or not they are actually enabled. This contrasts our approach

from Chapter 7. There, we were guaranteed that every (rst) ABA is enabled and thus executed

in a computation, provided we chose an appropriate address for reallocation. Now, without

reallocating any addresses, it is no longer guaranteed that the ABA is enabled and thus appears

in a computation from ⟦P⟧∅∅. Hence, we do not check the actually executed commands but

those that the control-ow could choose next. Formally, we say that a command com is control-

ow-enabled after 𝜏 , denoted by com ∈ next-com(𝜏), if there is pc ∈ ctrl(𝜏) with pc(𝑡) −−⇁com •

86 Chapter 8 Strong Pointer Races

for some thread 𝑡 . Then, 𝜏 is prone to an unsafe assumption if an ABA prone assumption is

control-ow-enabled.

Denition 8.3 (Unsafe Assumption). A computation 𝜏 is prone to an unsafe assumption

if there is assume 𝑝 = 𝑞 ∈ next-com(𝜏) with 𝑝 ∉ valid𝜏 or 𝑞 ∉ valid𝜏 .

Strong pointer races extend ordinary pointer races, Denition 7.13, with unsafe assumptions.

Denition 8.4 (Strong Pointer Race). A computation 𝜏 .act is a strong pointer race if act

performs (i) an ordinary pointer race, or (ii) an unsafe assumption.

Now, we strengthen the reduction result from Theorem 7.20. Relying on the absence of strong

pointer races, we do not need to deal with ABAs as they are deemed unsafe and ruled out thus.

Theorem 8.5. Let O support elision and let O⟦P⟧∅Adr be free from strong pointer races and

double retires. Then, for all 𝜏 ∈ O⟦P⟧AdrAdr there is some 𝜎 ∈ O⟦P⟧∅Adr such that 𝜏 ∼ 𝜎 , 𝜏 ⋖ 𝜎 ,

and retired𝜏 ⊆ retired𝜎 .

Besides similarity and SMR behavior inclusion, the theorem yields retired𝜏 ⊆ retired𝜎 . We rely

on this inclusion to establish under GC that P does not perform double retires, as required for a

meaningful application of SMR automaton OBase. The proof of the theorem is analogous to the

one of Theorem 7.20.

The next step in our reduction is the removal of free commands. We simply strip them away

from the computations of O⟦P⟧∅Adr . The result are GC computations from ⟦P⟧∅∅. Interestingly,
the resulting GC computation allows to draw conclusions about the annotations in the original

computation. We exploit this in Section 8.5 in order to discharge invariants under GC.

Theorem 8.6. If 𝜎 ∈ O⟦P⟧∅Adr is free from strong pointer races, then there is some 𝛾 ∈ ⟦P⟧∅∅
such that ctrl(𝜎) = ctrl(𝛾) and𝑚𝜎 ∣valid𝜎 =𝑚𝛾 ∣valid𝜎 and inv(𝛾) ⟹ inv(𝜎).

Proof Sketch. To see the theorem, we proceed in two steps. First, we remove env commands

from 𝜎 . Since their only eect on the computations is an update of selectors of invalid addresses,

strong pointer race freedom guarantees that no thread can observe the update: accessing the

invalid address requires an invalid pointer and thus raises a (strong) pointer race. We obtain an

intermediate 𝜎 ′ that satises 𝜎 ∼ 𝜎
′ and inv(𝜎) ⟺ inv(𝜎 ′). Next, we remove free commands

from 𝜎
′ and arrive at 𝛾 . As no memory is reused in O⟦P⟧∅Adr , all allocations remain enabled.

The remaining commands ignore O, so they remain enabled as well. The only consequence of

the removal is that no expressions are invalidated and previously freed addresses remaining

Section 8.2 Avoiding All Reallocations 87

retired. The former means𝑚𝜎 ∣valid𝜎 =𝑚𝛾 ∣valid𝜎 where𝑚𝛾 is restricted to the valid expressions

of 𝜎 rather than 𝛾 . The latter establishes that invariant violations in 𝛾 carry over to 𝜎 . �

Finally, we arrive at the overall reduction result which allows for verication under GC, the

simplest semantics a tool can assume.

Theorem 8.7 (Reduction 2). If O supports elision and O⟦P⟧∅Adr is free from strong pointer

races and double retires, then good(O⟦P⟧AdrAdr) ⟺ good(⟦P⟧∅∅) and O⟦P⟧AdrAdr is free from

double retires.

We turn towards checking O⟦P⟧∅Adr for strong pointer races and double retires.

8.3 A Type System to Prove Strong Pointer Race Freedom

We present a type system a successful type check of which entails strong pointer race freedom

as required by Theorem 8.7. The guiding idea of our types is to under-approximate the validity

of pointers. To achieve this, our types incorporate the SMR algorithm in use and the guarantees

it provides. It does so in a modular way: a parameter of the type system denition is an SMR

automaton specifying the SMR algorithm.

A key design decision of our type system is to track no information about the data structure

shape. Instead, we deduce runtime specic information from annotations that can be discharged

fully automatically. We still achieve the necessary precision because the same SMR algorithm

may be used with dierent data structures. Hence, shape information should not help tracking

its behavior.

Throughout the remainder of the section we x an SMR automaton O relative to which we

describe the type system. We assume that O contains exactly two variables 𝑧𝑡 and 𝑧𝑎 . Intu-

itively, 𝑧𝑡 stores the thread for whichO tracks the protection of the address stored in 𝑧𝑎 . All SMR

algorithms we are aware of can be specied with only two variables. A possible explanation is

that SMR algorithms do not seem to use helping [Herlihy and Shavit 2008, Section 6.4] to protect

pointers.

Assumption 8.8. SMR automata have two variables 𝑧𝑡 resp. 𝑧𝑎 tracking a thread resp. an

address.

We believe that the results presented hereafter can be generalized to SMR automata with more

variables and consider a closer investigation of the matter as future work.

88 Chapter 8 Strong Pointer Races

8.3.1 Guarantees

Towards a denition of our type system, recall the memory life cycle from Figure 8.1. The

transition from the active to the retired stage requires care. The type system has to detect that a

thread is guaranteed safe access to a retired node. This means nding out that an SMR protection

was successful. Additionally, types need to be stable under interference. Nodes can be retired

without a thread noticing. Hence, types need to ensure that the guarantees they provide cannot

be spoiled by actions of other threads.

To tackle those problems, we use intersection types capturing which access guarantees a thread

has for each pointer. We point out that this means we track information about nodes in memory

through pointers to them. We use the following guarantees.

L: Thread-local pointers referencing nodes in the local stage. The guarantee comes with two

more properties. There are no valid aliases of the pointer and the referenced node is not

retired. This gives the thread holding the pointer exclusive access.

A Pointers to nodes in the active stage. Active pointers are guaranteed to be valid, they can be

accessed safely.

S Pointers to nodes which are protected by the SMR algorithm from being reclaimed. Such

pointers can be accessed safely although the referenced node might be in the retired stage.

E𝐿 SMR-specic guarantee that depends on a set of locations in the given SMR automaton. The

idea is to track the history of SMR calls performed so far. This history is guaranteed to reach

a location in 𝐿. The information about 𝐿 bridges the (SMR-specic) gap between A and S.

Accesses to the pointer are potentially unsafe.

The interplay among these guarantees tackles the aforementioned challenges as follows. Consider

a thread that just acquired a pointer 𝑝 to a shared node. In the case of hazard pointers, this pointer

comes without access guarantees. Hence, the thread issues a protection of 𝑝 . We denote this

with an SMR-specic type E. For the protection to be successful, the programmer has to make

sure that 𝑝 is active during the invocation. The type system detects this through an annotation

that adds guarantee A to 𝑝 . We then deduce from the SMR automaton that 𝑝 can be accessed

safely because the protection was successful. This adds guarantee S.

Section 8.3 A Type System to Prove Strong Pointer Race Freedom 89

8.3.2 Types

The input SMR automaton O induces a set of intersection types [Coppo and Dezani-Ciancaglini

1978; Pierce 2002, Section 15.7] dened by the following grammar:

𝑇 F ∅ ∣ L ∣ A ∣ S ∣ E𝐿 ∣ 𝑇 ∧𝑇 .

The meaning of guarantees L to E𝐿 is as explained above. We also write a type𝑇 as the set of its

guarantees where convenient. We dene the predicate isValid(𝑇) to hold if 𝑇 ∩{S,L,A }≠∅.
The three guarantees serve as syntactic under-approximations of the semantic notion of validity.

There is a restriction on the sets of locations 𝐿 for which we provide guaranteesE𝐿 . To understand

it, note that our type system infers guarantees about the protection of pointers thread-locally

from the code, that is, as if the code was sequential. Soundness then shows that these guarantees

carry over to the computations of the overall program where threads interfere. To justify this

sequential to concurrent lifting, we rely on the concept of interference freedom due to Owicki

and Gries [1976]. A set of locations 𝐿 in the SMR automaton O is closed under interference from

other threads, if no SMR command issued by a thread dierent from 𝑧𝑡 (the protections of which

we track) can leave the locations. Formally, for every transition 𝑙−−−−−−→
𝑓 (𝑡 ′,•), 𝑔

𝑙
′ in O with 𝑙 ∈ 𝐿

and 𝑙 ′ ∉ 𝐿, we require guard 𝑔 to imply 𝑡
′
= 𝑧𝑡 . We only introduce guarantees E𝐿 for sets of

locations 𝐿 that are closed under interference.

Type environments Γ are total functions that assign a type to every pointer and every angel in

the code being typed. To x the notation, Γ(𝑥) = 𝑇 or 𝑥 ∶𝑇 ∈ Γ means 𝑥 is assigned 𝑇 in Γ. We

write Γ, 𝑥 ∶𝑇 for Γ ⊎ {𝑥 ∶𝑇 }. If the type of 𝑥 does not matter, we just write Γ, 𝑥 . The initial type

environment Γinit assigns ∅ to every pointer and angel.

Our type system will be control-ow sensitive [Crary et al. 1999; Foster et al. 2002; Hunt and

Sands 2006], which means type judgments take the form:

{ Γpre } stmt { Γpost } .

The thing to note is that the type assigned to a pointer/angel is not constant throughout the

program but depends on the commands that have been executed. Consequently, we may have

the type assignment 𝑥 ∶𝑇 in Γpre but 𝑥 ∶𝑇
′ in the type environment Γpost with 𝑇 ≠ 𝑇

′.

Control-ow sensitivity requires us to formulate how types change under the execution of

SMR commands. Towards a denition, we associate with every type a set of locations in the

used SMR automaton, O = OBase ×OSMR. Guarantee E𝐿 already comes with a set of locations.

Guarantee S grants safe access to the tracked address. In terms of locations, it should not be

possible to free the address stored in 𝑧𝑎 . We dene SafeLoc(O) to be the largest set of locations

inO that is closed under interference from other threads and for which all transition 𝑙−−−−−−→
free(𝑎), 𝑔

𝑙
′

90 Chapter 8 Strong Pointer Races

with 𝑙 ∈ SafeLoc(O) and 𝑔 ∧ 𝑎 = 𝑧𝑎 satisable lead to an accepting location 𝑙
′. Guarantee A

is characterized by location 𝐿2 in OBase. Technically, location 𝐿2 does not imply activeness of

address 𝑧𝑎 . It implies a strictly weaker property, namely that 𝑧𝑎 is not retired. Then, 𝑧𝑎 is active

only if it is allocated. However, SMR automata cannot detect whether or not 𝑧𝑎 is allocated at

the moment (there is no event for malloc). Hence, we separately ensure that 𝑧𝑎 is allocated, and

thus active indeed, whenever A is assigned. Along the same lines, we also use location 𝐿2 for L.

The discussion yields the following denition.

Denition 8.9 (Meaning of Types). The locations associated with types 𝑇 , Loc(𝑇), are:

Loc(∅) ≔ Loc(O) Loc(E𝐿) ≔ 𝐿

Loc(A) ≔ {𝐿2 } × Loc(OSMR) Loc(S) ≔ SafeLoc(O)

Loc(L) ≔ {𝐿2 } × Loc(OSMR) Loc(𝑇1 ∧𝑇2) ≔ Loc(𝑇1) ∩ Loc(𝑇2) .

The set of locations associated with a type is dened to over-approximate the locations reachable

in the SMR automaton by the (history of the) current computation. With this understanding,

it should be possible for command com to transform 𝑥 ∶𝑇 into 𝑥 ∶𝑇 ′ if the locations associated

with 𝑇 ′ over-approximate the post-image under 𝑥 and com of the locations associated with 𝑇 .

We capture those transformations with the type transformer relation 𝑇, 𝑥, com ↝ 𝑇
′. To make

it precise, we rst dene the post-image post𝑝,com(𝐿) on the locations of the SMR automaton.

The post-image yields a set of locations 𝐿′ reachable by taking a com-labeled transition from 𝐿.

The considered transition is restricted in two ways. First, its guard 𝑔 must allow 𝑧𝑡 to track

thread 𝑡 executing com. Second, if 𝑝 appears as a parameter in com, then guard 𝑔 must allow 𝑧𝑎

to track 𝑝 . Formally, these requirements translate to the satisability of 𝑔∧ 𝑡 = 𝑧𝑡 and 𝑔∧𝑝 = 𝑧𝑎 ,

respectively. The parameterization in 𝑝 makes the post-image precise. To see this, considerOBase

and the command com = in∶retire(𝑝). We expect the post-image of 𝐿2 wrt. com and 𝑝 to

be post𝑝,com(𝐿2) = {𝐿3 }. The address has denitely been retired. Without the parametrization

in 𝑝 , we would get {𝐿2, 𝐿3 }. The transition could choose not to track 𝑝 . Now, we are ready to

formalize the type transformer relation.

Denition 8.10 (Type Transformer). The type transformer relation 𝑇, 𝑥, com ↝ 𝑇
′ is

dened by the following conditions:

post𝑥,com(Loc(𝑇)) ⊆ Loc(𝑇 ′)

and isValid(𝑇 ′) ⇒ isValid(𝑇)

and {L,A } ∩𝑇
′

⊆ {L,A } ∩𝑇 .

The over-approximation of the post-image is the rst inclusion. The implication states that SMR

commands cannot validate pointers. We can, however, deduce from the fact that the address

has not been retired (A or L) and the SMR command has been executed, that it is safe to access

Section 8.3 A Type System to Prove Strong Pointer Race Freedom 91

the address (S). The last inclusion states that SMR commands cannot establish the guarantees L

and A. It is worth pointing out that the relation 𝑇, 𝑥, com ↝ 𝑇
′ only depends on the SMR

automaton, up to a choice of variable names. This means we can tabulate it to guarantee quick

access when typing a program. We also write Γ, com ↝ Γ
′ if we have Γ(𝑥), 𝑥, com ↝ Γ

′(𝑥)
for all pointers/angels 𝑥 . We write Γ ↝ Γ

′ if we take the post-image to be the identity. For an

example, refer to Section 8.4.1.

Guarantees L and A are special in that their sets of locations, Loc(L) and Loc(A), are not closed
under interference. For L, the type rules ensure interference freedom. They do so by enforcing

that retire is not invoked with invalid pointers. Hence, the fact that L-pointers have no valid

aliases implies that other threads cannot retire them. So OBase remains in 𝐿2 no matter the

interference. For A, the type rules account for interference. We dene an operation rm(Γ) that
takes an environment and removes all A guarantees for thread-local pointers and angels:

rm(Γ) ≔ { 𝑥 ∶𝑇 \ {A } ∣ 𝑥 ∶𝑇 ∈ Γ ∧ 𝑥 ∉ shared } ∪ { 𝑥 ∶ ∅ ∣ 𝑥 ∈ shared } .

The operation also has an eect on shared pointers and angels where it removes all guarantees.

The reasoning is as follows. Interference on a shared pointer or angel may change the address

being pointed to. Guarantees express properties about addresses, indirectly via their pointers.

As we do not have any information about the new address, the pointer/angel receives the empty

set of guarantees.

8.3.3 Type Rules

The type rules of our type system are given in Figures 8.12 and 8.13. We write⊢{ Γinit } stmt { Γ }
to indicate that { Γinit } stmt { Γ } is derivable with the given rules. We write ⊢ stmt if there is a

type environment Γ so that⊢ { Γinit } stmt { Γ }. A program P type checks if⊢ P . Soundness will

show that a type check entails the absence of strong pointer races and double retires.

We distinguish between rules for statements and rules for primitive commands. We assume

that primitive commands com appear only inside atomic blocks, formalized below. With this

assumption, the rules for primitive commands need not handle the fact that guarantee A is not

closed under interference. Interference will be taken into account by the rules for statements.

The assumption of atomic blocks can be established by a simple preprocessing of the program.

We do not make it explicit but assume it has been applied.

Assumption 8.11. Programs adhere to the following restricted syntax:

stmt F stmt; stmt ∣ stmt ⊕ stmt ∣ stmt∗ ∣ beginAtomic; stmt; endAtomic

∣ beginAtomic; com; endAtomic .

92 Chapter 8 Strong Pointer Races

Figure 8.12: Type rules for primitive commands.

(skip)

{ Γ } skip { Γ }

(malloc)
𝑝 ∉ shared 𝑇 = {L }

{ Γ, 𝑝 } 𝑝 ∶= malloc { Γ, 𝑝 ∶𝑇 }

(assign1)

𝑇
′
= 𝑇 \ {L }

{ Γ, 𝑝, 𝑞 ∶𝑇 } 𝑝 ∶= 𝑞 { Γ, 𝑝 ∶𝑇 ′, 𝑞 ∶𝑇 ′ }

(assign2)
Γ(𝑞) = 𝑇 isValid(𝑇)

{ Γ, 𝑝 } 𝑝 ∶= 𝑞.next { Γ, 𝑝 ∶ ∅ }

(assign3)

Γ(𝑝) = 𝑇 isValid(𝑇) 𝑇
′′
= 𝑇

′ \ {L }
{ Γ, 𝑞 ∶𝑇 ′ } 𝑝.next ∶= 𝑞 { Γ, 𝑞 ∶𝑇 ′′ }

(assign4)

{ Γ } 𝑢 ∶= op(𝑢) { Γ }

(assign5)
Γ(𝑞) = 𝑇 isValid(𝑇)
{ Γ } 𝑢 ∶= 𝑞.data { Γ }

(assign6)
Γ(𝑝) = 𝑇 isValid(𝑇)
{ Γ } 𝑝.data ∶= 𝑢 { Γ }

(assume1)

isValid(𝑇) isValid(𝑇 ′) 𝑇
′′
= (𝑇 ∧𝑇

′) \ {L }
{ Γ, 𝑝 ∶𝑇, 𝑞 ∶𝑇 ′ } assume 𝑝 = 𝑞 { Γ, 𝑝 ∶𝑇 ′′, 𝑞 ∶𝑇 ′′ }

(assume2)
cond /≡ 𝑝 = 𝑞

{ Γ } assume cond { Γ }

(equal)

𝑇
′′
= 𝑇 ∧𝑇

′

{ Γ, 𝑝 ∶𝑇, 𝑞 ∶𝑇 ′ } @inv 𝑝 = 𝑞 { Γ, 𝑝 ∶𝑇 ′′, 𝑞 ∶𝑇 ′′ }

(active)

𝑇
′
= 𝑇 ∧ {A }

{ Γ, 𝑥 ∶𝑇 } @inv active(𝑥) { Γ, 𝑥 ∶𝑇 ′ }

(angel)
𝑟 ∉ shared

{ Γ, 𝑟 } @inv angel 𝑟 { Γ, 𝑟 ∶ ∅ }

(member)

Γ(𝑟) = 𝑇
′

𝑇
′′
= 𝑇 ∧𝑇

′

{ Γ, 𝑝 ∶𝑇 } @inv 𝑝 in 𝑟 { Γ, 𝑝 ∶𝑇 ′′ }

(enter)

SafeCall(Γ, func(𝑟)) Γ, in∶func(𝑟) ↝ Γ
′

func(𝑟) ≡ retire(𝑝) ⟹ A ∈ Γ(𝑝)
{ Γ } in∶func(𝑟) { Γ′ }

(exit)

Γ, re∶func ↝ Γ
′

{ Γ } re∶func { Γ′ }

The rules for primitive commands, Figure 8.12, that are not related to SMR are straightforward.

Rule (skip) has no eect on the type environment. Allocations grant the target pointer the L

guarantee, Rule (malloc). Rule (assign1) copies the type of the right-hand side pointer to

the left-hand side pointer of the assignment. Additionally, both pointers lose their L qualier

since the command creates an alias. Rule (assign2) ensures that the dereferenced pointer is

valid and then sets the type of the assigned pointer to the empty type. The assigned pointer

does not receive any guarantees since we do not track guarantees for selectors. Rule (assign3)

checks the dereferenced pointer for validity and removes L from the pointer that is aliased.

Data assignments, Rules (assign4), (assign5), and (assign6), simply check dereferenced

pointers for validity. Assumptions of the form 𝑝 = 𝑞 check that both pointers are valid and join

the type information, Rule (assume1). Guarantee L is removed due to the alias. All other

Section 8.3 A Type System to Prove Strong Pointer Race Freedom 93

Figure 8.13: Type rules for statements.

(infer)
Γ1 ↝ Γ2 { Γ2 } stmt { Γ3 } Γ3 ↝ Γ4

{ Γ1 } stmt { Γ4 }

(begin)

{ Γ } beginAtomic { Γ }

(end)

{ Γ } endAtomic { rm(Γ) }

(seq)

{ Γ } stmt1 { Γ′ } { Γ′ } stmt2 { Γ′′ }
{ Γ } stmt1; stmt2 { Γ′′ }

(choice)

{ Γ } stmt1 { Γ′ } { Γ } stmt2 { Γ′ }
{ Γ } stmt1 ⊕ stmt2 { Γ′ }

(loop)
{ Γ } stmt { Γ }
{ Γ } stmt∗ { Γ }

assumptions have no eect on the type environment, Rule (assume2). Similarly, Rule (equal)

joins type information in the case of assertions. However, no validity check is performed and L is

not removed. Rule (active) adds the A guarantee. Note that 𝑥 is a pointer or an angel. Angels

are always local variables. Their allocation does not justify any guarantees, in particular not L,

as they hold full sets of addresses, Rule (angel). We can also assert membership of an address

held by a pointer in a set of addresses held by an angel, Rule (member).

SMR-related commands may change the entire type environment, rather than manipulating

only the pointers that occur syntactically in the command. This is because of pointer aliasing

on the one hand, and because of the SMR automaton on the other hand (for instance, enterQ

has an eect on all pointers). The post type environment of Rules (enter) and (exit) simply

infers guarantees wrt. the pre type environment and the emitted event. Note that this is

the only way to infer SMR-specic guarantees E𝐿 , i.e., these guarantees solely depend on the

SMR commands. Moreover, Rule (enter) performs a strong pointer race check. We dene

predicate SafeCall(Γ, func(𝑟)) to hold i the command in∶func(𝑟) is guaranteed not to be a

racy call given the types in Γ. The formalization coincides with the one of racy calls from

before, Denition 7.12, except that it replaces the actual validity valid𝜏 in a computation 𝜏 by the

under-approximation isValid(•). A special case of Rule (enter) is the invocation of retire(𝑝),
which requires the argument 𝑝 to be active. This prevents both racy retires and double retires.

The rules for statements are given in Figure 8.13. Rule (infer) allows for type transformations

at any point, in particular, to establish the proper pre/post environments for Rules (choice)

and (loop). Entering an atomic block, Rule (begin), has no eect on the type environment.

Exiting an atomic block allows for interference. Hence, Rule (exit) removes any type infor-

mation from the type environment that can be tampered with by other threads. Sequences

of statements are straightforward, Rule (seq). Choices require a common pre and post type

94 Chapter 8 Strong Pointer Races

environment, Rule (choice). Loops require a type environment that is stable under the loop

body, Rule (loop).

8.3.4 Soundness

Our goal is to show that a successful type check⊢ P implies strong pointer race freedom and

the absence of double retires, provided the invariant annotations hold. Both properties will be

consequences of a more general soundness result that makes explicit the information tracked by

our type system. We give some auxiliary denitions that ease the formulation. Let 𝑙init be the

initial location inO. We write 𝜏 ⊧𝜑 𝑇 if there is a location 𝑙 ∈ Loc(𝑇) associated with the type𝑇

so that (𝑙init, 𝜑)−−−→
H(𝜏) (𝑙, 𝜑). The denition is parameterized in the valuation 𝜑 determining the

thread and the address to be tracked. We write 𝜏, 𝑡 ⊧ 𝑥 ∶𝑇 if for every address 𝑎 ∈ 𝑚𝜏(𝑥) we
have 𝜏 ⊧𝜑 𝑇 , with 𝜑 = { 𝑧𝑡 ↦ 𝑡, 𝑧𝑎 ↦ 𝑎 }. The thread is given. The address is the one held

by the pointer or among the ones held by the angel, as determined by the computation. We

write 𝜏, 𝑡 ⊧ Γ if we have 𝜏, 𝑡 ⊧ 𝑥 ∶𝑇 for all type assignments 𝑥 ∶𝑇 ∈ Γ.

Soundness states that a type environment annotating a program point approximates the history

of every computation reaching this point. Moreover, isValid(•) approximates validity. To

make this precise, we dene the straight-line version stmt(𝜏, 𝑡) of program P induced by 𝜏

and 𝑡 . It is obtained by projecting 𝜏 to the commands of thread 𝑡 . Furthermore, we dene the

relation ⊧ { Γinit } stmt(𝜏, 𝑡) { Γ }. It requires that (i) 𝜏, 𝑡 ⊧ Γ holds and (ii) for every 𝑝 ∶𝑇 ∈ Γ

with isValid(𝑇) we have 𝑝 ∈ valid𝜏 . The soundness result now lifts the syntactic derivation

relation ⊢ to the semantic soundness relation ⊧.

Theorem 8.14 (Soundness). For all threads 𝑡 and all 𝜏 ∈ O⟦P⟧∅Adr with inv(𝜏) we have:

⊢ { Γinit } stmt(𝜏, 𝑡) { Γ } ⟹ ⊧{ Γinit } stmt(𝜏, 𝑡) { Γ } .

Proof Sketch. We proceed by induction on the length of 𝜏 ∈ O⟦P⟧∅Adr . Let 𝑡 be a thread with:

⊢ { Γinit } stmt(𝜏, 𝑡) { Γ } .

The induction hypothesis links the current type environment Γ derived for the straight-line

program to the semantic information carried by the computation. The hypothesis strengthens

the requirements (i) and (ii) in the denition of soundness by the following two conditions, where

we assume Γ(𝑥) = 𝑇 :

(iii) If L ∈ 𝑇 , then 𝑥 is a pointer that does not have valid aliases. That is,𝑚𝜏(𝑥) =𝑚𝜏(𝑞) entails
that we have 𝑞 ∉ valid𝜏 . Note that angels cannot obtain L according to the type rules.

(iv) If A ∈ 𝑇 , then thread 𝑡 is in an atomic block.

Section 8.3 A Type System to Prove Strong Pointer Race Freedom 95

The interesting argumentation in the induction step is in the case when another thread appends

an action, 𝜏 .act. It can be summarized as follows. Property (i) continues to hold for 𝜏 .act because

the type 𝑇 of 𝑥 is closed under interference; for L and A we argue separately in the following.

If L ∈ 𝑇 , then act cannot use a valid alias of 𝑥 . In particular, it cannot retire 𝑥 according to

the premise of Rule (enter). If A ∈ 𝑇 , then thread 𝑡 is in an atomic block and there is no

chance to append action act of another thread. The case does not occur. Consider property (ii).

Assume isValid(𝑇) holds. That is, 𝑇 contains one of A,L, S. If L ∈ 𝑇 or A ∈ 𝑇 , then the above

reasoning for (i) already implies (ii). Otherwise, we have S ∈ 𝑇 . It implies (ii) because S is closed

under interference. Property (iii) follows from the fact that act cannot contain, and thus cannot

create, a valid alias of 𝑥 . Lastly, to conclude Property (iv), note that another thread cannot append

an action while 𝑡 is inside an atomic block. �

The rst consequence of soundness is that a successful type check implies strong pointer race

freedom. Phrased dierently, the rules from Figures 8.12 and 8.13 allow for a successful typing

only if there are no strong pointer races. That is, our type system performs a strong pointer race

freedom check indeed.

Theorem 8.15. If inv(O⟦P⟧∅Adr) and ⊢ P , then O⟦P⟧∅Adr is free from strong pointer races.

The theorem gives an eective means of checking the premise of Theorem 8.7: discharge the

invariant annotations using an o-the-shelf verication tool (cf. Section 8.5) and determine a

typing using the proposed type system (cf. Section 8.6).

Proof Sketch. To see the theorem, consider 𝜏 .act ∈ O⟦P⟧∅Adr . We focus on the case where the

last action is a dereference, say due to command com being 𝑝 ∶= 𝑞.next. The remaining cases in

the denition of strong pointer races are similar. We show that the dereference is safe, 𝑞 ∈ valid𝜏 .

Let thread 𝑡 perform the dereference. Let stmt(𝜏 .act, 𝑡) = stmt; com be the induced straight-line

program. One can show that if we can derive a typing for the program P , then we can derive

one for the induced straight-line program as well:

⊢ P implies ∃Γ. ⊢ { Γinit } stmt(𝜏 .act, 𝑡) { Γ } .

The implication should be intuitive. The typing of the overall program can be seen as

an intersection over the typings of the induced straight-line programs. Consider some Γ

with { Γinit } stmt; com { Γ }. The only way to type the sequential composition stmt; com is

Rule (seq). It requires a type environment Γ′ so that both { Γinit } stmt { Γ′ } and { Γ′ } com { Γ }
are derivable. The only way to type 𝑝 ∶= 𝑞.next is Rule (assign2). By its premise, Γ′(𝑞) = 𝑇

with isValid(𝑇). Theorem 8.14 yields 𝑞 ∈ valid𝜏 . The dereference of 𝑞 is safe. �

96 Chapter 8 Strong Pointer Races

The second consequence of soundness is that a successful type check means that the program

does not perform double retires. This is the precondition for a meaningful application of SMR

algorithms in general and SMR automaton OBase in particular.

Theorem 8.16. If inv(O⟦P⟧∅Adr) and⊢ P , then O⟦P⟧AdrAdr is free from double retires.

Proof Sketch. The argumentation is along the lines of Theorem 8.15. However, we have to deal

with computations from full O⟦P⟧AdrAdr . To the contrary, assume there is 𝜏 .act ∈ O⟦P⟧AdrAdr which

performs a double retire on address 𝑎. That is, act executes command retire(𝑝) with𝑚𝜏(𝑝) = 𝑎

and 𝑎 ∈ retired𝜏 . By Theorem 8.15, there are no strong pointer races. Then, Theorem 8.5 yields

another computation 𝜎.act ∈ O⟦P⟧∅Adr such that 𝜏 ∼ 𝜎 and retired𝜏 ⊆ retired𝜎 . In order to

retire 𝑝 , Rule (enter) requires pointer 𝑝 to hold guarantee A. This, in turn, means 𝑝 is valid.

We have 𝑚𝜎(𝑝) = 𝑎. Furthermore, 𝑎 ∈ retired𝜏 implies 𝑎 ∈ retired𝜎 and thus we conclude

that OBase is in location 𝐿3. This, however, contradicts the activeness of 𝑝 , which guarantees

that OBase is in location 𝐿2. �

The next section gives an in-depth example on how to apply our type system. The two sec-

tions thereafter automate the checks in Theorem 8.14: we show how to discharge the invari-

ants inv(O⟦P⟧∅Adr) with the help of o-the-shelf verication tools for garbage collection and

give an ecient algorithm for type inference⊢ P .

8.4 Example

We apply our type system to Michael&Scott’s queue with EBR (cf. Figure 2.13). Here, a single

custom guarantee Eacc is sucient. We dene Loc(Eacc) to be those locations where thread 𝑧𝑡

is guarantee to have returned from a call to leaveQ but has not yet invoked enterQ. That is,

guarantee Eacc captures when 𝑧𝑡 is accessing the data structure. The sets of locations represented

by A, S, and Eacc can be read of the cross-product SMR automatonOBase ×OEBR in Figure 8.17. It

is worth pointing out that Loc(S) does not contain location (𝐿2, 𝐿4). For a set containing (𝐿2, 𝐿4)
to be closed under interference we would need to have (𝐿3, 𝐿4) in that set. However, (𝐿3, 𝐿4)
allows for a free of 𝑧𝑎 and thus must not belong to Loc(S) by denition.

In the following, we illustrate the type transformer relation, the use of angels, the typing of

programs, and explain how to nd suitable annotations for the type inference to go through.

Section 8.4 Example 97

Figure 8.17: Cross-product SMR automaton for OBase ×OEBR and EBR-specic types.

OBase ×OEBR

𝐿2, 𝐿4 𝐿2, 𝐿5 𝐿13

𝐿3, 𝐿4 𝐿3, 𝐿5 𝐿3, 𝐿6

F

F

F

F F R

R

R

re∶leaveQ(𝑡), 𝑡 = 𝑧𝑡

in∶enterQ(𝑡), 𝑡 = 𝑧𝑡

re∶leaveQ(𝑡), 𝑡 = 𝑧𝑡

in∶enterQ(𝑡), 𝑡 = 𝑧𝑡

𝐹 ∶= free(𝑎), 𝑎 = 𝑧𝑎 𝑅 ∶= in∶retire(𝑡, 𝑎), 𝑎 = 𝑧𝑎

A Eacc S

8.4.1 Type Transformer Relation

We illustrate the computation of the type transformer relation for command re∶leaveQ and the

inference of guarantee S.

First, we establish the type transformer relation ∅, 𝑥, re∶leaveQ ↝ Eacc . This boils down to

checking the inclusion:

post𝑥,re∶leaveQ(Loc(∅)) ⊆ Loc(Eacc)

because the remaining properties of the type transformer relation are trivially satised (we do not

add any of {A,L, S }). The empty type corresponds to no knowledge about previously executed

SMR commands, which means Loc(∅) = 𝐿 with 𝐿 the set of all locations of OBase ×OEBR from

Figure 8.17. We compute the post-image of 𝐿 wrt. 𝑥 and re∶leaveQ in OBase ×OEBR. To this end,

we consider all transitions labeled with re∶leaveQ(𝑡). The pointer or angel 𝑥 does not play a

role. We derive the desired inclusion as follows:

post𝑥,re∶leaveQ(Loc(∅)) = post𝑥,re∶leaveQ(𝐿) = 𝐿 \ { (𝐿2, 𝐿4), (𝐿3, 𝐿4) } = Loc(Eacc) .

98 Chapter 8 Strong Pointer Races

Figure 8.18: Excerpt of the dequeuemethod fromMichael&Scott’s queue with EBR, Lines 326
to 337 from Figure 2.13. To guide the type check, we added annotations involving angel 𝑟 .
The added lines are typeset in bold font.

764 @inv angel r;
765 in:leaveQ();

766 re:leaveQ;

767 @inv active(r);
768 // ...

769 Node* head = Head;

770 Node* tail = Tail;

771 @inv head in r;
772 Node* next = head->next;

773 // ...

774 @inv next in r;
775 int output = next->data;

776 // ...

777 in:exitQ();

778 re:exitQ;

Second, we show how to infer S. From Figure 8.17 we know that Eacc alone does not yield S

because of location (𝐿3, 𝐿5); we also needA. We establish Eacc∧A ↝ Eacc∧A∧S. Since Eacc∧A

is valid and we do not add L, the key task is to establish

Loc(Eacc ∧ A) ⊆ Loc(Eacc ∧ A ∧ S) .

Because Loc(Eacc ∧ A) ⊆ Loc(Eacc ∧ A) is trivially true, it remains to show that guarantee S

can be obtained indeed, i.e., Loc(Eacc ∧ A) ⊆ Loc(S):

Loc(Eacc ∧ A) = Loc(Eacc) ∩ Loc(A) = { (𝐿2, 𝐿5), 𝐿13 }

⊆ { (𝐿2, 𝐿5), (𝐿3, 𝐿6), 𝐿13 } = Loc(S) .

8.4.2 Angels

To illustrate the use of angels, consider the excerpt of Michael&Scott’s dequeue method depicted

in Figure 8.18. For the sake of legibility, we omit the enclosing beginAtomic and endAtomic

for all commands. The call to leaveQ guarantees that no currently active address is reclaimed

until enterQ is called. It thus protects an unbounded number of addresses before a thread acquires

a pointer to them. Later, when a thread acquired a pointer to such an address in order to access

it, the address may no longer be active and thus the type system may not be able to infer S,

as seen in Section 8.4.1 above. To overcome this problem, we use an angel 𝑟 . Given its angelic

semantics, 𝑟 will capture all addresses that are protected by the leaveQ call, Lines 764 to 767.

Later, upon accessing/dereferencing a pointer 𝑝 , we make sure that 𝑟 captures the address pointed

to by 𝑝 , Lines 771 and 774.

Note that, conceptually, we want to execute Lines 766 and 767 atomically so that angel 𝑟 can

precisely capture the addresses active when leaveQ returns, Line 766. However, there is no need

to introduce this atomic block: the dequeue operation cannot acquire pointers to those addresses

that become inactive between Lines 766 and 767 and thus we need not capture them.

Section 8.4 Example 99

Figure 8.19: A typing for the excerpt of dequeue from Michael&Scott’s queue with EBR
introduced in Figure 8.18.

779 { Head,head,next,r:∅ }

780 @inv angel r;

781 { Head,head,next,r:∅ }

782 in:leaveQ();

783 { Head,head,next,r:∅ }

784 re:leaveQ;

785 { Head,head,next:∅; r:Eacc }

786 @inv active(r);

787 { Head,head,next:∅; r:Eacc ∧ A }

788 { Head,head,next:∅; r:Eacc ∧ A ∧ S }

789 { Head,head,next:∅; r:Eacc ∧ S }

790 // ...

791 Node* head = Head;

792 { Head,head,next:∅; r:Eacc ∧ S }

793 // ...

794 { Head,head,next:∅; r:Eacc ∧ S }

795 @inv head in r;

796 { Head,next:∅; head,r:Eacc ∧ S }

797 Node* next = head->next;

798 { Head,next:∅; head,r:Eacc ∧ S }

799 // ...

800 @inv next in r;

801 { Head:∅; next,head,r:Eacc ∧ S }

802 int output = next->data;

803 { Head:∅; next,head,r:Eacc ∧ S }

804 // ...

805 in:exitQ();

806 { Head,head,next,r:∅ }

807 re:exitQ;

808 { Head,head,next,r:∅ }

8.4.3 Typing

We give a typing for the code from Figure 8.18 in Figure 8.19. Again, we omit the enclos-

ing beginAtomic and endAtomic of commands for better legibility. We start in Line 779 with

type ∅ for all pointers and the angel 𝑟 . The allocation of 𝑟 in Line 780 has no eect on the

type assignment. Line 782 invokes leaveQ. Again, the types are not aected because the SMR

automaton has no transitions labeled with in∶leaveQ. Next, the invocation returns, Line 784.

Following the discussion from Section 8.4.1, we obtain Eacc for 𝑟 , Line 785. It is worth pointing

out that 𝑟 is treated like an ordinary pointer when it comes to the type transformer relation.

To capture in the type system the set of addresses that can be safely accessed in the subsequent

code, we want to lift Eacc of 𝑟 to S. We annotate 𝑟 to hold a set of active addresses, Line 786. This

yields type Eacc ∧A for 𝑟 , Line 787. As explained above, we can now lift this type to Eacc ∧A∧S,

Line 788. Recall that the allocation of 𝑟 in Line 780 is angelic. So the addresses held by 𝑟 will

indeed be chosen to be active. In Line 789, we loose A since we are not inside an atomic block.

In the subsequent code, we already added annotations (cf. Section 8.4.2) ensuring that derefer-

enced pointers are captured by the angel 𝑟 . For instance, Line 795 requires the address of head to

be captured by 𝑟 . That this is the case indeed is established when the annotations are discharged.

For the typing, we can copy Eacc ∧ S from 𝑟 over to head. As a consequence, the dereference

of head in Line 797 is safe. Similarly, we require next to be captured by 𝑟 in Line 800 such that

the dereference in Line 802 is safe.

100 Chapter 8 Strong Pointer Races

8.4.4 Annotations

We explain our algorithm to automatically add to the program in Figure 2.13 the annotations

from Figure 8.18 in order to arrive at the typing in Figure 8.19. We focus on the dereference

of head in Line 772 (Line 330 in Figure 2.13). Without annotations, the type inference will fail

because it cannot conclude that head is guaranteed to be valid. To x this, we implemented a

sequence of tactics that we invoke one after the other. If none of them xes the issue, we give up

the type inference and report the failure to the user.

The rst tactic simply adds an @inv active(head) annotation to Line 772. This makes head valid

and the type inference go through for Line 772. However, we should only add the annotation if it

actually holds. To check this, we employ the technique from Section 8.5. In this particular case,

we will nd that the annotation does not hold; we try to x the problem with another tactic.

The second tactic adds an angel 𝑟 to the (syntactically) most recent leaveQ call. We use a template

to transform the sequence in∶leaveQ(); re∶leaveQ to the code from Lines 764 to 767.2 Then, we

x Line 772 by prepending the annotation @inv head in r, as shown in Line 771. This makes head

valid. Whether or not the annotation holds is again checked with the technique

It is worth pointing out that the second tactic is EBR-specic. From our experience, every SMR

automaton comes with a small set of tactics that signicantly help nding the right annotations—

EBR requires the above tactic and HP requires two specic tactics (see Section 8.4.5 below). We

do not believe that there is a silver bullet of tactics since SMR algorithms may vary greatly, as

seen in the cases of EBR and HP. Theoretically speaking, one could nd the annotations by an

exhaustive search (nitely many angels will suce), but this will not scale.

8.4.5 Hazard Pointers

Our approach applies to non-blocking data structures using HP just as well as in the case of EBR.

The main dierence is that HP typically does not require angels because pointers are protected

after they are acquired. Figure 8.20 gives an example typing of Michael&Scott’s dequeue method.

There, we use OBase × O0
HP × O1

HP as specication; for the types obtained from OBase × O0,1
HP

refer to Appendix A.2. As noted above, we use two HP-specic tactics to annotate programs.

The rst tactic produces candidate locations for active annotations based on the control ow of

the program. The rational behind the tactic is that conditionals that do not restart an operation

oftentimes implement consistency checks that ensure activeness. The correctness of candidate

annotations is checked with the technique form Section 8.5. The second tactic introduces atomic

blocks to ease the type check and is discussed in detail in Section 8.7.

2 A subsequent use of this tactic will skip this step and reuse the existing angel.

Section 8.4 Example 101

Figure 8.20: An example of HP-specic types and an application to Micheal&Scott’s queue.

(a) Cross-product SMR automaton for OBase ×O𝑘
HP . The given types are specic to the 𝑘-th HP.

OBase ×O𝑘
HP

𝐿2, 𝐿8 𝐿2, 𝐿9 𝐿2, 𝐿10 𝐿14

𝐿3, 𝐿8 𝐿3, 𝐿9 𝐿3, 𝐿10 𝐿3, 𝐿11

F

F
F

F

F F F R

R

R R
in∶protect𝑘(𝑡, 𝑎),
𝑡 = 𝑧𝑡 ∧ 𝑎 = 𝑧𝑎

re∶protect𝑘(𝑡),
𝑡 = 𝑧𝑡

in∶protect𝑘(𝑡, 𝑎), 𝑡 = 𝑧𝑡 ∧ 𝑎 ≠ 𝑧𝑎
in∶unprotect𝑘(𝑡), 𝑡 = 𝑧𝑡

in∶protect𝑘(𝑡, 𝑎),
𝑡 = 𝑧𝑡 ∧ 𝑎 = 𝑧𝑎

re∶protect𝑘(𝑡),
𝑡 = 𝑧𝑡

in∶protect𝑘(𝑡, 𝑎), 𝑡 = 𝑧𝑡 ∧ 𝑎 ≠ 𝑧𝑎
in∶unprotect𝑘(𝑡), 𝑡 = 𝑧𝑡

𝐹 ∶= free(𝑎), 𝑎 = 𝑧𝑎 𝑅 ∶= in∶retire(𝑡, 𝑎), 𝑎 = 𝑧𝑎

A E𝑘
0 E𝑘

1 S

(b) A typing for an excerpt of the dequeue function from Michael&Scott’s queue with HP, Lines 326
to 337 from Figure 2.13. To guide the type check, we added annotations. The added lines are typeset
in bold font. The atomic blocks, Lines 810 to 821 and Lines 832 to 840, can be obtained with the
technique from Section 8.7 plus an HP-specic tactic for inserting active annotations.

809 { Head,head,next:∅ }

810 beginAtomic;
811 { Head,head,next:∅ }

812 @inv active(Head)
813 { Head:A; head,next:∅ }

814 Node* head = Head;

815 { Head,head:A; next:∅ }

816 in:protect0(head);

817 { Head:A; head:A ∧ E0
0; next:∅ }

818 re:protect0();

819 { Head:A; head:A ∧ E0
0 ∧ E0

1; next:∅ }

820 { Head:A; head:S; next:∅ }

821 endAtomic;
822 { Head,next:∅; head:S }

823 // ...

824 { Head,next:∅; head:S }

825 Node* next = head->next;

826 { Head,next:∅; head:S }

827 { Head,next:∅; head:S }

828 in:protect1(next);

829 { Head:∅; head:S; next:E1
0 }

830 re:protect1();

831 { Head:∅; head:S; next:E1
0 ∧ E1

1 }

832 beginAtomic;

833 { Head:∅; head:S; next:E1
0 ∧ E1

1 }

834 @inv active(Head)

835 { Head:A; head:S; next:E1
0 ∧ E1

1 }

836 assume(head == Head);

837 { Head:A; head:S; next:E1
0 ∧ E1

1 }

838 @inv active(next)
839 { Head:A; head:S; next:S }

840 endAtomic;
841 { Head:∅; head:S; next:S }

842 // ...

843 int output = next->data;

844 { Head:∅; head:S; next:S }

102 Chapter 8 Strong Pointer Races

8.5 Invariant Checking

The type system from Section 8.3 relies on invariant annotations in the program under scrutiny

in order to incorporate runtime behavior that is typically not available to a type system. For

the soundness of our approach, we require those annotations to be correct. More precisely,

the premises of Theorems 8.15 and 8.16 require the annotations to be correct under O⟦P⟧∅Adr .
Interestingly, we can use an o-the-shelf GC verier to discharge the invariant annotations fully

automatically. The following theorem shows that checking invariants under GC, that is, in ⟦P⟧∅∅,
suces indeed. Technically, we extend Theorem 8.15 because the reduction from Theorem 8.6

requires strong pointer race freedom.

Theorem 8.21. If inv(⟦P⟧∅∅) and⊢ P , then inv(O⟦P⟧∅Adr) holds and O⟦P⟧∅Adr is free from
strong pointer races.

Proof Sketch. Towards a contradiction, assume that the claim does not hold. Then, there is a

shortest computation 𝜏 ∈ O⟦P⟧∅Adr such that 𝜏 is a strong pointer race or ¬inv(𝜏). With the

same reasoning as in the proof of Theorem 8.15, we conclude that 𝜏 is free from strong pointer

races. Hence, Theorem 8.6 yields some 𝜎 ∈ ⟦P⟧∅∅ with inv(𝜎) ⟹ inv(𝜏). We get ¬inv(𝜎), a
contradiction to the assumption. �

Now, we are ready to automatically discharge invariant annotations with the help of GC veriers.

In our experiments, we rely on cave [Vafeiadis 2009, 2010a,b]. Making the link to tools, however,

is non-trivial. Our programs feature programming constructs that are typically not available in

o-the-shelf veriers. We present a source-to-source translation that replaces those constructs

by standard ones. The constructs to be replaced are SMR commands, invariants guaranteeing

pointers to be active (not retired), and invariants centered around angels. For the translation, we

only rely on ordinary assertions assert cond and non-deterministic assignments havoc(𝑝) to
pointers. Both are usually available in verication tools.

The correspondence between the original program P and its translation inst(P) is documented

in Theorem 8.22 and as required. Predicate safe(⋅) evaluates to true i the assertions hold, i.e.,

verication is successful. Recall that ⟦P⟧∅∅ is the GC semantics where addresses are neither freed

nor reclaimed. Note that this semantics is the simplest a tool can assume. Our instrumentation

also works if the GC tool collects and subsequently reuses garbage addresses.

Theorem 8.22 (Soundness and Completeness). We have inv(⟦P⟧∅∅) i safe(⟦inst(P)⟧∅∅).
The source-to-source translation is linear in size.

The source-to-source translation is dened in Figure 8.23. It preserves the structure of the

program and does not modify ordinary commands. SMR function invocations and responses

Section 8.5 Invariant Checking 103

Figure 8.23: Source-to-source translation replacing SMR commands and annotations.

inst(stmt∗) ≔ inst(stmt)∗ inst(in∶func(𝑟)) ≔ skip

inst(stmt1 ⊕ stmt2) ≔ inst(stmt1)⊕ inst(stmt2) inst(re∶func) ≔ skip

inst(stmt1; stmt2) ≔ inst(stmt1); inst(stmt2) inst(com) ≔ com

inst(@inv 𝑝 = 𝑞) ≔ assert 𝑝 = 𝑞

inst(in∶retire(𝑞)) ≔ skip⊕ (retire_ptr ∶= 𝑞; retire_flag ∶= true)

inst(@inv active(𝑝)) ≔ assert !retire_flag ∨ retire_ptr ≠ 𝑝

inst(@inv angel 𝑟) ≔ havoc(𝑟); included_𝑟 ∶= false; failed_𝑟 ∶= false

inst(@inv 𝑞 in 𝑟) ≔ skip⊕ (assume 𝑞 = 𝑟 ; assert !failed_𝑟 ; included_𝑟 ∶= true)

inst(@inv active(𝑟)) ≔ skip⊕ (assume retire_flag ∧ retire_ptr = 𝑟 ;

assert !included_𝑟 ; failed_𝑟 ∶= true)

will be taken care of by the type system; they are ignored, except for invocations of retire.

Invariants guaranteeing pointer equality yield assertions.

The purpose of invariants @inv active(𝑝) is to guarantee that the address held by the pointer

has not been retired since its last allocation. The idea of our translation is to guess the moment

of failure, the retire call after which such an invariant will be checked. We instrument the

program by an additional pointer retire_ptr and a Boolean variable retire_flag. Both are

shared. An invocation of retire then translates into a non-deterministic choice between skip-

ping the command or being the call after which an invariant will fail. In the latter case, the

address is stored in retire_ptr and retire_flag is raised. Note that the instrumentation is

tailored towards garbage collection. As long as retire_ptr points to the address, it will not

be reallocated. Therefore, we do not run the risk of the address becoming active ever again.

The invariant @inv active(𝑝) now translates into an assertion that checks the address of 𝑝 for

being the retired one and the ag for being raised. A thing to note is that the instrumentation of

retire invocations is not atomic. Hence, there may be an interleaving where a pointer has been

stored in retire_ptr but the ag has not yet been raised. The assertion would consider this

interleaving safe. However, if there is such an interleaving, there is also one where the assertion

fails. Hence, atomicity is not needed.

For invariants involving angels, the idea of the instrumentation is the same as for pointers,

guessing the moment of failure. What makes the task more dicult is the angelic semantics.

We cannot just guess a value for the angel and show that it makes an invariant fail. Instead, we

104 Chapter 8 Strong Pointer Races

have to show that, no matter how the value is chosen, it inevitably leads to an invariant failure.

This resembles the idea of having a strategy to win against an opponent in a turn-based game,

a common phenomenon when quantier alternation is involved [Grädel et al. 2002]. Another

source of diculty is the fact that angels are second-order variables storing sets. We tackle the

problem by guessing an element in the set for which verication fails.

The instrumentation proceeds as follows. We consider angels 𝑟 to be ordinary pointers. For each

angel, we add two Boolean variables included_𝑟 and failed_𝑟 that are local to the thread. When

we allocate an angel using @inv angel 𝑟 , we guess the address that (i) will inevitably belong to

the set of addresses held by the angel and (ii) for which an active invariant will fail. To document

that we are sure of (i), we raise ag included_𝑟 . For (ii), we use failed_𝑟 . If we are sure of both

facts, we let verication fail. Note that we can derive the facts in arbitrary order.

An invariant @inv 𝑞 in 𝑟 forces the angel to contain the address of 𝑞. This may establish (i).

The reason it does not establish (i) for sure is that the angel denotes a set of addresses, and

the address of 𝑞 could be dierent from the one for which an active invariant fails. Hence,

we non-deterministically choose between skipping the invariant or comparing 𝑞 to 𝑟 . If the

comparison succeeds, we raise included_𝑟 . Moreover, we check (ii). If the address has been

retired already, then we report a bug.

Invariant @inv active(𝑟) forces all addresses held by the angel to be active. In the instrumented

program, 𝑟 is a pointer that we compare to retire_ptr introduced above. If the address has been

retired, we are sure about (ii) and document this by raising failed_𝑟 . If we already know (i), the

address inevitably belongs to the set held by the angel, verication fails.

8.6 Type Inference

We show that type inference is surprisingly ecient, namely quadratic time.

Theorem 8.24. Given a program P , the type inference ⊢ P is computable in time O(∣P∣2).

As common in type systems [Pierce 2002], our algorithm for type inference is constraint-based.

We associate with program P a constraint system Φ(Γinit, P, 𝑋). The variables 𝑋 are interpreted

over the set of type environments enriched with a value ⊤ for a failed type inference. The

correspondence between solving the constraint system and type inference will be the following:

an environment Γ can be assigned to 𝑋 in order to solve the constraint system if and only if the

derivation { Γinit } P { Γ } is possible. As a result, a non-trivial solution to 𝑋 will show⊢ P .

Our type inference algorithm will be a xed-point computation. The canonical choice for a

domain over which to compute would be the set Types of all types, ordered by ↝. The problem

Section 8.6 Type Inference 105

Figure 8.25: Constraint system Φ(𝑋, P, 𝑌), dened inductively over the structure of P .

Φ(𝑋, com, 𝑌) ∶ sp(𝑋, com) ⊑ 𝑌

Φ(𝑋, stmt1; stmt2, 𝑌) ∶ Φ(𝑋, stmt1, 𝑍) ∧ Φ(𝑍, stmt2, 𝑌) with 𝑍 fresh

Φ(𝑋, stmt1 ⊕ stmt2, 𝑌) ∶ Φ(𝑋, stmt1, 𝑌) ∧ Φ(𝑋, stmt2, 𝑌)

Φ(𝑋, stmt∗, 𝑌) ∶ Φ(𝑌, stmt, 𝑌) ∧ 𝑋 ⊑ 𝑌

is that types E𝐿 and E𝐿 ∧ E𝐿′ with 𝐿 ⊆ 𝐿
′ are comparable, E𝐿 ↝ E𝐿 ∧ E𝐿′ and E𝐿 ∧ E𝐿′ ↝ E𝐿 ,

yet distinct. This is not merely a theoretical issue of the domain being a quasi order instead of a

partial order.3 It means we compute over too large a domain, namely a powerset lattice where

we should have used a lattice of antichains [Wulf et al. 2006]. We factorize the set of all types

along such equivalences ↝ ∩ ↝
−1. The resulting AntiChainTypes ≔ (Types/↝∩↝−1,↝) is a

complete lattice [Birkho 1948, Theorem 3].

Type environments can be understood as total functions into this antichain lattice. We enrich

the set of functions by a value⊤ to indicate a failed type inference. The result is the complete

lattice of enriched type environments

Env⊤ ≔ (AntiChainTypesVar ∪ {⊤ }, ⊑) .

Between environments, we dene Γ ⊑ Γ
′ to hold if for all 𝑥 ∈ Var we have Γ(𝑥) ↝ Γ

′(𝑥). This
lifts↝ to the function domain. Value⊤ is dened to be the largest element.

The constraint system Φ(Γinit, P, 𝑋) is dened in Figure 8.25. We proceed by induction over the

structure of the statements in P and maintain triples (𝑋, stmt, 𝑌). The idea is that statement stmt

will turn the enriched type environment stored in variable𝑋 into an environment upper bounded

by 𝑌 . Consider the case of basic commands. We will dene sp(𝑋, com) to be the strongest

enriched type environment resulting from the environment in 𝑋 when applying command com.

The constraint sp(𝑋, com) ⊑ 𝑌 requires 𝑌 to be an upper bound. Note that 𝑌 still contains

safe type information. For a sequential composition, we introduce a fresh variable 𝑍 for the

enriched type environment determined by stmt1 from 𝑋 . We then require stmt2 to transform

this environment into 𝑌 . For a choice, 𝑌 should upper bound the eects of both stmt1 and stmt2
on 𝑋 . This guarantees that the type information is valid independent of which branch is chosen.

For iterations, we have to make sure 𝑌 is an upper bound for the eect of arbitrarily many

applications of stmt to 𝑋 . This means the environment in 𝑌 is at least 𝑋 because the iteration

may be skipped. Furthermore, if we apply stmt to 𝑌 then we should again obtain at most the

environment in 𝑌 .

3 Quasi orders are reexive and transitive; partial orders are antisymmetric quasi orders [Birkho 1948, p. 4].

106 Chapter 8 Strong Pointer Races

It remains to dene sp(𝑋, com), the strongest enriched type environment resulting from 𝑋 under

command com. We refer to the typing rules in Figures 8.12 and 8.13 and extract precom and upcom.

The former is a predicate on environments capturing the premise of the rule associate with

command com. The latter is a function on environments. It captures the update of the given

environment as dened in the consequence of the corresponding rule. For an example, consider

Rule (assign2), repeated from Figure 8.12:

Γ(𝑞) = 𝑇 isValid(𝑇)

{ Γ, 𝑝 } 𝑝 ∶= 𝑞.next { Γ, 𝑝 ∶ ∅ }

For this particular rule, the premise precom(Γ) is isValid(𝑇) with𝑇 = Γ(𝑞). The update upcom(Γ)
is Γ[𝑝 ↦ ∅]. The strongest enriched environment preserves the information that a type inference

has failed, sp(⊤, com) ≔ ⊤, for all commands com. For a given environment, we set

sp(Γ, com) ≔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

upcom(Γ) if precom(Γ)

⊤ otherwise
.

We evaluate the premise of the rule. If it does not hold, the type inference will fail and return ⊤.

Otherwise, we determine the update of the current type environment, upcom(Γ). We rely on the

fact that sp(• , com) is monotonic and hence (as the domains are nite) continuous.

We apply Kleene iteration to obtain the least solution to the constraint system Φ(Γinit, P, 𝑋).
The least solution is a function lsol that assigns to each variable in the system an enriched type

environment. We focus on variable 𝑋 that captures the eect of the overall program on the

initial type environment. Then lsol(𝑋) is the strongest type environment that can be obtained

by a successful type inference. This is the key correspondence.

Theorem 8.26 (Principle Types). For Φ(Γinit, P, 𝑋) we have lsol(𝑋) = ⨅⊢ { Γinit } P { Γ } Γ.

Hence, lsol(𝑋) ≠ ⊤ if and only if⊢ P .

Lastly, we check the complexity of the Kleene iteration. In the lattice of enriched type environ-

ments, chains have length at most ∣Var∣ ⋅ ∣{A,L, S,E𝐿1, . . . ,E𝐿𝑛 }∣+ 1. This is linear in the size

of the program as the guarantees only depend on the SMR algorithm, which is not part of the

input. With one variable for each program point, also the number of variables in the constraint

system is linear in the size of the program. It remains to compute sp(• , com) for the Kleene
approximants. This can be done in constant time. The premise and the update of a rule only

modify a constant number of variables. Moreover, we can look-up the eect of commands on a

type in constant time. Combined, we obtain the overall quadratic complexity.

Section 8.6 Type Inference 107

Figure 8.27: Making a program more atomic to avoid strong pointer races (unsafe assump-
tion) while retaining the original behavior.

(a) Protection scheme from Michael&Scott’s
queue, Lines 326 to 328. For the sake of pre-
sentation, the original condition from Line 328
is rewritten into the assumptions from Lines 849
and 852. Line 852 exhibits a strong pointer race;
more precisely, an unsafe assumption.

845 unprotect0();

846 head = Head;

847 protect0(head);

848 if (*) {

849 assume(head != Head);

850 // restart procedure

851 }

852 assume(head == Head);

853 // continue procedure

(b)More atomic version of the protection mecha-
nism from Michael&Scott’s queue. The new ver-
sion avoids the strong pointer race from Line 852,
yet it retains all behaviors from the original im-
plementation.

854 unprotect0();

855 if (*) {

856 head = Head;

857 protect0(head);

858 assume(head != Head);

859 // restart procedure

860 }

861 atomic { head = Head;

862 protect0(head); }

863 // continue procedure

8.7 Avoiding Strong Pointer Races

The approach presented so far in this chapter evolves around strong pointer races: our type

check establishes strong pointer race freedom so that the actual analysis can be performed under

GC. Contrast this to the development from Chapter 7. There, we require ordinary, not strong,

pointer race freedom. As a consequence, we have to deal with unsafe assumptions. Unsafe

assumptions, in turn, lead to ABAs and the need to prove them harmless, a task which crucially

requires to analyze reallocations (of a single address) and cannot be done under GC.

Ruling out code performing unsafe assumptions allows for the more ecient GC analysis. The

price to pay is applicability: programmers may exploit intricate invariants of the data structure

to ensure that unsafe assumptions do not harm the correctness of the implementation. We have

already seen an example of this in Micheal&Scott’s queue with hazard pointer (cf. Section 7.3):

when protecting nodes, the queue performs assumptions which we deem unsafe although they

are correct (harmless ABAs). Therefore, the type check will fail—our approach is not applicable

out of the box. In the following, we mitigate the additional restriction introduced by strong

pointer race freedom. To that end, we suggest to transform implementations on which the type

check fails. The goal of the transformation is to avoid the problematic unsafe assumption while

retaining soundness. To be more specic, we transform a given program P into a more atomic

program Q. Then, we apply our approach to Q. Because Q is more atomic, it may not observe

certain intermediate computation steps of P , i.e., O⟦P⟧AdrAdr /⊆ O⟦Q⟧AdrAdr . Instead, we just require

that the correctness of Q entails the correctness of P .

108 Chapter 8 Strong Pointer Races

To motivate our choice of program transformations, we elaborate on the popular retry idiom, a

programming pattern under safememory reclamation that relies on unsafe assumptions. Consider

Lines 326 to 328 of Michael&Scott’s queue the code of which is repeated in Figure 8.27a (for

simplicity, we added the latest unprotect0 in Line 845). There, (i) the shared Head is copied into

a local pointer head, Line 846, (ii) a protection is issued for that local pointer head, Line 847,

and then (iii) the procedure is restarted if Head has changed since it was read out, Line 849, and

continued otherwise, Line 852. The comparison of Head and head in Line 852 raises a pointer

race: headmay be invalid despite the protection in Line 847. The reason is that Lines 846 and 847

are not executed atomically. The node referenced by head could be retired and freed by another

thread before the protection takes place. This renders head invalid. In fact, Line 852 is an

ABA. The ABA, however, is harmless in terms of Denition 7.18: the reallocated address can be

accessed safely. (The comparison in Line 849 does not raise a strong pointer race according to

Denition 8.4.) The retry idiom for protecting nodes is not limited to hazard pointers but applied

in combination with other SMR algorithms as well.

To overcome the problem of harmless strong pointer races, we propose to transform the program

into a more atomic version. This idea is referred to as atomicity abstraction and well-known

in the literature, with contributions ranging from Lipton [1975] to Hawblitzel et al. [2015] to

Flanagan and Freund [2020]. We refer the reader to Chapter 9 for an overview. In the above

example, we execute the read and the protection atomically, as done in Figure 8.27b. While this

atomicity cannot be achieved in practice, it is useful for verication. In fact, the transformed

code has the same behavior. Yet, it is free from strong pointer races (unsafe assumptions). In the

following, we develop an atomicity abstraction tailored towards programs with safe memory

reclamation. We invoke it whenever the type check fails.

The fundamental technique behind atomicity abstraction are movers [Lipton 1975]. Intuitively, a

command is a mover if it can be reordered with commands of other threads. This allows for the

command to be moved to the subsequent command of the same thread, eectively constructing

an atomic block containing both commands. The dierence to existing works [Elmas et al.

2009; Flanagan and Qadeer 2003a; Kragl and Qadeer 2018] is that our programs contain SMR

commands the semantics of which depends on the underlying SMR automaton. We propose

the following notion of moverness that takes into account an SMR automaton O. To make it

precise, we associate with every command com a unique label lab. Intuitively, the label lab is

the line number in which com appears in program P . We use the label to distinguish between

syntactically equal commands that appear at dierent locations in P .

Section 8.7 Avoiding Strong Pointer Races 109

Denition 8.28 (Right Mover). Command com at label lab right-moves if, for all com-

putations 𝜏 .act1.act2 ∈ O⟦P⟧AdrAdr with act𝑖 = ⟨𝑡𝑖 , com𝑖 , up𝑖⟩ and 𝑡1 ≠ 𝑡2 where com1 is

command com at label lab, there is 𝜏 .act ′2.act
′
1 ∈ O⟦P⟧AdrAdr with act ′𝑖 = ⟨𝑡𝑖 , com𝑖 , up

′
𝑖⟩ so that:

𝑚𝜏 .act1 .act2 =𝑚𝜏 .act ′2 .act
′
1

and good(𝜏 .act ′2.act ′1) ⟹ good(𝜏 .act1) ∧ good(𝜏 .act1.act2)

and ∀𝑎 ∈ Adr . FO(𝜏 .act1.act2, 𝑎) ⊆ FO(𝜏 .act ′2.act ′1, 𝑎) .

The equality (rst line) is the expected requirement: the memories resulting from the two compu-

tations coincide. The implication (second line) asks for the correctness of the new computation

to carry over to the original computation and the intermediate step. The inclusion (third line) is

SMR specic. It requires that we obtain only more behavior after moving act1 to the right. It

is worth pointing out that swapping the order of act1 and act2 might change the updates they

perform. This is why we use actions act ′1 and act ′2 after moving act1 to the right: actions act𝑖
and act ′𝑖 coincide up to a potentially dierent update.

What is remarkable about the denition of moverness is that SMR commands (in, re, free) do

not modify the memory (relevant for the equality and the implication) while the remaining

memory commands do not aect the history of the computation (relevant for the inclusion).

As a consequence, a memory command com always right-moves over an SMR command com′.

The reverse is true as well, with one exception: a free of address 𝑎 does not right-move over

a malloc reusing 𝑎. To be precise, both directions require that com does not change the valuation

of pointers used by com′. Since only commands of dierent threads are considered, this is

guaranteed to hold if SMR commands com′ never access shared variables. This holds for all data

structures we are aware of. One reason is that shared variables are subject to interferences, and

hence it is not clear what value would be passed to the SMR algorithm. Another reason is that

local variables are cheaper to access.

It remains to establish moverness for memory commands and for SMR commands. For memory

commands, we apply the moverness proof techniques from the literature [Elmas et al. 2009].

Many of them remain applicable although we have to consider computations fromO⟦P⟧AdrAdr . The

reason for this is that moverness techniques heavily rely on rewriting patterns which are proven

sound in any context. That is, the rewriting does not rely on the overall program but holds for

any memory𝑚𝜏 . We do not reiterate existing techniques here.

For an SMR command to be a mover, we have to establish the inclusion from the above denition.

Consider the interesting case where both act1 and act2 execute SMR commands. Since neither of

the actions updates the memory, we have act𝑖 = act ′𝑖 . The inclusion boils down to:

FO(𝜏 .act1.act2, 𝑎) ⊆ FO(𝜏 .act2.act1, 𝑎) .

110 Chapter 8 Strong Pointer Races

Let the histories of the involved computations be ℎ.evt1.evt2 resp. ℎ.evt2.evt1. Runs of the SMR

automaton O on those histories take the form

𝑠0 −→
ℎ

𝑠1 −−→
evt1

𝑠2 −−→
evt2

𝑠3 and 𝑠0 −→
ℎ

𝑠1 −−→
evt2

𝑠
′
2 −−→

evt1
𝑠
′
3 .

Consequently, it suces to show that state 𝑠 ′3 allows for more behavior than 𝑠3. Formally, we

require that FO(𝑠3, 𝑎) ⊆ FO(𝑠 ′3, 𝑎) holds where FO(𝑠, 𝑎) ≔ { ℎ′ ∣ ℎ
′
∈ S(𝑠) ∧ freesℎ′ ⊆ 𝑎 }.

The inclusion can be checked with the technique from Proposition 5.3.

8.8 Evaluation

We implemented the approach presented in this chapter in a C++ tool called seal.4 As stated

before, we use the state-of-the-art tool cave [Vafeiadis 2009, 2010a,b] as a back-end verier for

discharging annotations and checking linearizability. For the type inference, our tool computes

the most precise guarantees E𝐿 on the y; there is no need for the user to manually specify

them. To substantiate the usefulness of our approach, we empirically evaluated seal on

the following data structures: Treiber’s stack, Michael&Scott’s queue, the DGLM queue, the

Vechev&Yahav 2CAS set, the Vechev&Yahav CAS set, the ORVYY set, Michael’s set, and Harris’

set. Our benchmarks include a version of each data structure for EBR and HP as specied by the

SMR automata OBase ×OEBR and OBase ×O0,1
HP , respectively.

Our ndings are listed in Table 8.29. The table includes the time taken (i) for the type inference,

(ii) for discharging the invariant annotations, and (iii) to check linearizability. We mark tasks

with 3 if they were successful, with 7 if they failed, and with � if they timed out after 12ℎ wall

time. All experiments were conducted on an Intel i5-8600K@3.6GHz with 16GB of RAM using

Ubuntu 16.04 and Clang 6.0.

Our approach is capable of verifying most of the non-blocking data structures we considered.

Comparing the total runtime with the approach from Section 8.7, which relies on an exhaustive

state space exploration of O⟦•⟧oneAdr , we experience a speed-up of over two orders of magnitude

on examples like Michael&Scott’s queue. Besides the speed-up, we are the rst to automatically

verify non-blocking set algorithms that use SMR.

We were not able to discharge the annotations of the DGLM queue and Michael’s set. Imprecision

in the thread-modular abstraction of our back-end verier, cave, resulted in false-positives

being reported. Hence, we cannot guarantee the soundness of our analysis in these cases. This

is no limitation of our approach, it is a shortcoming of the back-end verier. We reported on a

similar issue in Section 7.5 before; there, we needed hints to obtain the necessary precision in

some benchmarks.

4 seal is freely available at: https://wolff09.github.io/phd/

Section 8.8 Evaluation 111

https://wolff09.github.io/phd/

Table 8.29: Experimental results for verifying singly-linked data structures using safe
memory reclamation. The experiments were conducted on an Intel Intel i5-8600K@3.6GHz
with 16GB of RAM using Ubuntu 16.04 and Clang 6.0.

SMR Program Type Inference Annotations Linearizability

HP

Treiber’s stack 0.7𝑠 3 12𝑠 3 1𝑠 3

Opt. Treiber’s stack 0.5𝑠 3 11𝑠 3 1𝑠 3

Michael&Scott’s queue 0.6𝑠 3 12𝑠 3 4𝑠 3

DGLM queue 0.6𝑠 3 1𝑠 7
a 5𝑠 3

Vechev&Yahav 2CAS set 1.2𝑠 3 13𝑠 3 98𝑠 3

Vechev&Yahav CAS set 1.2𝑠 3 3.5ℎ 3 42𝑚 3

ORVYY set 1.2𝑠 3 3.2ℎ 3 47𝑚 3

Michael’s set 1.2𝑠 3 90𝑠 7
a — �

EBR

Treiber’s stack 0.6𝑠 3 10𝑠 3 1𝑠 3

Michael&Scott’s queue 0.7𝑠 3 16𝑠 3 5𝑠 3

DGLM queue 0.7𝑠 3 1𝑠 7
a 6𝑠 3

Vechev&Yahav 2CAS set 0.8𝑠 3 38𝑠 3 200𝑠 3

Vechev&Yahav CAS set 0.8𝑠 3 7ℎ 3 42𝑚 3

ORVYY set 0.9𝑠 3 7ℎ 3 47𝑚 3

Michael’s set 0.2𝑠 3 22𝑠 7
a — �

Harris’ set 0.5𝑠 3 1𝑠 7
a — �

a False-positive due to imprecision in the back-end verier.

The annotation checks for set implementations are interesting. While the HP version of an

implementation is typically more involved than the corresponding version using EBR, the

annotation checks for the HP version are more ecient. The reason for this could be that EBR

implementations require angels. The conjecture suggests that discharging angels is harder for

cave than discharging active annotations, although our instrumentation uses the same idea for

both annotation types.

For the benchmarks from Table 8.29 we preprocessed the implementations by applying atomicity

abstraction, as discussed in Section 8.7. Our tool is able to apply the preprocessing automatically.

We excluded this step to avoid distortions of the reported running times.

112 Chapter 8 Strong Pointer Races

Part III

Discussion

113

114

Related Work 9
We discuss works related to the various aspects touched by this thesis. Section 9.1 briey reviews

further data structures that are challenging for verication. Section 9.2 gives an overview of safe

memory reclamation. Section 9.3 discusses related analysis and verication techniques.

9.1 Data Structures

Our benchmark set is on par with related works on verication [Abdulla et al. 2013, 2016;

Vafeiadis 2010a,b]. Besides the stack and queue implementations we considered, there are more

implementations that are worth verifying. For example, elimination-backo stacks [Bar-Nissan et

al. 2011; Hendler et al. 2004], time-stamped stacks and queues [Dodds et al. 2015], bounded array-

based queues [Gong and Wing 1990; Shann et al. 2000], and optimized queue implementations

[Kogan and Petrank 2011, 2012; Morrison and Afek 2013; Tsigas and Zhang 2001].

Beyond singly-linked structures, there are, for instance, priority queues [Barnes 1992; Israeli and

Rappoport 1993; Sundell and Tsigas 2003], skip lists [Fomitchev and Ruppert 2004; Fraser 2004;

Sundell and Tsigas 2003], doubly-linked and double-ended queues [Agesen et al. 2000; Arora

et al. 1998; Greenwald 1999; Haas 2015; Michael 2003; Shaei 2015; Sundell and Tsigas 2004],

and search trees [Barnes 1992; Braginsky and Petrank 2012; Levandoski et al. 2013; Natarajan

and Mittal 2014; Natarajan et al. 2020; Ramachandran and Mittal 2015]. We are not aware of

fully automatic techniques that have veried any of those data structures, neither under garbage

collection nor under manual memory management.

Depending on the work load, lock-based data structure implementations may outperform non-

blocking ones [Hendler et al. 2010]. We did not consider lock-based implementations since

memory management is typically easier in the presence of mutual exclusion [Brown 2015;

Nikolaev and Ravindran 2020]. It is worth pointing out that our results do not rely on the

progress guarantee of the data structure under scrutiny. That is, applying our results to lock-

based implementations can justify verication under garbage collection just as well as in the

case of non-blocking data structures. Herlihy and Shavit [2008] give an overview of lock-based

implementations.

Section 9.1 Data Structures 115

Data structures may obtain further performance improvements when implementing more relaxed

correctness criteria than linearizability [Haas et al. 2015; Henzinger et al. 2013a]. We are not

aware of automated verication for such data structures. Again, we point out that our results

are independent of the correctness criterion that is veried: compositionality and the reduction

results guarantee that the simpler semantics reaches the same program locations as the target

semantics.

9.2 Memory Reclamation

Besides free lists, EBR, and HP, there is another basic SMR technique: reference counting (RC).

RC extends objects with an integer eld counting the number of pointers to the object. Safely

modifying counters in a non-blocking manner, however, comes with impractical performance

penalties [Cohen 2018; Hart et al. 2007], requires hazard pointers [Herlihy et al. 2005], or requires

2CAS [Detlefs et al. 2001] which is unavailable on modern hardware [Brown 2015].

Recent eorts in developing SMR algorithms have mostly combined existing techniques. For

example, DEBRA [Brown 2015] is an optimized EBR implementation. Harris [2001] modies

EBR to store epochs inside objects. Hyaline [Nikolaev and Ravindran 2019] is used like EBR.

Herlihy et al. [2002] presented a HP variation. Optimized HP implementations include the

work by Aghazadeh et al. [2014] and the work by Dice et al. [2016] as well as Cadence [Balmau

et al. 2016]. Dynamic Collect [Dragojevic et al. 2011], StackTrack [Alistarh et al. 2014], and

ThreadScan [Alistarh et al. 2015] are HP-esque implementations exploring the use of operating

system and hardware support. Drop the Anchor [Braginsky et al. 2013], Optimistic Access [Cohen

and Petrank 2015b], Automatic Optimistic Access [Cohen and Petrank 2015a], QSense [Balmau

et al. 2016], Hazard Eras [Ramalhete and Correia 2017], Interval-based Reclamation [Wen et al.

2018], Wait-Free Eras [Nikolaev and Ravindran 2020], and PEBR [Kang and Jung 2020] combine

EBR and HP. Free Access [Cohen 2018] automates the application of Automatic Optimistic Access.

While the method promises to be correct by construction, we believe that performance-critical

applications choose the SMR technique based on performance rather than ease of use. The

demand for automated verication remains. Beware&Cleanup [Gidenstam et al. 2005] combines

HP and RC. Isolde [Yang and Wrigstad 2017] combines EBR and RC. We believe our approach

can handle other SMR algorithms besides EBR and HP as well.

9.3 Reasoning and Verification

We give an overview of static analyses related to the techniques presented in this thesis.

116 Chapter 9 Related Work

9.3.1 Memory Safety

We use our techniques to show that a program is free from (strong) pointer races, meaning that

it is memory safe. There are a number of related tools that can check pointer programs for

memory safety: a combination of ccured [Necula et al. 2002] and blast [Henzinger et al.

2003] due to Beyer et al. [2005], invader [Yang et al. 2008], xisa [Laviron et al. 2010], slayer

[Berdine et al. 2011], infer [Calcagno and Distefano 2011], forester [Holík et al. 2013],

predator [Dudka et al. 2013; Holík et al. 2016], and aprove [Ströder et al. 2017]. These tools

can only handle sequential code. Moreover, unlike our type system, they include memory/shape

abstractions to identify unsafe pointer operations. We delegate this task to a back-end verier

with the help of annotations. That is, if the related tools were to support concurrent programs,

they were candidates for the back-end. We used cave [Vafeiadis 2010a,b] as it can also prove

linearizability.

Despite the dierences, we point out that the combination of blast and ccured [Beyer

et al. 2005] is closest to our approach in spirit. ccured performs a type check of the program

under scrutiny which checks for unsafe memory operations. While doing so, it annotates

pointer operations in the program with run-time checks in the case the type check could not

establish the operation to be safe. The run-time checks are then discharged using blast. The

approach is limited to sequential programs. Moreover, we incorporate the behavior of the SMR

algorithm. Finally, our type system is more lightweight and we discharge the invariants in a

simpler semantics without memory deletions.

Castegren and Wrigstad [2017] give a type system that guarantees the absence of data races.

Their types encode a notion of ownership that prevents non-owning threads from accessing a

node. Their method is tailored towards GC and requires to rewrite programs with appropriate

type speciers. Kuru and Gordon [2019] presented a type system for checking the correct use of

RCU. Unlike our approach, they integrate a xed shape analysis and a xed RCU specication.

This makes the type system considerably more complicated and the type check potentially more

expensive. Unfortunately, Kuru and Gordon [2019] did not implement their approach.

Besides memory safety, tools like invader, slayer, infer, forester, predator, and the

type system by Kuru and Gordon [2019] discover memory leaks. A successful type check with

our type system does not imply the absence of memory leaks. We believe that the outcome of

our analysis could help a leak detection tool. For example, by performing a linearizability check

to nd the abstract data type the data structure under consideration implements. We consider a

closer investigation of the matter as future work.

Section 9.3 Reasoning and Verification 117

9.3.2 Typestate

Typestate extends an object’s static (compile-time) type with a notion of abstract state which

reects the dynamic (run-time) context the object appears in. The methods of an object can

be annotated to modify this state and to be available only in a certain state. This can refute

syntactically correct programs as semantically incorrect. Analyses checking for methods being

called only in the appropriate state include the works by Bierho and Aldrich [2007], DeLine and

Fähndrich [2004], Fähndrich and DeLine [2002], Fink et al. [2006], and Foster et al. [2002]. Our

types can be understood as typestates for pointers (and the objects they reference) geared towards

SMR. However, whereas an object’s typestate has a global character, our types reect a thread’s

local perception. Das et al. [2002] give a typestate analysis based on symbolic execution to

increase precision. Similarly, we increase the applicability of our approach by using annotations

that are discharged by a back-end verier. For a more detailed overview on typestate, refer to

Ancona et al. [2016].

9.3.3 Program Logics

There are several program logics for verifying concurrent programs with dynamic memory. Some

examples are: sagl [Feng et al. 2007], rgsep [Vafeiadis and Parkinson 2007] (used by cave

[Vafeiadis 2010a]), lrg [Feng 2009], Deny-Guarantee [Dodds et al. 2009], cap [Dinsdale-Young

et al. 2010], hlrg [Fu et al. 2010], and the work by Gotsman et al. [2013]. Program logics are

conceptually related to our type system. However, such logics integrate further ingredients to

successfully verify intricate non-blocking data structures [Turon et al. 2014]. Most importantly,

they include memory abstractions, like (concurrent) separation logic [Brookes 2004; O’Hearn

2004; O’Hearn et al. 2001; Reynolds 2002], and mechanisms to reason about thread interference,

like rely-guarantee [Jones 1983]. This makes them much more complex than our type system. We

deliberately avoid incorporating a memory abstraction into our type system to keep it as exible

as possible. Instead, we use annotations to delegate the shape analysis to a back-end verier,

resulting in the data structure and its memory management being veried separately. Moreover,

accounting for thread interference in our type system boils down to dening guarantees as

closed sets of locations and removing guarantee A upon exiting atomic blocks.

Oftentimes, invariant-based reasoning about interference turns out too restrictive for verication.

To overcome this problem, logics like caresl [Turon et al. 2013], fcsl [Nanevski et al. 2014],

icap [Svendsen and Birkedal 2014], tada [da Rocha Pinto et al. 2014], gps [Turon et al.

2014], and iris [Jung et al. 2018, 2015] make use of protocols. A protocol captures possible

thread interference, for example, using state transition systems. (Rely-guarantee is a particular

instantiation of a protocol [Jung et al. 2015; Turon et al. 2013].) In our approach, SMR automata

are protocols that govern memory deletions and protections, that is, describe the inuence of

118 Chapter 9 Related Work

SMR-related actions among threads. Our types describe a thread’s local, per-pointer perception

of that global protocol.

Besides protocols, recent logics like caresl, tada, and iris integrate reasoning in the spirit of

atomicity abstraction/renement [Dijkstra 1982; Lipton 1975]. Intuitively, they allow the client

of a ne-grained module to be veried against a coarse-grained specication of the module. For

example, a client of a data structure can be veried against its abstract data type, provided the

data structure renes the abstract data type. We use the same idea wrt. SMR algorithms: we

consider SMR automata instead of the actual SMR implementations.

Some program logics can also unveil memory leaks [Bizjak et al. 2019; Gotsman et al. 2013].

9.3.4 Linearizability

Linearizability testing [Burckhardt et al. 2010; Cerný et al. 2010; Emmi and Enea 2018; Emmi

et al. 2015; Horn and Kroening 2015; Liu et al. 2009, 2013; Lowe 2017; Travkin et al. 2013; Vechev

and Yahav 2008; Yang et al. 2017; Zhang 2011] is a bug hunting technique to nd non-linearizable

executions in large code bases. Since we focus on verication, we do not go into the details of

linearizability testing. However, it could be worthwhile to use a linearizability tester instead of

a verication back-end in our type system to provide faster feedback during the development

process and only use a verier once the development is considered nished.

Verication techniques for linearizability fall into two categories: manual techniques (includ-

ing tool-supported but not fully automated techniques) and automatic techniques. Manual

approaches require the human checker to have a deep understanding of the proof technique

as well as the program under scrutiny—in our case, this includes a deep understanding of the

non-blocking data structure as well as the SMR implementation. This may be the reason why

manual proofs rarely consider reclamation [Bäumler et al. 2011; Bouajjani et al. 2017a; Colvin

et al. 2005, 2006; Delbianco et al. 2017; Derrick et al. 2011; Doherty and Moir 2009; Elmas et al.

2010; Feldman et al. 2018; Groves 2007, 2008; Hemed et al. 2015; Henzinger et al. 2013b; Jonsson

2012; Khyzha et al. 2017; Liang and Feng 2013; Liang et al. 2012, 2014; O’Hearn et al. 2010;

Schellhorn et al. 2012; Sergey et al. 2015a,b]. There are fewer works that consider reclamation

[Dodds et al. 2015; Doherty et al. 2004b; Fu et al. 2010; Gotsman et al. 2013; Krishna et al. 2018;

Parkinson et al. 2007; Ter-Gabrielyan et al. 2019; Tofan et al. 2011]. Notably, Gotsman et al. [2013]

handle memory reclamation by capturing grace periods, the time frame during which threads

can safely access a given part of memory. Their proof method establishes that memory accesses

occur only during a grace period and that deletions occur only after all threads have nished

their grace period. However, they do not separate these two task. Our approach addresses the

former task with the type system checking accessed pointers for guarantees A,L, S and the latter

task when verifying that the SMR implementation satises its SMR automaton. Furthermore,

Section 9.3 Reasoning and Verification 119

Gotsman et al. [2013] use temporal logic to reason about grace periods whereas our type system

is syntactic. For a more detailed overview of manual techniques, we refer to the survey by

Dongol and Derrick [2014].

The landscape of related work for automated linearizability proofs is surprisingly one-sided.

Most approaches ignore memory reclamation, that is, assume a garbage collector [Abdulla et al.

2016; Amit et al. 2007; Berdine et al. 2008; Segalov et al. 2009; Sethi et al. 2013; Vafeiadis 2010a,b;

Vechev et al. 2009; Zhu et al. 2015]. When reclamation is not considered, memory abstractions

are simpler and more ecient, because they can exploit ownership guarantees [Bornat et al.

2005; Boyland 2003] and the resulting thread-local reasoning techniques [O’Hearn et al. 2001;

Reynolds 2002]. Very few works [Abdulla et al. 2013; Holík et al. 2017] address the challenge of

verifying non-blocking data structures under manual memory management. They assume that

FL is used as an SMR algorithm and use hand-crafted semantics that allow for accessing deleted

memory. The experimental results from Chapters 6 and 7 build upon the analysis by Abdulla

et al. [2013]; at the time of writing, it is the most promising automated analysis that can handle

reallocations when memory is managed manually.

9.3.5 Moverness

Movers where rst introduced by Lipton [1975]. They were later generalized to arbitrary safety

properties [Back 1989; Doeppner 1977; Lamport and Schneider 1989]. Movers are a widely applied

enabling technique for verication. To ease the verication task, the program is made more

atomic without cutting away behavior. Because we use standard moverness arguments, we do not

give an extensive overview. Flanagan et al. [2008] and Flanagan and Qadeer [2003a] use a type

system to nd movers in Java programs. The calvin tool [Flanagan et al. 2005, 2002; Freund

and Qadeer 2004] applies movers to establish pre/post conditions of functions in concurrent

programs using sequential veriers. Similarly, qed [Elmas et al. 2009] rewrites concurrent code

into sequential code based on movers. These approaches are similar to ours in spirit: they take

the verication task to a much simpler semantics. However, movers are not a key aspect of our

approach. We employ them only to increase the applicability of our tool in the case of benign

(strong) pointer races. Elmas et al. [2010] extend qed to establish linearizability for simple

non-blocking data structures. qed is superseded by civl [Hawblitzel et al. 2015; Kragl and

Qadeer 2018]. civl proves programs correct by repeatedly applying movers to a program until

its specication is obtained. The approach is semi-automatic, it takes as input a program that

contains intermediary steps guiding the transformation [Kragl and Qadeer 2018]. Similarly,

anchor [Flanagan and Freund 2020] relies on annotations of mover types that guide the verier.

Movers were also applied in the context of relaxed memory [Bouajjani et al. 2018].

120 Chapter 9 Related Work

Future Work 10
We discuss possible directions of future work, some of which we have already hinted on.

Compositionality In Chapter 5 we proposed to verify data structures relative to an SMR

automaton rather than an SMR implementation. The automaton abstracts away details of the

SMR implementation that are irrelevant for verifying the data structure. In particular, it abstracts

away potential starvation or blocking behavior [Tanenbaum and Bos 2014, Section 6.7]. When

considering non-blocking code, we expect the data structure to be oblivious to whether or not

an SMR function starves/blocks [Herlihy and Shavit 2008, Section 3.7]. Blocking data structures,

however, may rely on such properties of the SMR implementation. This can lead to false alarms

during verication. In order to rule out the spurious cases, one could modify the SMR program

semantics (cf. Figure 5.9) to prevent the execution of re commands based on the SMR automaton.

Recall that we currently use the SMR automaton only to prevent free commands that the SMR

algorithm is guaranteed to defer. While the reduction and type check results should require

little modication, a generalization of the invariant check is more involved. The reason for

this is that the instrumentation from Section 8.5 would require to compile the SMR automaton

into code such that the instrumented program mimics the starvation/blocking behavior of the

invoked SMR functions. Since SMR automata reason about innitely many variable valuations

simultaneously, devising subclasses of SMR automata that allow for an eective instrumentation

might be necessary.

The aforementioned generalization to blocking code is interesting as it allows our approach to

verify data structures which use Read-Copy-Update (RCU) [Mckenney 2004; Tanenbaum and

Bos 2014, Section 2.3], a technique that is commonly used in the Linux Kernel [McKenney et al.

2020]. Intuitively, RCU lifts sequential data structures to the concurrent setting. Read accesses

are unrestricted and thus allow for non-blocking implementations. Updates, on the other hand,

are performed under mutual exclusion. Moreover, memory is reclaimed only after RCU-barriers

which block until all concurrent readers have nished [Kuru and Gordon 2019]. Ignoring the

blocking nature of barriers, our instrumentation from Section 8.5 might refute correct invariant

annotations because the following reclamation (retirement) is performed too soon.

Along the same lines, it would be interesting to lift the SMR program syntax and semantics to

support return values on SMR functions. In practice [Michael et al. 2021], SMR implementations

121

provide functions that return an alias of a given pointer and guarantee that the referenced

address is successfully protected. Recall that a successful protection requires to repeatedly

read out the given pointer, issue a protection, and ensure that the given pointer still holds

the same value (assuming that the given pointer is always active), like Lines 326 to 328 from

Micheal&Scott’s queue. Currently, without return values, such functions are not supported. To

make their functionality available to the data structure nevertheless, the function needs to be

copied into the data structure, for example, by replacing all call-sites with the corresponding

implementation. With return values, one could avoid spilling the implementation of the SMR

function into the data structure, supporting a more natural separation as reected in the code.

Moreover, keeping small the size of the data structure likely speeds up verication—verifying

SMR implementations is already ecient as demonstrated in Section 7.5.3.

It is worth pointing out that the above motivation of alias-generating SMR functions may require

the data structure and the SMR implementation to share some parts of the memory, rather than a

strict separation as assumed in Chapter 5. To do this, the SMR semantics would need additional

environment steps that update the shared parts. The form of those updates could again be

encoded by the SMR automaton, e.g, in the form of special events that are emitted by updates to

the jointly used memory. As before, adapting the instrumentation from Section 8.5 to integrate

the new environment steps might be challenging.

Pointer Races Recall that the free list technique, instead of reclaiming memory, makes previ-

ously retired memory immediately accessible for reuse. For verication purposes, Section 5.2

suggested to model this by immediately freeing retired addresses and allowing freed memory to

be accessed (dereferenced). Doing so, however, jeopardizes the applicability of (strong) pointer

race freedom. Freeing an address renders all pointers to that address invalid so that subsequent

accesses raise a pointer race. To overcome this problem, one could devise a specialized version of

the reduction results from Chapters 7 and 8 that allows for read accesses of freed memory. The

value resulting from reading from an invalid pointer must be treated with care. The correspon-

dences we have laid out do not guarantee that the obtained value coincides when mimicking the

access in a smaller semantics (that elides memory reuse). Similarly to the harmful ABA freedom

check, one needs to ensure that the obtained value does not inuence the computation in a way

that the simpler semantics cannot reproduce. Haziza et al. [2016] present a possible solution.1

It is worth pointing out that the an integration of return values as suggested above settles the

issue as well.

With the technique from Section 8.2 for avoiding frees, one could strengthen the reduction result

from Chapter 7 and avoid frees of all addresses that are not available for reallocation. That is, an

analysis of O⟦P⟧oneone = ⋃𝑎 O⟦P⟧{𝑎 }{𝑎 } rather than O⟦P⟧oneAdr = ⋃𝑎 O⟦P⟧{𝑎 }Adr would suce.

1 The author is a coauthor of [Haziza et al. 2016] some results of which are part of Chapter 6.

122 Chapter 10 Future Work

Types The type system from Chapter 8 comes with the restriction that the underlying SMR au-

tomaton must not contain more than two variables. Lifting the restriction requires an adaptation

of the soundness result. More specically, it requires to adapt how the semantic information

from computations 𝜏 is tied to the syntactic information of typings 𝑥 ∶𝑇 for threads 𝑡 , denoted

by 𝜏, 𝑡 ⊧ 𝑥 ∶𝑇 in Section 8.3.4. Currently, 𝑡 and 𝑚𝜏(𝑥) uniquely dene the valuation of the

SMR automaton variables. With more than two variables, however, there no longer is a unique

valuation. When considering all possible valuations that evaluate some variable to 𝑡 and𝑚𝜏(𝑥),
types likely become too imprecise as they can no longer track a specic thread/address through

the SMR automaton. When using distinguished variables 𝑧𝑡 and 𝑧𝑎 in the SMR automaton

that are populated with 𝑡 and𝑚𝜏(𝑥), respectively, then types encode only a fragment of the

SMR automata’s behavior. Since SMR automata are negative specications, this means that the

resulting abstraction via types becomes coarser. It has to be checked whether the introduced

coarseness allows for successful verication.

The evaluation from Section 8.8 demonstrated that checking invariants for correctness is often-

times more time consuming than checking the actual correctness property. More specically, our

experiments suggest that the instrumentation from Section 8.5 introduces severe overheads for

angels. Alternate instrumentations and more powerful constructs in the underlying GC verier

could address the performance bottleneck.

Beyond Data Structures This thesis has focused on high-performance data structures with

manual memory management. We exploited their interaction to tame the mutual inuence,

leading to separate verication tasks. It would be interesting to apply the same methods to more

systems across all sizes. Prime candidates are systems that exhibit similar interaction patterns.

Examples are cloud computing, data bases, and hardware architectures. We elaborate.

The goal of cloud computing is to deliver to customers o-site computing resources as a ser-

vice [Armbrust et al. 2009; Foster et al. 2008]. To provide such services with low latency and

high availability, could computing infrastructures consist of a multitude of physically dispersed

data centers. To maintain high availability, updates to the infrastructure need to be applied

during operation. In the literature, this is referred to as dynamic reconguration of distributed

systems [Barbacci et al. 1990; Kramer and Magee 1990]. Introducing new congurations is

reminiscent of memory reclamation as we have studied it [Bidan et al. 1998; Gilbert et al. 2010]:

out-dated congurations can be removed only if no part of the infrastructure is actively using it.

Moreover, verifying the components of cloud infrastructures compositionally is likely to benet

verication [Sergey et al. 2018].

Data bases are responsible for serving large amounts of data, for example, within a single data

center from the above cloud infrastructure [Silberschatz et al. 2020]. As such, they are similar

to data structures which serve data within a single machine. Serving many rather than one

123

machine, however, increases latencies undesirably [Brewer 2000; DeCandia et al. 2007; Gilbert

and Lynch 2002]. To ght this problem, data bases trade consistency for latency. This results in

intricate behaviors and makes verication challenging [Bouajjani et al. 2017b; Gotsman et al.

2016; Wilcox et al. 2015]. Semantic reductions can help to tame the intricate behaviors, i.e., avoid

inconsistencies like we avoided memory reuse for data structures. There has already been some

work into that direction [von Gleissenthall et al. 2019].

Hardware architectures integrate multiple levels of caching/buering to speed up computa-

tions [Hennessy and Patterson 2012; Sewell et al. 2010; Stenström 1990]. Similar to data bases,

semantic reductions could help to avoid the resulting inconsistencies and reason about the

hardware as if it had less or no caches/buers. A famous result along those lines is the data race

freedom guarantee [Adve and Hill 1993]: if there are no unsynchronized concurrent reads and

writes to a single location under sequential consistency [Lamport 1979], then one can ignore

the caches/buers of the actual hardware architecture and reason under sequential consistency.

When consistency is traded for latencies, data races might occur and one needs intermediate

results in the spirit of harmful ABA freedom. Reducing the number of addresses that are buered/-

cached could ease verication, similar in spirit to existing robustness results [Bouajjani et al.

2015a, 2013, 2011; Calin et al. 2013; Owens 2010].

124 Chapter 10 Future Work

Conclusion 11
Throughout this thesis we have presented techniques that substantially simplify the verication

of non-blocking data structures that manage manually their memory with the help of an SMR

algorithm. Our results are based on a compositionality introduced in Chapter 5. It captures the

inuence the SMR algorithm has on the data structure in the form of an SMR automaton. This

automaton abstracts from details of the implementation, encoding only the reclamation behavior

of the SMR algorithm. Compositionality alone, however, was not enough to handle the intricacies

of non-blocking data structures paired with memory reclamation in that automatic analyses

remained imprecise and inecient. In Chapter 6 we observed that the imprecision is introduced

by the thread-modular abstraction which is necessary to verify concurrency libraries. To ght this

imprecision, we introduced weak ownership. It is inspired by traditional ownership, i.e., access

exclusivity, and tailored towards reclamation. Here, the key observation was that ownership

may be broken by invalid (dangling) pointers only. While the new ownership technique yielded

sucient precision, the eciency gains were too insignicant to handle memory management

via SMR. Chapter 7 tackled the eciency concerns with a semantic reduction. We showed that

verication can be conduced in a much simpler semantics, namely one where only a single

address can be reallocated. The reduction result came with two requirements: pointer race

freedom and harmful ABA freedom. The former requires the absence of unsafe operations,

like dereferencing deleted memory. The latter requires the absence of ABAs that could not

be mimicked in the simpler semantics. Crucially, both properties can be established in the

smaller semantics. This resulted in a tool capable of verifying non-blocking stacks and queues

which use SMR. While successful, the approach required hand-crafted verication engines that

support memory reclamation and integrate the ABA check. Finally, Chapter 8 strengthened

the semantic reduction, showing that verication under garbage collection can answer the

verication question for manual memory management. The reduction required strong pointer

race freedom. Interestingly, the check for strong pointer races was automated with a type system.

There, types attach to pointers the possible reclamation behavior that they are subject to. This

behavior was elegantly encoded as a set of locations in the SMR automaton that species the

SMR algorithm in use. The resulting tool, seal, proved to be highly ecient. To the best of our

knowledge, seal is the rst tool to fully automatically prove correct (linearizable) non-blocking

data structures with state-of-the-art SMR algorithms. Altogether, our reductions eradicated the

need for verication under a semantics other than garbage collection.

125

126

Bibliography

[Abdulla et al. 2013] Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed

Rezine. 2013. An Integrated Specication and Verication Technique for Highly Concurrent Data Structures.

In: TACAS, LNCS vol. 7795. Springer. DOI:10.1007/978-3-642-36742-7_23 (cit. on pp. 5, 6, 12, 43,

44, 51, 62, 63, 65, 79, 115, 120).

[Abdulla et al. 2017] Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed

Rezine. 2017. An Integrated Specication and Verication Technique for Highly Concurrent Data Structures.

In: STTT 19 (5). DOI:10.1007/s10009-016-0415-4 (cit. on pp. 43, 44, 51, 62, 63, 79).

[Abdulla et al. 2016] Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh. 2016. Automated

Verication of Linearization Policies. In: SAS, LNCS vol. 9837. Springer. DOI:10.1007/978-3-662-53

413-7_4 (cit. on pp. 2, 115, 120).

[Adve and Hill 1993] Sarita V. Adve and Mark D. Hill. 1993. A Unied Formalization of Four Shared-

Memory Models. In: IEEE Trans. Parallel Distributed Syst. 4 (6). DOI:10.1109/71.242161 (cit. on

p. 124).

[Agesen et al. 2000] Ole Agesen, David Detlefs, Christine H. Flood, Alex Garthwaite, Paul Alan Martin,

Nir Shavit, and Guy L. Steele Jr.. 2000. DCAS-based concurrent deques. In: SPAA, ACM. DOI:10.1145

/341800.341817 (cit. on pp. 11, 115).

[Aghazadeh et al. 2014] Zahra Aghazadeh, Wojciech M. Golab, and Philipp Woelfel. 2014. Making

objects writable. In: PODC, ACM. DOI:10.1145/2611462.2611483 (cit. on p. 116).

[Alistarh et al. 2014] Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev, and Nir

Shavit. 2014. StackTrack: an automated transactional approach to concurrent memory reclamation. In:

EuroSys, ACM. DOI:10.1145/2592798.2592808 (cit. on p. 116).

[Alistarh et al. 2015] Dan Alistarh, William M. Leiserson, Alexander Matveev, and Nir Shavit. 2015.

ThreadScan: Automatic and Scalable Memory Reclamation. In: SPAA, ACM. DOI:10.1145/2755573.27

55600 (cit. on p. 116).

[Amit et al. 2007] Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav.

2007. Comparison Under Abstraction for Verifying Linearizability. In: CAV, LNCS vol. 4590. Springer.

 DOI:10.1007/978-3-540-73368-3_49 (cit. on p. 120).

[Ancona et al. 2016] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,

Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen,

Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas Ng, Luca Padovani,

Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral Types in Programming Languages. In:

Foundations and Trends in Programming Languages 3 (2-3). DOI:10.1561/2500000031 (cit. on p. 118).

127

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1007/s10009-016-0415-4
https://doi.org/10.1007/978-3-662-53413-7_4
https://doi.org/10.1007/978-3-662-53413-7_4
https://doi.org/10.1109/71.242161
https://doi.org/10.1145/341800.341817
https://doi.org/10.1145/341800.341817
https://doi.org/10.1145/2611462.2611483
https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/2755573.2755600
https://doi.org/10.1145/2755573.2755600
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1561/2500000031

[Anderson and Moir 1995] James H. Anderson and Mark Moir. 1995. Universal Constructions for

Multi-Object Operations. In: PODC, ACM. DOI:10.1145/224964.224985 (cit. on p. 14).

[Arm Limited 2020] Arm Limited. 2020. Arm Architecture Reference Manual: Armv8, for Armv8-A

architecture prole. Version F.c. https://developer.arm.com/documentation/ddi0487/fc/ (cit. on

pp. 13, 14).

[Armbrust et al. 2009] Michael Armbrust, Armando Fox, Rean Grith, Anthony D. Joseph, Randy H.

Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.

2009. Above the Clouds: A Berkeley View of Cloud Computing. Tech. rep. UCB/EECS-2009-28. EECS

Department, University of California, Berkeley. https://www2.eecs.berkeley.edu/Pubs/TechRpt

s/2009/EECS-2009-28.html (cit. on p. 123).

[Arora et al. 1998] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread Scheduling

for Multiprogrammed Multiprocessors. In: SPAA, ACM. DOI:10.1145/277651.277678 (cit. on p. 115).

[Back 1989] Ralph-Johan Back. 1989. A Method for Rening Atomicity in Parallel Algorithms. In: PARLE,

LNCS vol. 366. Springer. DOI:10.1007/3-540-51285-3_42 (cit. on p. 120).

[Baier and Katoen 2008] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking.

MIT Press. ISBN:978-0-262-02649-9 (cit. on p. 48).

[Balmau et al. 2016] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. 2016. Fast

and Robust Memory Reclamation for Concurrent Data Structures. In: SPAA, ACM. DOI:10.1145/29357

64.2935790 (cit. on pp. 20, 116).

[Bar-Nissan et al. 2011] Gal Bar-Nissan, Danny Hendler, and Adi Suissa. 2011. ADynamic Elimination-

Combining Stack Algorithm. In: OPODIS, LNCS vol. 7109. Springer. DOI:10.1007/978-3-642-25873-

2_37 (cit. on p. 115).

[Barbacci et al. 1990] Mario Barbacci, Dennis L. Doubleday, and Charles B. Weinstock. 1990.

Application-Level Programming. In: ICDCS, IEEE Computer Society. DOI:10.1109/ICDCS.1990.89315

(cit. on p. 123).

[Barnes 1992] Greg Barnes. 1992. Wait-Free Algorithms for Heaps. Tech. rep. https://dada.cs.was

hington.edu/research/tr/1994/12/UW-CSE-94-12-07.pdf (cit. on p. 115).

[Barnes 1993] Greg Barnes. 1993. A Method for Implementing Lock-Free Shared-Data Structures. In:

SPAA, ACM. DOI:10.1145/165231.165265 (cit. on p. 11).

[Barr 2013] Michael Barr. 2013. An Update on Toyota and Unintended Acceleration. https://embedd

edgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration/ (cit. on

p. 1).

[Bäumler et al. 2011] Simon Bäumler, Gerhard Schellhorn, Bogdan Tofan, and Wolfgang Reif. 2011.

Proving linearizability with temporal logic. In: Formal Asp. Comput. 23 (1). DOI:10.1007/s00165-009-

0130-y (cit. on p. 119).

[Bayer and Schkolnick 1977] Rudolf Bayer and Mario Schkolnick. 1977. Concurrency of Operations

on B-Trees. In: Acta Informatica 9. DOI:10.1007/BF00263762 (cit. on p. 29).

128 Bibliography

https://doi.org/10.1145/224964.224985
https://developer.arm.com/documentation/ddi0487/fc/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://doi.org/10.1145/277651.277678
https://doi.org/10.1007/3-540-51285-3_42
https://isbndb.com/book/978-0-262-02649-9
https://doi.org/10.1145/2935764.2935790
https://doi.org/10.1145/2935764.2935790
https://doi.org/10.1007/978-3-642-25873-2_37
https://doi.org/10.1007/978-3-642-25873-2_37
https://doi.org/10.1109/ICDCS.1990.89315
https://dada.cs.washington.edu/research/tr/1994/12/UW-CSE-94-12-07.pdf
https://dada.cs.washington.edu/research/tr/1994/12/UW-CSE-94-12-07.pdf
https://doi.org/10.1145/165231.165265
https://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration/
https://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration/
https://doi.org/10.1007/s00165-009-0130-y
https://doi.org/10.1007/s00165-009-0130-y
https://doi.org/10.1007/BF00263762

[Berdine et al. 2011] Josh Berdine, Byron Cook, and Samin Ishtiaq. 2011. SLAyer: Memory Safety for

Systems-Level Code. In: CAV, LNCS vol. 6806. Springer. DOI:10.1007/978-3-642-22110-1_15 (cit. on

p. 117).

[Berdine et al. 2008] Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel Sagiv.

2008. Thread Quantication for Concurrent Shape Analysis. In: CAV, LNCS vol. 5123. Springer. DOI:10

.1007/978-3-540-70545-1_37 (cit. on pp. 4, 43, 55, 120).

[Beyer et al. 2005] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2005. Check-

ing Memory Safety with Blast. In: FASE, LNCS vol. 3442. Springer. DOI:10.1007/978-3-540-31984-

9_2 (cit. on p. 117).

[Bidan et al. 1998] Christophe Bidan, Valérie Issarny, Titos Saridakis, and Apostolos V. Zarras. 1998.

A dynamic reconguration service for CORBA. In: CDS, IEEE Computer Society. DOI:10.1109/CDS.19

98.675756 (cit. on p. 123).

[Bierho and Aldrich 2007] Kevin Bierho and Jonathan Aldrich. 2007. Modular Typestate Checking

of Aliased Objects. In: OOPSLA, ACM. DOI:10.1145/1297027.1297050 (cit. on p. 118).

[Birkho 1948] Garrett Birkho. 1948. Lattice Theory (revised edition). American Mathematical Society.

 ISBN:9780821889534 (cit. on p. 106).

[Bizjak et al. 2019] Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Man-

aging Obligations in Higher-order Concurrent Separation Logic. In: PACMPL 3 (POPL). DOI:10.1145/3

290378 (cit. on p. 119).

[Blechmann 2011] Tim Blechmann. 2011. Boost C++ Libraries Documentation: lockfree. https://ww

w.boost.org/doc/libs/1_74_0/doc/html/lockfree/rationale.html (cit. on p. 26).

[Bornat et al. 2005] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson.

2005. Permission Accounting in Separation Logic. In: POPL, ACM. DOI:10.1145/1040305.1040327

(cit. on p. 120).

[Bouajjani et al. 2015a] Ahmed Bouajjani, Georgel Calin, Egor Derevenetc, and Roland Meyer. 2015.

Lazy TSO Reachability. In: FASE, LNCS vol. 9033. Springer. DOI:10.1007/978-3-662-46675-9_18

(cit. on p. 124).

[Bouajjani et al. 2013] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and

Enforcing Robustness against TSO. In: ESOP, LNCS vol. 7792. Springer. DOI:10.1007/978-3-642-370

36-6_29 (cit. on p. 124).

[Bouajjani et al. 2015b] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. 2015. On

Reducing Linearizability to State Reachability. In: ICALP (2), LNCS vol. 9135. Springer. DOI:10.1007

/978-3-662-47666-6_8 (cit. on p. 54).

[Bouajjani et al. 2017a] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mut-

luergil. 2017. Proving Linearizability Using Forward Simulations. In: CAV (2), LNCS vol. 10427. Springer.

 DOI:10.1007/978-3-319-63390-9_28 (cit. on p. 119).

[Bouajjani et al. 2017b] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017.

On verifying causal consistency. In: POPL, ACM. DOI:10.1145/3093333.3009888 (cit. on p. 124).

129

https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1007/978-3-540-31984-9_2
https://doi.org/10.1007/978-3-540-31984-9_2
https://doi.org/10.1109/CDS.1998.675756
https://doi.org/10.1109/CDS.1998.675756
https://doi.org/10.1145/1297027.1297050
https://isbndb.com/book/9780821889534
https://doi.org/10.1145/3290378
https://doi.org/10.1145/3290378
https://www.boost.org/doc/libs/1_74_0/doc/html/lockfree/rationale.html
https://www.boost.org/doc/libs/1_74_0/doc/html/lockfree/rationale.html
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/978-3-662-46675-9_18
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-662-47666-6_8
https://doi.org/10.1007/978-3-662-47666-6_8
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1145/3093333.3009888

[Bouajjani et al. 2018] Ahmed Bouajjani, Constantin Enea, Suha OrhunMutluergil, and Serdar Tasiran.

2018. Reasoning About TSO Programs Using Reduction and Abstraction. In: CAV, LNCS vol. 10982. Springer.

 DOI:10.1007/978-3-319-96142-2_21 (cit. on p. 120).

[Bouajjani et al. 2011] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Deciding Robust-

ness against Total Store Ordering. In: ICALP (2), LNCS vol. 6756. Springer. DOI:10.1007/978-3-642-

22012-8_34 (cit. on p. 124).

[Boyland 2003] John Boyland. 2003. Checking Interference with Fractional Permissions. In: SAS, LNCS

vol. 2694. Springer. DOI:10.1007/3-540-44898-5_4 (cit. on p. 120).

[Braginsky et al. 2013] Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the anchor:

lightweight memory management for non-blocking data structures. In: SPAA, ACM. DOI:10.1145/248

6159.2486184 (cit. on p. 116).

[Braginsky and Petrank 2012] Anastasia Braginsky and Erez Petrank. 2012. A lock-free B+tree. In:

SPAA, ACM. DOI:10.1145/2312005.2312016 (cit. on p. 115).

[Brewer 2000] Eric A. Brewer. 2000. Towards robust distributed systems (abstract). In: PODC, ACM.

 DOI:10.1145/343477.343502 (cit. on p. 124).

[Brookes 2004] Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In: CONCUR,

LNCS vol. 3170. Springer. DOI:10.1007/978-3-540-28644-8_2 (cit. on p. 118).

[Brown 2015] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Structures: There

has to be a Better Way. In: PODC, ACM. DOI:10.1145/2767386.2767436 (cit. on pp. 2, 14, 20, 22, 83,

115, 116).

[Burckhardt et al. 2010] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010.

Line-up: a complete and automatic linearizability checker. In: PLDI, ACM. DOI:10.1145/1806596.180

6634 (cit. on p. 119).

[Calcagno and Distefano 2011] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic

Program Verier for Memory Safety of C Programs. In: NASA Formal Methods, LNCS vol. 6617. Springer.

 DOI:10.1007/978-3-642-20398-5_33 (cit. on p. 117).

[Calin et al. 2013] Georgel Calin, Egor Derevenetc, Rupak Majumdar, and Roland Meyer. 2013. A

Theory of Partitioned Global Address Spaces. In: FSTTCS, LIPIcs vol. 24. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik. DOI:10.4230/LIPIcs.FSTTCS.2013.127 (cit. on p. 124).

[Cao et al. 2017] Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. 2017. Bringing Order to the

Separation Logic Jungle. In: APLAS, LNCS vol. 10695. Springer. DOI:10.1007/978-3-319-71237-6_10

(cit. on p. 2).

[Carson 2019] Biz Carson. 2019. Lime Scooter Software Glitch Causes Random Braking, Dozens Of Rider

Injuries. https://www.forbes.com/sites/bizcarson/2019/02/22/lime-scooter-software-glit

ch-causes-random-braking-dozens-of-rider-injuries/ (cit. on p. 1).

[Castegren and Wrigstad 2017] Elias Castegren and Tobias Wrigstad. 2017. Relaxed Linear References

for Lock-free Data Structures. In: ECOOP, LIPIcs vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik. DOI:10.4230/LIPIcs.ECOOP.2017.6 (cit. on pp. 4, 56, 117).

130 Bibliography

https://doi.org/10.1007/978-3-319-96142-2_21
https://doi.org/10.1007/978-3-642-22012-8_34
https://doi.org/10.1007/978-3-642-22012-8_34
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2486159.2486184
https://doi.org/10.1145/2486159.2486184
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1145/343477.343502
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.127
https://doi.org/10.1007/978-3-319-71237-6_10
https://www.forbes.com/sites/bizcarson/2019/02/22/lime-scooter-software-glitch-causes-random-braking-dozens-of-rider-injuries/
https://www.forbes.com/sites/bizcarson/2019/02/22/lime-scooter-software-glitch-causes-random-braking-dozens-of-rider-injuries/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.6

[CBS News 2010] CBS News. 2010. Toyota "Unintended Acceleration" Has Killed 89. https://www.cb

snews.com/news/toyota-unintended-acceleration-has-killed-89/ (cit. on p. 1).

[Cerný et al. 2010] Pavol Cerný, Arjun Radhakrishna, Damien Zuerey, Swarat Chaudhuri, and Rajeev

Alur. 2010.Model Checking of Linearizability of Concurrent List Implementations. In: CAV, LNCS vol. 6174.

Springer. DOI:10.1007/978-3-642-14295-6_41 (cit. on p. 119).

[Chang et al. 2020] Bor-Yuh Evan Chang, Cezara Dragoi, Roman Manevich, Noam Rinetzky, and

Xavier Rival. 2020. Shape Analysis. In: Found. Trends Program. Lang. 6 (1-2). DOI:10.1561/2500000037

(cit. on p. 58).

[Charette 2005] R. N. Charette. 2005. Why software fails [software failure]. In: IEEE Spectrum 42 (9).

 DOI:10.1109/MSPEC.2005.1502528 (cit. on p. 1).

[Clarke 2008] Edmund M. Clarke. 2008. The Birth of Model Checking. In: 25 Years of Model Checking,

LNCS vol. 5000. Springer. DOI:10.1007/978-3-540-69850-0_1 (cit. on p. 2).

[Clarke and Emerson 1981] Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis of

Synchronization Skeletons Using Branching-Time Temporal Logic. In: Logic of Programs, LNCS vol. 131.

Springer. DOI:10.1007/BFb0025774 (cit. on p. 2).

[Cleaveland and Steen 1991] Rance Cleaveland and Bernhard Steen. 1991. Computing Behavioural

Relations, Logically. In: ICALP, LNCS vol. 510. Springer. DOI:10.1007/3-540-54233-7_129 (cit. on

p. 48).

[Cohen 2018] Nachshon Cohen. 2018. Every data structure deserves lock-free memory reclamation. In:

PACMPL 2 (OOPSLA). DOI:10.1145/3276513 (cit. on pp. 2, 16, 116).

[Cohen and Petrank 2015a] Nachshon Cohen and Erez Petrank. 2015. Automatic memory reclamation

for lock-free data structures. In: OOPSLA, ACM. DOI:10.1145/2814270.2814298 (cit. on pp. 11, 14,

116).

[Cohen and Petrank 2015b] Nachshon Cohen and Erez Petrank. 2015. Ecient Memory Management

for Lock-Free Data Structures with Optimistic Access. In: SPAA, ACM. DOI:10.1145/2755573.2755579

(cit. on p. 116).

[Colvin et al. 2005] Robert Colvin, Simon Doherty, and Lindsay Groves. 2005. Verifying Concurrent

Data Structures by Simulation. In: Electr. Notes Theor. Comput. Sci. 137 (2). DOI:10.1016/j.entcs.20

05.04.026 (cit. on p. 119).

[Colvin et al. 2006] Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir. 2006. Formal

Verication of a Lazy Concurrent List-Based Set Algorithm. In: CAV, LNCS vol. 4144. Springer. DOI:10

.1007/11817963_44 (cit. on p. 119).

[Coppo and Dezani-Ciancaglini 1978] Mario Coppo and Mariangiola Dezani-Ciancaglini. 1978. A

New Type Assignment for 𝜆-Terms. In: Arch. Math. Log. 19 (1). DOI:10.1007/BF02011875 (cit. on p. 90).

[Crary et al. 1999] Karl Crary, David Walker, and J. Gregory Morrisett. 1999. Typed Memory Manage-

ment in a Calculus of Capabilities. In: POPL, ACM. DOI:10.1145/292540.292564 (cit. on p. 90).

131

https://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/
https://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/
https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1561/2500000037
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-54233-7_129
https://doi.org/10.1145/3276513
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1145/2755573.2755579
https://doi.org/10.1016/j.entcs.2005.04.026
https://doi.org/10.1016/j.entcs.2005.04.026
https://doi.org/10.1007/11817963_44
https://doi.org/10.1007/11817963_44
https://doi.org/10.1007/BF02011875
https://doi.org/10.1145/292540.292564

[da Rocha Pinto et al. 2014] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

2014. TaDA: A Logic for Time and Data Abstraction. In: ECOOP, LNCS vol. 8586. Springer. DOI:10.10

07/978-3-662-44202-9_9 (cit. on p. 118).

[Das et al. 2002] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-Sensitive Program Veri-

cation in Polynomial Time. In: PLDI, ACM. DOI:10.1145/512529.512538 (cit. on p. 118).

[DeCandia et al. 2007] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-

pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner

Vogels. 2007. Dynamo: amazon’s highly available key-value store. In: SOSP, ACM. DOI:10.1145/1294

261.1294281 (cit. on p. 124).

[deGrasse Tyson 2018] Neil deGrasse Tyson. 2018. The Future of Colonizing Space. Timestamp:

39min15s. YouTube. https://youtu.be/X_m1mPtYzTk?t=2355 (cit. on p. iii).

[Delbianco et al. 2017] Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya

Banerjee. 2017. Concurrent Data Structures Linked in Time. In: ECOOP, LIPIcs vol. 74. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik. DOI:10.4230/LIPIcs.ECOOP.2017.8 (cit. on p. 119).

[DeLine and Fähndrich 2004] Robert DeLine and Manuel Fähndrich. 2004. Typestates for Objects. In:

ECOOP, LNCS vol. 3086. Springer. DOI:10.1007/978-3-540-24851-4_21 (cit. on p. 118).

[de Roever et al. 2001] Willem P. de Roever, Frank S. de Boer, Ulrich Hannemann, Jozef Hooman,

Yassine Lakhnech, Mannes Poel, and Job Zwiers. 2001. Concurrency Verication: Introduction to Com-

positional and Noncompositional Methods. Cambridge Tracts in Theoretical Computer Science vol. 54.

Cambridge University Press. ISBN:0-521-80608-9 (cit. on p. 3).

[Derrick et al. 2011] John Derrick, Gerhard Schellhorn, and Heike Wehrheim. 2011. Mechanically

veried proof obligations for linearizability. In: ACM Trans. Program. Lang. Syst. 33 (1). DOI:10.1145

/1889997.1890001 (cit. on p. 119).

[Detlefs et al. 2001] David Detlefs, Paul Alan Martin, Mark Moir, and Guy L. Steele Jr.. 2001. Lock-free

reference counting. In: PODC, ACM. DOI:10.1145/383962.384016 (cit. on p. 116).

[Dice et al. 2016] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast non-intrusive memory recla-

mation for highly-concurrent data structures. In: ISMM, ACM. DOI:10.1145/2926697.2926699 (cit. on

p. 116).

[Dietl and Müller 2013] Werner Dietl and Peter Müller. 2013. Object Ownership in Program Verication.

In: Aliasing in Object-Oriented Programming, LNCS vol. 7850. Springer. DOI:10.1007/978-3-642-36

946-9_11 (cit. on pp. 4, 56).

[Dijkstra 1982] Edsger W. Dijkstra. 1982. On Making Solutions More and More Fine-Grained. In: Selected

Writings on Computing: A personal Perspective, New York, NY: Springer New York. DOI:10.1007/978

-1-4612-5695-3_53 (cit. on p. 119).

[Dinsdale-Young et al. 2010] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J.

Parkinson, and Viktor Vafeiadis. 2010. Concurrent Abstract Predicates. In: ECOOP, LNCS vol. 6183.

Springer. DOI:10.1007/978-3-642-14107-2_24 (cit. on p. 118).

132 Bibliography

https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://youtu.be/X_m1mPtYzTk?t=2355
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1007/978-3-540-24851-4_21
https://isbndb.com/book/0-521-80608-9
https://doi.org/10.1145/1889997.1890001
https://doi.org/10.1145/1889997.1890001
https://doi.org/10.1145/383962.384016
https://doi.org/10.1145/2926697.2926699
https://doi.org/10.1007/978-3-642-36946-9_11
https://doi.org/10.1007/978-3-642-36946-9_11
https://doi.org/10.1007/978-1-4612-5695-3_53
https://doi.org/10.1007/978-1-4612-5695-3_53
https://doi.org/10.1007/978-3-642-14107-2_24

[Dodds et al. 2009] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Deny-

Guarantee Reasoning. In: ESOP, LNCS vol. 5502. Springer. DOI:10.1007/978-3-642-00590-9_26

(cit. on p. 118).

[Dodds et al. 2015] Mike Dodds, Andreas Haas, and Christoph M. Kirsch. 2015. A Scalable, Correct

Time-Stamped Stack. In: POPL, ACM. DOI:10.1145/2676726.2676963 (cit. on pp. 115, 119).

[Doeppner 1977] Thomas W. Doeppner Jr.. 1977. Parallel Program Correctness Through Renement. In:

POPL, ACM. DOI:10.1145/512950.512965 (cit. on p. 120).

[Doherty et al. 2004a] Simon Doherty, David Detlefs, Lindsay Groves, Christine H. Flood, Victor

Luchangco, Paul Alan Martin, Mark Moir, Nir Shavit, and Guy L. Steele Jr.. 2004. DCAS is not a silver

bullet for nonblocking algorithm design. In: SPAA, ACM. DOI:10.1145/1007912.1007945 (cit. on p. 1).

[Doherty et al. 2004b] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004. For-

mal Verication of a Practical Lock-Free Queue Algorithm. In: FORTE, LNCS vol. 3235. Springer. DOI:1

0.1007/978-3-540-30232-2_7 (cit. on pp. 2, 27, 28, 119).

[Doherty and Moir 2009] Simon Doherty and Mark Moir. 2009. Nonblocking Algorithms and Backward

Simulation. In: DISC, LNCS vol. 5805. Springer. DOI:10.1007/978-3-642-04355-0_28 (cit. on p. 119).

[Dongol and Derrick 2014] Brijesh Dongol and John Derrick. 2014. Verifying linearizability: A com-

parative survey. In: CoRR abs/1410.6268. https://arxiv.org/abs/1410.6268 (cit. on p. 120).

[Dragojevic et al. 2011] Aleksandar Dragojevic, Maurice Herlihy, Yossi Lev, and Mark Moir. 2011.

On the power of hardware transactional memory to simplify memory management. In: PODC, ACM.

 DOI:10.1145/1993806.1993821 (cit. on p. 116).

[Dudka et al. 2013] Kamil Dudka, Petr Peringer, and Tomás Vojnar. 2013. Byte-Precise Verication of

Low-Level List Manipulation. In: SAS, LNCS vol. 7935. Springer. DOI:10.1007/978-3-642-38856-9_13

(cit. on p. 117).

[Elmas et al. 2010] Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. 2010.

Simplifying Linearizability Proofs with Reduction and Abstraction. In: TACAS, LNCS vol. 6015. Springer.

 DOI:10.1007/978-3-642-12002-2_25 (cit. on pp. 119, 120).

[Elmas et al. 2009] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A Calculus of Atomic Actions.

In: POPL, ACM. DOI:10.1145/1480881.1480885 (cit. on pp. 109, 110, 120).

[Emmi and Enea 2018] Michael Emmi and Constantin Enea. 2018. Sound, complete, and tractable

linearizability monitoring for concurrent collections. In: PACMPL 2 (POPL). DOI:10.1145/3158113

(cit. on p. 119).

[Emmi et al. 2015] Michael Emmi, Constantin Enea, and Jad Hamza. 2015. Monitoring renement via

symbolic reasoning. In: PLDI, ACM. DOI:10.1145/2737924.2737983 (cit. on p. 119).

[Fähndrich and DeLine 2002] Manuel Fähndrich and Robert DeLine. 2002. Adoption and Focus: Prac-

tical Linear Types for Imperative Programming. In: PLDI, ACM. DOI:10.1145/512529.512532 (cit. on

p. 118).

133

https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1145/512950.512965
https://doi.org/10.1145/1007912.1007945
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-642-04355-0_28
https://arxiv.org/abs/1410.6268
https://doi.org/10.1145/1993806.1993821
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/3158113
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1145/512529.512532

[Feldman et al. 2018] Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and

Sharon Shoham. 2018. Order out of Chaos: Proving Linearizability Using Local Views. In: DISC, LIPIcs

vol. 121. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (cit. on p. 119).

[Feng 2009] Xinyu Feng. 2009. Local Rely-guarantee Reasoning. In: POPL, ACM. DOI:10.1145/14808

81.1480922 (cit. on p. 118).

[Feng et al. 2007] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the Relationship Between

Concurrent Separation Logic and Assume-Guarantee Reasoning. In: ESOP, LNCS vol. 4421. Springer.

 DOI:10.1007/978-3-540-71316-6_13 (cit. on p. 118).

[Fink et al. 2006] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2006.

Eective Typestate Verication in the Presence of Aliasing. In: ISSTA, ACM. DOI:10.1145/1146238.11

46254 (cit. on p. 118).

[Flanagan and Freund 2020] Cormac Flanagan and Stephen N. Freund. 2020. The Anchor Verier for

Blocking and Non-Blocking Concurrent Software. In: PACMPL 4 (OOPSLA). DOI:10.1145/3428224

(cit. on pp. 109, 120).

[Flanagan et al. 2008] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. 2008.

Types for Atomicity: Static Checking and Inference for Java. In: ToPLaS 30 (4). DOI:10.1145/1377492

.1377495 (cit. on p. 120).

[Flanagan et al. 2005] Cormac Flanagan, Stephen N. Freund, Shaz Qadeer, and Sanjit A. Seshia. 2005.

Modular verication of multithreaded programs. In: Theor. Comput. Sci. 338 (1-3). DOI:10.1016/j.tcs

.2004.12.006 (cit. on p. 120).

[Flanagan and Leino 2001] Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation

Assistant for ESC/Java. In: FME, LNCS vol. 2021. Springer. DOI:10.1007/3-540-45251-6_29 (cit. on

pp. 7, 84).

[Flanagan and Qadeer 2003a] Cormac Flanagan and Shaz Qadeer. 2003. A Type and Eect System for

Atomicity. In: PLDI, ACM. DOI:10.1145/781131.781169 (cit. on pp. 109, 120).

[Flanagan and Qadeer 2003b] Cormac Flanagan and Shaz Qadeer. 2003. Thread-Modular Model Check-

ing. In: SPIN, LNCS vol. 2648. Springer. DOI:10.1007/3-540-44829-2_14 (cit. on p. 4).

[Flanagan et al. 2002] Cormac Flanagan, Shaz Qadeer, and Sanjit A. Seshia. 2002. A Modular Checker

for Multithreaded Programs. In: CAV, LNCS vol. 2404. Springer. DOI:10.1007/3-540-45657-0_14

(cit. on p. 120).

[Fomitchev and Ruppert 2004] Mikhail Fomitchev and Eric Ruppert. 2004. Lock-free linked lists and

skip lists. In: PODC, ACM. DOI:10.1145/1011767.1011776 (cit. on p. 115).

[Foster et al. 2008] I. Foster, Y. Zhao, I. Raicu, and S. Lu. 2008.Cloud Computing and Grid Computing 360-

Degree Compared. In: 2008 Grid Computing Environments Workshop, DOI:10.1109/GCE.2008.4738445

(cit. on p. 123).

[Foster et al. 2002] Jerey S. Foster, Tachio Terauchi, and Alexander Aiken. 2002. Flow-Sensitive Type

Qualiers. In: PLDI, ACM. DOI:10.1145/512529.512531 (cit. on pp. 90, 118).

134 Bibliography

https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1145/1146238.1146254
https://doi.org/10.1145/1146238.1146254
https://doi.org/10.1145/3428224
https://doi.org/10.1145/1377492.1377495
https://doi.org/10.1145/1377492.1377495
https://doi.org/10.1016/j.tcs.2004.12.006
https://doi.org/10.1016/j.tcs.2004.12.006
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1145/781131.781169
https://doi.org/10.1007/3-540-44829-2_14
https://doi.org/10.1007/3-540-45657-0_14
https://doi.org/10.1145/1011767.1011776
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1145/512529.512531

[Fraser 2004] Keir Fraser. 2004. Practical lock-freedom. PhD thesis. University of Cambridge, UK. ht

tps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193 (cit. on pp. 14, 18, 115).

[Freund and Qadeer 2004] Stephen N. Freund and Shaz Qadeer. 2004. Checking Concise Specications

for Multithreaded Software. In: Journal of Object Technology 3 (6). DOI:10.5381/jot.2004.3.6.a4

(cit. on p. 120).

[Fu et al. 2010] Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about

Optimistic Concurrency Using a Program Logic for History. In: CONCUR, LNCS vol. 6269. Springer.

 DOI:10.1007/978-3-642-15375-4_27 (cit. on pp. 118, 119).

[Gidenstam et al. 2005] Anders Gidenstam, Marina Papatriantalou, Håkan Sundell, and Philippas

Tsigas. 2005. Ecient and Reliable Lock-Free Memory Reclamation Based on Reference Counting. In: ISPAN,

IEEE Computer Society. DOI:10.1109/ISPAN.2005.42 (cit. on p. 116).

[Gilbert and Lynch 2002] Seth Gilbert and Nancy A. Lynch. 2002. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. In: SIGACT News 33 (2). DOI:10.1145/564585

.564601 (cit. on p. 124).

[Gilbert et al. 2010] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. 2010. Rambo: a

robust, recongurable atomic memory service for dynamic networks. In: Distributed Comput. 23 (4).

 DOI:10.1007/s00446-010-0117-1 (cit. on p. 123).

[Gong and Wing 1990] Chun Gong and Jeannette M. Wing. 1990. A Library of Concurrent Objects and

Their Proofs of Correctness. In: DOI:10.1184/R1/6587534.v1 (cit. on p. 115).

[Gotsman et al. 2007] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. 2007. Thread-

modular shape analysis. In: PLDI, ACM. DOI:10.1145/1250734.1250765 (cit. on pp. 4, 56).

[Gotsman et al. 2013] Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concur-

rent Memory Reclamation Algorithms with Grace. In: ESOP, LNCS vol. 7792. Springer. DOI:10.1007/9

78-3-642-37036-6_15 (cit. on pp. 3, 20, 49, 118–120).

[Gotsman et al. 2016] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc

Shapiro. 2016. ’Cause I’m strong enough: reasoning about consistency choices in distributed systems. In:

POPL, ACM. DOI:10.1145/2837614.2837625 (cit. on p. 124).

[Grädel et al. 2002] Erich Grädel, Wolfgang Thomas, and Thomas Wilke. 2002. Automata, Logics, and

Innite Games: A Guide to Current Research. LNCS vol. 2500. Springer. DOI:10.1007/3-540-36387-4

(cit. on p. 105).

[Greenwald 1999] Michael Greenwald. 1999. Non-Blocking Synchronization and System Design. PhD

thesis. http://i.stanford.edu/pub/cstr/reports/cs/tr/99/1624/CS-TR-99-1624.pdf (cit. on

pp. 11, 115).

[Groves 2007] Lindsay Groves. 2007. Reasoning about Nonblocking Concurrency using Reduction. In:

ICECCS, IEEE Computer Society. DOI:10.1109/ICECCS.2007.39 (cit. on p. 119).

[Groves 2008] Lindsay Groves. 2008. Verifying Michael and Scott’s Lock-Free Queue Algorithm using

Trace Reduction. In: CATS, CRPIT vol. 77. Australian Computer Society. https://crpit.com/abstra

cts/CRPITV77Groves.html (cit. on p. 119).

135

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193
https://doi.org/10.5381/jot.2004.3.6.a4
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1109/ISPAN.2005.42
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1007/s00446-010-0117-1
https://doi.org/10.1184/R1/6587534.v1
https://doi.org/10.1145/1250734.1250765
https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1007/3-540-36387-4
http://i.stanford.edu/pub/cstr/reports/cs/tr/99/1624/CS-TR-99-1624.pdf
https://doi.org/10.1109/ICECCS.2007.39
https://crpit.com/abstracts/CRPITV77Groves.html
https://crpit.com/abstracts/CRPITV77Groves.html

[Haas 2015] Andreas Haas. 2015. Fast Concurrent Data Structures Through Timestamping. PhD thesis.

 http://www.cs.uni-salzburg.at/~ahaas/papers/thesis.pdf (cit. on p. 115).

[Haas et al. 2015] Andreas Haas, Thomas Hütter, Christoph M. Kirsch, Michael Lippautz, Mario

Preishuber, and Ana Sokolova. 2015. Scal: A Benchmarking Suite for Concurrent Data Structures. In:

NETYS, LNCS vol. 9466. Springer. DOI:10.1007/978-3-319-26850-7_1 (cit. on p. 116).

[Harris 2001] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-Lists. In:

DISC, LNCS vol. 2180. Springer. DOI:10.1007/3-540-45414-4_21 (cit. on pp. 1, 18, 32, 35, 116).

[Harris et al. 2002] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-word

Compare-and-Swap Operation. In: DISC, LNCS vol. 2508. Springer. DOI:10.1007/3-540-36108-1_18

(cit. on p. 14).

[Hart et al. 2007] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole.

2007. Performance of memory reclamation for lockless synchronization. In: J. Parallel Distrib. Comput. 67

(12). DOI:10.1016/j.jpdc.2007.04.010 (cit. on pp. 20, 116).

[Hawblitzel et al. 2015] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Auto-

mated and Modular Renement Reasoning for Concurrent Programs. In: CAV, LNCS vol. 9207. Springer.

 DOI:10.1007/978-3-319-21668-3_26 (cit. on pp. 109, 120).

[Haziza et al. 2016] Frédéric Haziza, Lukás Holík, Roland Meyer, and Sebastian Wol. 2016. Pointer

Race Freedom. In: VMCAI, LNCS vol. 9583. Springer. DOI:10.1007/978-3-662-49122-5_19 (cit. on

p. 122).

[Hemed et al. 2015] Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular Verication of

Concurrency-Aware Linearizability. In: DISC, LNCS vol. 9363. Springer. DOI:10.1007/978-3-662-48

653-5_25 (cit. on p. 119).

[Hendler et al. 2010] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat combining

and the synchronization-parallelism tradeo. In: SPAA, ACM. DOI:10.1145/1810479.1810540 (cit. on

p. 115).

[Hendler et al. 2004] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A scalable lock-free stack

algorithm. In: SPAA, ACM. DOI:10.1145/1007912.1007944 (cit. on p. 115).

[Hennessy and Patterson 2012] John L. Hennessy and David A. Patterson. 2012. Computer Architec-

ture - A Quantitative Approach, 5th Edition. Morgan Kaufmann. ISBN:978-0-12-383872-8 (cit. on

p. 124).

[Henzinger et al. 1995] Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. 1995.

Computing Simulations on Finite and Innite Graphs. In: FOCS, IEEE Computer Society. DOI:10.1109

/SFCS.1995.492576 (cit. on p. 48).

[Henzinger et al. 2003] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.

2003. Software Verication with BLAST. In: SPIN, LNCS vol. 2648. Springer. DOI:10.1007/3-540-448

29-2_17 (cit. on p. 117).

136 Bibliography

http://www.cs.uni-salzburg.at/~ahaas/papers/thesis.pdf
https://doi.org/10.1007/978-3-319-26850-7_1
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1007/3-540-36108-1_18
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-662-49122-5_19
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/1007912.1007944
https://isbndb.com/book/978-0-12-383872-8
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1007/3-540-44829-2_17

[Henzinger et al. 2013a] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and

Ana Sokolova. 2013. Quantitative relaxation of concurrent data structures. In: POPL, ACM. DOI:10.11

45/2429069.2429109 (cit. on pp. 1, 116).

[Henzinger et al. 2013b] Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2013.Aspect-Oriented

Linearizability Proofs. In: CONCUR, LNCS vol. 8052. Springer. DOI:10.1007/978-3-642-40184-8_18

(cit. on p. 119).

[Herlihy et al. 2005] Maurice Herlihy, Victor Luchangco, Paul A. Martin, and Mark Moir. 2005. Non-

blocking memory management support for dynamic-sized data structures. In: ACM Trans. Comput. Syst.

23 (2). DOI:10.1145/1062247.1062249 (cit. on p. 116).

[Herlihy et al. 2002] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2002. The Repeat Oender

Problem: A Mechanism for Supporting Dynamic-Sized, Lock-Free Data Structures. In: DISC, LNCS vol. 2508.

Springer. DOI:10.1007/3-540-36108-1_23 (cit. on p. 116).

[Herlihy and Shavit 2008] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Program-

ming. Morgan Kaufmann (cit. on pp. 11, 12, 14, 17, 88, 115, 121).

[Herlihy and Wing 1990] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness

Condition for Concurrent Objects. In: ACM Trans. Program. Lang. Syst. 12 (3). DOI:10.1145/78969.78

972 (cit. on pp. 11, 12).

[Holík et al. 2016] Lukás Holík, Michal Kotoun, Petr Peringer, Veronika Soková, Marek Trtík, and

Tomás Vojnar. 2016. Predator Shape Analysis Tool Suite. In: HVC, LNCS vol. 10028. Springer. DOI:10

.1007/978-3-319-49052-6_13 (cit. on p. 117).

[Holík et al. 2013] Lukás Holík, Ondrej Lengál, Adam Rogalewicz, Jirí Simácek, and Tomás Vojnar.

2013. Fully Automated Shape Analysis Based on Forest Automata. In: CAV, LNCS vol. 8044. Springer.

 DOI:10.1007/978-3-642-39799-8_52 (cit. on p. 117).

[Holík et al. 2017] Lukás Holík, Roland Meyer, Tomás Vojnar, and Sebastian Wol. 2017. Eect Sum-

maries for Thread-Modular Analysis - Sound Analysis Despite an Unsound Heuristic. In: SAS, LNCS

vol. 10422. Springer. DOI:10.1007/978-3-319-66706-5_9 (cit. on pp. 6, 65, 120).

[Horn and Kroening 2015] Alex Horn and Daniel Kroening. 2015. Faster Linearizability Checking via

P-Compositionality. In: FORTE, LNCS vol. 9039. Springer. DOI:10.1007/978-3-319-19195-9_4

(cit. on p. 119).

[Hunt and Sands 2006] Sebastian Hunt and David Sands. 2006. On Flow-sensitive Security Types. In:

POPL, ACM. DOI:10.1145/1111037.1111045 (cit. on p. 90).

[IBM 1983] IBM. 1983. IBM System/370 Extended Architecture: Principles of Operation. Version IBM

Publication No. SA22-7085. https://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/370/pr

incOps/SA22-7085-0_370-XA_Principles_of_Operation_Mar83.pdf (cit. on pp. 13, 16, 17).

[Intel Corporation 2016] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software Developer’s

Manual. Version 325383-072US. Volume 2A: Instruction Set Reference, A-L. https://www.intel.de

/content/www/de/de/architecture-and-technology/64-ia-32-architectures-software-develo

per-vol-2a-manual.html (cit. on p. 13).

137

https://doi.org/10.1145/2429069.2429109
https://doi.org/10.1145/2429069.2429109
https://doi.org/10.1007/978-3-642-40184-8_18
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1007/3-540-36108-1_23
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-642-39799-8_52
https://doi.org/10.1007/978-3-319-66706-5_9
https://doi.org/10.1007/978-3-319-19195-9_4
https://doi.org/10.1145/1111037.1111045
https://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/370/princOps/SA22-7085-0_370-XA_Principles_of_Operation_Mar83.pdf
https://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/370/princOps/SA22-7085-0_370-XA_Principles_of_Operation_Mar83.pdf
https://www.intel.de/content/www/de/de/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.de/content/www/de/de/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.de/content/www/de/de/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html

[ISO 2011] ISO. 2011. ISO/IEC 14882:2011 Information technology — Programming languages — C++.

Standard ISO/IEC 14882:2011. Geneva, CH: International Organization for Standardization. https:

//www.iso.org/standard/50372.html (cit. on pp. 2, 15).

[Israeli and Rappoport 1993] Amos Israeli and Lihu Rappoport. 1993. Ecient Wait-Free Implementa-

tion of a Concurrent Priority Queue. In: WDAG, LNCS vol. 725. Springer. DOI:10.1007/3-540-57271-

6_23 (cit. on p. 115).

[Jensen et al. 1987] Eric H. Jensen, JereyM. Broughton, and GaryW. Hagensen. 1987.ANewApproach

to Exclusive Data Access in Shared Memory Multiprocessors. Tech. rep. https://llnl.primo.exlibri

sgroup.com/permalink/01LLNL_INST/1g1o79t/alma991001081569706316 (cit. on p. 14).

[Jones 1983] Cli B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs.

In: ACM Trans. Program. Lang. Syst. 5 (4). DOI:10.1145/69575.69577 (cit. on pp. 4, 43, 55, 118).

[Jones and Muchnick 1979] Neil D. Jones and Steven S. Muchnick. 1979. Flow Analysis and Optimiza-

tion of Lisp-Like Structures. In: POPL, ACM Press. DOI:10.1145/567752.567776 (cit. on p. 7).

[Jonsson 2012] Bengt Jonsson. 2012. Using renement calculus techniques to prove linearizability. In:

Formal Asp. Comput. 24 (4-6). DOI:10.1007/s00165-012-0250-7 (cit. on p. 119).

[Jung et al. 2018] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and

Derek Dreyer. 2018. Iris from the ground up: A modular foundation for higher-order concurrent separation

logic. In: J. Funct. Program. 28 (cit. on p. 118).

[Jung et al. 2015] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars

Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent

Reasoning. In: POPL, ACM. DOI:10.1145/2676726.2676980 (cit. on p. 118).

[Kang and Jung 2020] Jeehoon Kang and Jaehwang Jung. 2020. A marriage of pointer- and epoch-based

reclamation. In: PLDI, ACM. DOI:10.1145/3385412.3385978 (cit. on p. 116).

[Khyzha et al. 2017] Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkinson. 2017.

Proving Linearizability Using Partial Orders. In: ESOP, LNCS vol. 10201. Springer. DOI:10.1007/978-

3-662-54434-1_24 (cit. on p. 119).

[Kogan and Petrank 2011] Alex Kogan and Erez Petrank. 2011. Wait-free queues with multiple en-

queuers and dequeuers. In: PPOPP, ACM. DOI:10.1145/1941553.1941585 (cit. on p. 115).

[Kogan and Petrank 2012] Alex Kogan and Erez Petrank. 2012. A methodology for creating fast wait-

free data structures. In: PPOPP, ACM. DOI:10.1145/2145816.2145835 (cit. on p. 115).

[Kragl and Qadeer 2018] Bernhard Kragl and Shaz Qadeer. 2018. Layered Concurrent Programs. In:

CAV, LNCS vol. 10981. Springer. DOI:10.1007/978-3-319-96145-3_5 (cit. on pp. 109, 120).

[Kramer and Magee 1990] Je Kramer and Je Magee. 1990. The Evolving Philosophers Problem: Dy-

namic Change Management. In: IEEE Trans. Software Eng. 16 (11). DOI:10.1109/32.60317 (cit. on

p. 123).

[Krebbers et al. 2018] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-

Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: a general, extensible

138 Bibliography

https://www.iso.org/standard/50372.html
https://www.iso.org/standard/50372.html
https://doi.org/10.1007/3-540-57271-6_23
https://doi.org/10.1007/3-540-57271-6_23
https://llnl.primo.exlibrisgroup.com/permalink/01LLNL_INST/1g1o79t/alma991001081569706316
https://llnl.primo.exlibrisgroup.com/permalink/01LLNL_INST/1g1o79t/alma991001081569706316
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/567752.567776
https://doi.org/10.1007/s00165-012-0250-7
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1145/1941553.1941585
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.1109/32.60317

modal framework for interactive proofs in separation logic. In: PACMPL 2 (ICFP). DOI:10.1145/3236772

(cit. on p. 2).

[Krishna et al. 2018] Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. 2018. Go with the ow:

compositional abstractions for concurrent data structures. In: PACMPL 2 (POPL). DOI:10.1145/3158125

(cit. on p. 119).

[Kuru and Gordon 2019] Ismail Kuru and Colin S. Gordon. 2019. Safe Deferred Memory Reclamation

with Types. In: ESOP, LNCS vol. 11423. Springer. DOI:10.1007/978-3-030-17184-1_4 (cit. on

pp. 117, 121).

[Ladan-Mozes and Shavit 2004] Edya Ladan-Mozes and Nir Shavit. 2004. An Optimistic Approach to

Lock-Free FIFO Queues. In: DISC, LNCS vol. 3274. Springer. DOI:10.1007/978-3-540-30186-8_9

(cit. on p. 1).

[Lamport 1979] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs. In: IEEE Trans. Computers 28 (9). DOI:10.1109/TC.1979.1675439 (cit. on

pp. 38, 124).

[Lamport and Schneider 1989] Leslie Lamport and Fred B. Schneider. 1989. Pretending Atomicity. In:

SRC Research Report 44. https://www.microsoft.com/en-us/research/publication/pretending-

atomicity/ (cit. on p. 120).

[Laviron et al. 2010] Vincent Laviron, Bor-Yuh Evan Chang, and Xavier Rival. 2010. Separating Shape

Graphs. In: ESOP, LNCS vol. 6012. Springer. DOI:10.1007/978-3-642-11957-6_21 (cit. on p. 117).

[Levandoski et al. 2013] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-

Tree: A B-tree for new hardware platforms. In: ICDE, IEEE Computer Society. DOI:10.1109/ICDE.201

3.6544834 (cit. on p. 115).

[Leveson and Turner 1993] Nancy G. Leveson and Clark Savage Turner. 1993. An Investigation of the

Therac-25 Accidents. In: Computer 26 (7). DOI:10.1109/MC.1993.274940 (cit. on p. 1).

[Liang and Feng 2013] Hongjin Liang and Xinyu Feng. 2013. Modular verication of linearizability

with non-xed linearization points. In: PLDI, ACM. DOI:10.1145/2462156.2462189 (cit. on p. 119).

[Liang et al. 2012] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-based simulation

for verifying concurrent program transformations. In: POPL, ACM. DOI:10.1145/2103656.2103711

(cit. on p. 119).

[Liang et al. 2014] Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based Simulation

for Compositional Verication of Concurrent Program Transformations. In: ACM Trans. Program. Lang.

Syst. 36 (1). DOI:10.1145/2576235 (cit. on p. 119).

[Lipton 1975] Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs.

In: CACM 18 (12) (cit. on pp. 83, 109, 119, 120).

[Liu et al. 2009] Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. 2009.Model Checking Linearizability

via Renement. In: FM, LNCS vol. 5850. Springer. DOI:10.1007/978-3-642-05089-3_21 (cit. on

p. 119).

139

https://doi.org/10.1145/3236772
https://doi.org/10.1145/3158125
https://doi.org/10.1007/978-3-030-17184-1_4
https://doi.org/10.1007/978-3-540-30186-8_9
https://doi.org/10.1109/TC.1979.1675439
https://www.microsoft.com/en-us/research/publication/pretending-atomicity/
https://www.microsoft.com/en-us/research/publication/pretending-atomicity/
https://doi.org/10.1007/978-3-642-11957-6_21
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/2462156.2462189
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://doi.org/10.1007/978-3-642-05089-3_21

[Liu et al. 2013] Yang Liu, Wei Chen, Yanhong A. Liu, Jun Sun, Shao Jie Zhang, and Jin Song Dong.

2013. Verifying Linearizability via Optimized Renement Checking. In: IEEE Trans. Software Eng. 39 (7).

 DOI:10.1109/TSE.2012.82 (cit. on p. 119).

[Lowe 2017] Gavin Lowe. 2017. Testing for linearizability. In: Concurrency and Computation: Practice

and Experience 29 (4). DOI:10.1002/cpe.3928 (cit. on p. 119).

[Mckenney 2004] Paul E. Mckenney. 2004. Exploiting Deferred Destruction: An Analysis of Read-Copy-

Update Techniques in Operating System Kernels. PhD thesis. DOI:10.6083/M4GH9FVB (cit. on p. 121).

[McKenney et al. 2020] Paul E. McKenney, Joel Fernandes, Silas Boyd-Wickizer, and JonathanWalpole.

2020. RCU Usage In the Linux Kernel: Eighteen Years Later. In: ACM SIGOPS Oper. Syst. Rev. 54 (1). DOI:

10.1145/3421473.3421481 (cit. on p. 121).

[McKenney and Slingwine 1998] Paul E. McKenney and John D. Slingwine. 1998. Read-copy Update:

Using Execution History to Solve Concurrency Problems. In: (cit. on p. 18).

Dinesh P. Mehta and Sartaj Sahni, eds. (2004). Handbook of Data Structures and Applications. Chapman

and Hall/CRC. DOI:10.1201/9781420035179 (cit. on p. 1).

[Michael et al. 2021] Maged Michael, Jay Feldblum, and Andres Suarez. 2021. Facebook Folly. https

://github.com/facebook/folly/blob/49926b98f5afb5667d0c06807da79d606a6d43c3/folly/sync

hronization/HazptrHolder.h#L143 (cit. on p. 121).

[Michael 2002a] Maged M. Michael. 2002. High performance dynamic lock-free hash tables and list-based

sets. In: SPAA, DOI:10.1145/564870.564881 (cit. on pp. 1, 17, 23, 32, 34, 151).

[Michael 2002b] Maged M. Michael. 2002. Safe memory reclamation for dynamic lock-free objects using

atomic reads and writes. In: PODC, ACM. DOI:10.1145/571825.571829 (cit. on pp. 2, 14, 17, 20, 22,

24–27, 32).

[Michael 2003] MagedM.Michael. 2003. CAS-Based Lock-Free Algorithm for Shared Deques. In: Euro-Par,

LNCS vol. 2790. Springer. DOI:10.1007/978-3-540-45209-6_92 (cit. on p. 115).

[Michael 2004] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-Free

Objects. In: IEEE Trans. Parallel Distrib. Syst. 15 (6). DOI:10.1109/TPDS.2004.8 (cit. on pp. 20, 21, 27).

[Michael and Scott 1995] Maged M. Michael and Michael L. Scott. 1995. Correction of a Memory

Management Method for Lock-Free Data Structures. Tech. rep. https://www.cs.rochester.edu/u/sc

ott/papers/1995_TR599.pdf (cit. on p. 1).

[Michael and Scott 1996] MagedM. Michael andMichael L. Scott. 1996. Simple, Fast, and Practical Non-

Blocking and Blocking Concurrent Queue Algorithms. In: PODC, ACM. DOI:10.1145/248052.248106

(cit. on pp. 5, 11, 16, 17, 26, 73).

[Milner 1971] Robin Milner. 1971. An Algebraic Denition of Simulation Between Programs. In: IJCAI,

William Kaufmann. https://ijcai.org/Proceedings/71/Papers/044.pdf (cit. on p. 48).

[Moir and Shavit 2004] Mark Moir and Nir Shavit. 2004. Concurrent Data Structures. In: Handbook

of Data Structures and Applications, Chapman and Hall/CRC. DOI:10.1201/9781420035179.ch47

(cit. on p. 14).

140 Bibliography

https://doi.org/10.1109/TSE.2012.82
https://doi.org/10.1002/cpe.3928
https://doi.org/10.6083/M4GH9FVB
https://doi.org/10.1145/3421473.3421481
https://doi.org/10.1145/3421473.3421481
https://doi.org/10.1201/9781420035179
https://github.com/facebook/folly/blob/49926b98f5afb5667d0c06807da79d606a6d43c3/folly/synchronization/HazptrHolder.h#L143
https://github.com/facebook/folly/blob/49926b98f5afb5667d0c06807da79d606a6d43c3/folly/synchronization/HazptrHolder.h#L143
https://github.com/facebook/folly/blob/49926b98f5afb5667d0c06807da79d606a6d43c3/folly/synchronization/HazptrHolder.h#L143
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/571825.571829
https://doi.org/10.1007/978-3-540-45209-6_92
https://doi.org/10.1109/TPDS.2004.8
https://www.cs.rochester.edu/u/scott/papers/1995_TR599.pdf
https://www.cs.rochester.edu/u/scott/papers/1995_TR599.pdf
https://doi.org/10.1145/248052.248106
https://ijcai.org/Proceedings/71/Papers/044.pdf
https://doi.org/10.1201/9781420035179.ch47

[Morrison and Afek 2013] Adam Morrison and Yehuda Afek. 2013. Fast concurrent queues for x86

processors. In: PPOPP, ACM. DOI:10.1145/2442516.2442527 (cit. on p. 115).

[Nanevski et al. 2014] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Del-

bianco. 2014. Communicating State Transition Systems for Fine-Grained Concurrent Resources. In: ESOP,

LNCS vol. 8410. Springer. DOI:10.1007/978-3-642-54833-8_16 (cit. on p. 118).

[Natarajan and Mittal 2014] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-free

binary search trees. In: PPOPP, ACM. DOI:10.1145/2555243.2555256 (cit. on p. 115).

[Natarajan et al. 2020] Aravind Natarajan, Arunmoezhi Ramachandran, and Neeraj Mittal. 2020.

FEAST: A Lightweight Lock-free Concurrent Binary Search Tree. In: ACM Trans. Parallel Comput. 7

(2). DOI:10.1145/3391438 (cit. on p. 115).

[Necula et al. 2002] George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: Type-safe

Retrotting of Legacy Code. In: POPL, ACM. DOI:10.1145/503272.503286 (cit. on p. 117).

[Nikolaev and Ravindran 2019] Ruslan Nikolaev and Binoy Ravindran. 2019. Hyaline: Fast and Trans-

parent Lock-Free Memory Reclamation. In: PODC, ACM. DOI:10.1145/3293611.3331575 (cit. on

p. 116).

[Nikolaev and Ravindran 2020] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal wait-free

memory reclamation. In: PPoPP, ACM. DOI:10.1145/3332466.3374540 (cit. on pp. 2, 14, 115, 116).

[O’Hearn 2004] Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In: CONCUR,

LNCS vol. 3170. Springer. DOI:10.1007/978-3-540-28644-8_4 (cit. on pp. 4, 56, 118).

[O’Hearn et al. 2001] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning

about Programs that Alter Data Structures. In: CSL, LNCS vol. 2142. Springer. DOI:10.1007/3-540-4

4802-0_1 (cit. on pp. 118, 120).

[O’Hearn et al. 2010] Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta

Yorsh. 2010. Verifying linearizability with hindsight. In: PODC, ACM. DOI:10.1145/1835698.1835722

(cit. on pp. 29, 31, 119).

[Oracle 2020] Oracle. 2020. Java® Platform, Standard Edition & Java Development Kit. Version Version

15 API Specication. https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java

/util/concurrent/ConcurrentLinkedQueue.html (cit. on p. 26).

[Owens 2010] Scott Owens. 2010. Reasoning about the Implementation of Concurrency Abstractions on

x86-TSO. In: ECOOP, LNCS vol. 6183. Springer. DOI:10.1007/978-3-642-14107-2_23 (cit. on p. 124).

[Owicki and Gries 1976] Susan S. Owicki and David Gries. 1976. An Axiomatic Proof Technique for

Parallel Programs I. In: Acta Inf. 6. DOI:10.1007/BF00268134 (cit. on pp. 4, 43, 55, 84, 85, 90).

[Parkinson et al. 2007] Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. 2007. Modular

verication of a non-blocking stack. In: POPL, ACM. DOI:10.1145/1190216.1190261 (cit. on p. 119).

[Pierce 2002] Benjamin C. Pierce. 2002. Types and programming languages. MIT Press (cit. on pp. 90,

105).

141

https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3391438
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/3293611.3331575
https://doi.org/10.1145/3332466.3374540
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/1835698.1835722
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://doi.org/10.1007/978-3-642-14107-2_23
https://doi.org/10.1007/BF00268134
https://doi.org/10.1145/1190216.1190261

[Plotkin 1981] Gordon D. Plotkin. 1981. A structural approach to operational semantics. DAIMI Report

FN-19. Computer Science Department, Aarhus University (cit. on p. 39).

[Prakash et al. 1994] Sundeep Prakash, Yann-Hang Lee, and Theodore Johnson. 1994. A Nonblocking

Algorithm for Shared Queues Using Compare-and-Swap. In: IEEE Trans. Computers 43 (5). DOI:10.110

9/12.280802 (cit. on p. 29).

[Ramachandran and Mittal 2015] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. A Fast Lock-

Free Internal Binary Search Tree. In: ICDCN, ACM. DOI:10.1145/2684464.2684472 (cit. on p. 115).

[Ramalhete and Correia 2017] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement:

Hazard Eras - Non-Blocking Memory Reclamation. In: SPAA, ACM. DOI:10.1145/3087556.3087588

(cit. on p. 116).

[Reynolds 2002] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures.

In: LICS, IEEE. DOI:10.1109/LICS.2002.1029817 (cit. on pp. 118, 120).

[Schellhorn et al. 2012] Gerhard Schellhorn, Heike Wehrheim, and John Derrick. 2012. How to Prove

Algorithms Linearisable. In: CAV, LNCS vol. 7358. Springer. DOI:10.1007/978-3-642-31424-7_21

(cit. on p. 119).

[Segalov et al. 2009] Michal Segalov, Tal Lev-Ami, RomanManevich, Ganesan Ramalingam, andMooly

Sagiv. 2009. Abstract Transformers for Thread Correlation Analysis. In: APLAS, LNCS vol. 5904. Springer.

 DOI:10.1007/978-3-642-10672-9_5 (cit. on p. 120).

[Sergey et al. 2015a] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized

verication of ne-grained concurrent programs. In: PLDI, ACM. DOI:10.1145/2737924.2737964

(cit. on p. 119).

[Sergey et al. 2015b] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and

Verifying Concurrent Algorithms with Histories and Subjectivity. In: ESOP, LNCS vol. 9032. Springer.

 DOI:10.1007/978-3-662-46669-8_14 (cit. on p. 119).

[Sergey et al. 2018] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and proving

with distributed protocols. In: Proc. ACM Program. Lang. 2 (POPL). DOI:10.1145/3158116 (cit. on

p. 123).

[Sethi et al. 2013] Divjyot Sethi, Muralidhar Talupur, and Sharad Malik. 2013. Model Checking Un-

bounded Concurrent Lists. In: SPIN, LNCS vol. 7976. Springer. DOI:10.1007/978-3-642-39176-7_20

(cit. on p. 120).

[Sewell et al. 2010] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.

Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model for x86 multiprocessors. In: Commun.

ACM 53 (7). DOI:10.1145/1785414.1785443 (cit. on p. 124).

[Shaei 2015] Niloufar Shaei. 2015.Non-Blocking Doubly-Linked Lists with Good Amortized Complexity.

In: OPODIS, LIPIcs vol. 46. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. DOI:10.4230/LIPIcs

.OPODIS.2015.35 (cit. on p. 115).

142 Bibliography

https://doi.org/10.1109/12.280802
https://doi.org/10.1109/12.280802
https://doi.org/10.1145/2684464.2684472
https://doi.org/10.1145/3087556.3087588
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-642-31424-7_21
https://doi.org/10.1007/978-3-642-10672-9_5
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/3158116
https://doi.org/10.1007/978-3-642-39176-7_20
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.4230/LIPIcs.OPODIS.2015.35
https://doi.org/10.4230/LIPIcs.OPODIS.2015.35

[Shann et al. 2000] Chien-Hua Shann, Ting-Lu Huang, and Cheng Chen. 2000. A Practical Nonblocking

Queue Algorithm Using Compare-and-Swap. In: ICPADS, IEEE Computer Society. DOI:10.1109

/ICPADS.2000.857731 (cit. on p. 115).

[Silberschatz et al. 2020] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System

Concepts, Seventh Edition. McGraw-Hill Book Company. ISBN:9780078022159 (cit. on p. 123).

[Stallings 2013] William Stallings. 2013. Computer Organization and Architecture - Designing for Perfor-

mance (9. ed.) Pearson / Prentice Hall (cit. on p. 13).

[Stenström 1990] Per Stenström. 1990. A Survey of Cache Coherence Schemes for Multiprocessors. In:

Computer 23 (6). DOI:10.1109/2.55497 (cit. on p. 124).

[Ströder et al. 2017] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten Fuhs,

Jera Hensel, Peter Schneider-Kamp, and Cornelius Aschermann. 2017.Automatically Proving Termination

and Memory Safety for Programs with Pointer Arithmetic. In: J. Autom. Reasoning 58 (1). DOI:10.1007

/s10817-016-9389-x (cit. on p. 117).

[Sundell and Tsigas 2003] Håkan Sundell and Philippas Tsigas. 2003. Fast and Lock-Free Concurrent

Priority Queues for Multi-Thread Systems. In: IPDPS, IEEE Computer Society. DOI:10.1109/IPDPS.20

03.1213189 (cit. on p. 115).

[Sundell and Tsigas 2004] Håkan Sundell and Philippas Tsigas. 2004. Lock-Free and Practical Doubly

Linked List-Based Deques Using Single-Word Compare-and-Swap. In: OPODIS, LNCS vol. 3544. Springer.

 DOI:10.1007/11516798_18 (cit. on p. 115).

[Svendsen and Birkedal 2014] Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent

Abstract Predicates. In: ESOP, LNCS vol. 8410. Springer. DOI:10.1007/978-3-642-54833-8_9 (cit. on

p. 118).

[Tanenbaum and Bos 2014] Andrew S. Tanenbaum and Herbert Bos. 2014.Modern Operating Systems.

4th. USA: Prentice Hall Press. ISBN:013359162X (cit. on p. 121).

[Ter-Gabrielyan et al. 2019] Arshavir Ter-Gabrielyan, Alexander J. Summers, and Peter Müller. 2019.

Modular verication of heap reachability properties in separation logic. In: PACMPL 3 (OOPSLA). DOI:

10.1145/3360547 (cit. on p. 119).

[Tofan et al. 2011] Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif. 2011. Formal Verication of

a Lock-Free Stack with Hazard Pointers. In: ICTAC, LNCS vol. 6916. Springer. DOI:10.1007/978-3-64

2-23283-1_16 (cit. on p. 119).

[Travkin et al. 2013] Oleg Travkin, AnnikaMütze, and HeikeWehrheim. 2013. SPIN as a Linearizability

Checker under Weak Memory Models. In: Haifa Verication Conference, LNCS vol. 8244. Springer. DOI:

10.1007/978-3-319-03077-7_21 (cit. on p. 119).

[Treiber 1986] R. Kent Treiber. 1986. Systems programming: coping with parallelism. Tech. rep. RJ 5118.

IBM (cit. on pp. 11, 16, 17, 24, 25).

[Tsigas and Zhang 2001] Philippas Tsigas and Yi Zhang. 2001. A simple, fast and scalable non-blocking

concurrent FIFO queue for shared memory multiprocessor systems. In: SPAA, ACM. DOI:10.1145/3785

80.378611 (cit. on p. 115).

143

https://doi.org/10.1109/ICPADS.2000.857731
https://doi.org/10.1109/ICPADS.2000.857731
https://isbndb.com/book/9780078022159
https://doi.org/10.1109/2.55497
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1109/IPDPS.2003.1213189
https://doi.org/10.1109/IPDPS.2003.1213189
https://doi.org/10.1007/11516798_18
https://doi.org/10.1007/978-3-642-54833-8_9
https://isbndb.com/book/013359162X
https://doi.org/10.1145/3360547
https://doi.org/10.1145/3360547
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1145/378580.378611
https://doi.org/10.1145/378580.378611

[Turon et al. 2013] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying Renement and

Hoare-style Reasoning in a Logic for Higher-order Concurrency. In: ICFP, ACM. DOI:10.1145/2544174

.2500600 (cit. on p. 118).

[Turon et al. 2014] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating Weak

Memory with Ghosts, Protocols, and Separation. In: OOPSLA, ACM. DOI:10.1145/2660193.2660243

(cit. on p. 118).

[Vafeiadis 2009] Viktor Vafeiadis. 2009. Shape-Value Abstraction for Verifying Linearizability. In: VMCAI,

LNCS vol. 5403. Springer. DOI:10.1007/978-3-540-93900-9_27 (cit. on pp. 103, 111).

[Vafeiadis 2010a] Viktor Vafeiadis. 2010. RGSep Action Inference. In: VMCAI, LNCS vol. 5944. Springer.

 DOI:10.1007/978-3-642-11319-2_25 (cit. on pp. 2, 5, 103, 111, 115, 117, 118, 120).

[Vafeiadis 2010b] Viktor Vafeiadis. 2010.Automatically Proving Linearizability. In: CAV, LNCS vol. 6174.

Springer. DOI:10.1007/978-3-642-14295-6_40 (cit. on pp. 2, 5, 12, 103, 111, 115, 117, 120).

[Vafeiadis and Parkinson 2007] Viktor Vafeiadis and Matthew J. Parkinson. 2007. A Marriage of

Rely/Guarantee and Separation Logic. In: CONCUR, LNCS vol. 4703. Springer. DOI:10.1007/978-3-5

40-74407-8_18 (cit. on pp. 4, 56, 118).

[Vardi 1987] Moshe Y. Vardi. 1987. Verication of Concurrent Programs: The Automata-Theoretic Frame-

work. In: LICS, IEEE Computer Society (cit. on p. 54).

[Vechev and Yahav 2008] Martin T. Vechev and Eran Yahav. 2008. Deriving linearizable ne-grained

concurrent objects. In: PLDI, ACM. DOI:10.1145/1375581.1375598 (cit. on pp. 29, 30, 32, 33, 119).

[Vechev et al. 2009] Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2009. Experience with Model

Checking Linearizability. In: SPIN, LNCS vol. 5578. Springer. DOI:10.1007/978-3-642-02652-2_21

(cit. on p. 120).

[von Gleissenthall et al. 2019] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian

Stefan, and Ranjit Jhala. 2019. Pretend synchrony: synchronous verication of asynchronous distributed

programs. In: Proc. ACM Program. Lang. 3 (POPL) (cit. on p. 124).

[Wen et al. 2018] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott.

2018. Interval-based memory reclamation. In: PPOPP, ACM. DOI:10.1145/3178487.3178488 (cit. on

p. 116).

[Wilcox et al. 2015] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,

Michael D. Ernst, and Thomas E. Anderson. 2015. Verdi: a framework for implementing and formally

verifying distributed systems. In: PLDI, ACM. DOI:10.1145/2737924.2737958 (cit. on p. 124).

[Wirth 1978] Niklaus Wirth. 1978. Algorithms + Data Structures = Programs. USA: Prentice Hall PTR.

 ISBN:0130224189 (cit. on p. 1).

[Wu et al. 2016] Hao Wu, Xiaoxiao Yang, and Joost-Pieter Katoen. 2016. Performance Evaluation of

Concurrent Data Structures. In: SETTA, LNCS vol. 9984. DOI:10.1007/978-3-319-47677-3_3 (cit. on

p. 1).

144 Bibliography

https://doi.org/10.1145/2544174.2500600
https://doi.org/10.1145/2544174.2500600
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1007/978-3-540-93900-9_27
https://doi.org/10.1007/978-3-642-11319-2_25
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1145/1375581.1375598
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1145/3178487.3178488
https://doi.org/10.1145/2737924.2737958
https://isbndb.com/book/0130224189
https://doi.org/10.1007/978-3-319-47677-3_3

[Wulf et al. 2006] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.

2006. Antichains: A New Algorithm for Checking Universality of Finite Automata. In: CAV, LNCS vol. 4144.

Springer. DOI:10.1007/11817963_5 (cit. on p. 106).

[Yang and Wrigstad 2017] Albert Mingkun Yang and Tobias Wrigstad. 2017. Type-assisted automatic

garbage collection for lock-free data structures. In: ISMM, ACM. DOI:10.1145/3092255.3092274

(cit. on p. 116).

[Yang et al. 2008] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino

Distefano, and PeterW. O’Hearn. 2008. Scalable Shape Analysis for Systems Code. In: CAV, LNCS vol. 5123.

Springer. DOI:10.1007/978-3-540-70545-1_36 (cit. on p. 117).

[Yang et al. 2017] Xiaoxiao Yang, Joost-Pieter Katoen, Huimin Lin, and Hao Wu. 2017. Verifying Con-

current Stacks by Divergence-Sensitive Bisimulation. In: CoRR abs/1701.06104. https://arxiv.org/ab

s/1701.06104 (cit. on p. 119).

[Yoshida 2013a] Junko Yoshida. 2013. Toyota Case: Single Bit Flip That Killed. https://www.eetimes

.com/toyota-case-single-bit-flip-that-killed/ (cit. on p. 1).

[Yoshida 2013b] Junko Yoshida. 2013. Toyota Case: Vehicle Testing Conrms Fatal Flaws. https://ww

w.eetimes.com/toyota-case-vehicle-testing-confirms-fatal-flaws/ (cit. on p. 1).

[Zhang 2011] Shao Jie Zhang. 2011. Scalable automatic linearizability checking. In: ICSE, ACM. DOI:

10.1145/1985793.1986037 (cit. on p. 119).

[Zhu et al. 2015] He Zhu, Gustavo Petri, and Suresh Jagannathan. 2015. Poling: SMT Aided Lineariz-

ability Proofs. In: CAV (2), LNCS vol. 9207. Springer. DOI:10.1007/978-3-319-21668-3_1 (cit. on

pp. 11, 120).

145

https://doi.org/10.1007/11817963_5
https://doi.org/10.1145/3092255.3092274
https://doi.org/10.1007/978-3-540-70545-1_36
https://arxiv.org/abs/1701.06104
https://arxiv.org/abs/1701.06104
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/
https://www.eetimes.com/toyota-case-vehicle-testing-confirms-fatal-flaws/
https://www.eetimes.com/toyota-case-vehicle-testing-confirms-fatal-flaws/
https://doi.org/10.1145/1985793.1986037
https://doi.org/10.1145/1985793.1986037
https://doi.org/10.1007/978-3-319-21668-3_1

146

Appendices

147

148

Additional Material A
We extend selected parts of our development. Appendix A.1 gives a formal account of the

compositionality result from Chapter 5. Appendix A.2 presents a specication for the hazard

pointer technique that supports transferring protections. As such, the specication expands

on the discussions from Sections 5.2 and 8.4. Appendix A.3 discusses a relaxation of strong

pointer races that allows for the same reduction results while avoiding false alarms in practice.

The relaxation allows constants, like NULL, to be compared to invalid pointers in assumptions.

For the full meta theory developed during this thesis, refer to Appendix B (and the proofs in

Appendix C).

A.1 Compositionality

We revisit the compositional verication results from Chapter 5. Consider some P(R), a data
structure P using an SMR implementation R. As stated informally in Chapter 5, we require that

the only inuence that P is subject to are the free commands that R performs. More precisely,

we require a separation of the memory such that P does not access the memory belonging to R,

and vice versa. The memory separation is induced by a partitioning of

(i) the program variables Var = PVar ∪DVar into the variables of P and R, Var = Var P ⊎Var R,

and

(ii) the pointer selectors Sel = PSel ∪DSel into the selectors of P and R, Sel = Sel P ⊎ Sel R, such

that we have 𝑎.sel ∈ SelQ i 𝑏.sel ∈ SelQ for all 𝑎, 𝑏 ∈ Adr and Q ∈ { P, R }.

We may write sel ∈ SelQ instead of 𝑎.sel ∈ SelQ as membership is independent of the address 𝑎.

Hereafter, we assume a xed partitioning the precise form of which does not matter. The induced

memory separation is𝑚𝜏 =𝑚
P
𝜏 ⊎𝑚

R
𝜏 dened by

𝑚
P
𝜏 =𝑚𝜏↓Var P∪Sel P and 𝑚

R
𝜏 =𝑚𝜏↓Var R∪Sel R .

Then, a separation violation is an action that does not respect the memory separation, i.e., an

action of P that accesses variables or selectors of R, or vice versa. In order to know whether

an action stems from executing P or R, we extend the SOS transition relation and write ⇢⇢Q,𝑡

to indicate that thread 𝑡 is taking a step due to Q ∈ { P, R } . Technically, we have ⇢⇢R,𝑡 if

Rule (sos-std-smr) is involved in the derivation of the program step and ⇢⇢P,𝑡 otherwise.

Section A.1 Compositionality 149

To simplify our development when it comes to function calls, we relax separation violations

and allow R to read out the variables passed to invocations. We introduce a set of interface

variables IVar ⊆ Var P \ shared and assume that invocations in∶func(𝑟1, . . . 𝑟𝑛) contain interface

variables only, 𝑟𝑖 ∈ IVar for all 1 ≤ 𝑖 ≤ 𝑛.

Denition A.1. Program step (pc, 𝜏) ⇢⇢Q,𝑡 (pc′, 𝜏 .act) with act = ⟨𝑡, com, up⟩ is a separation
violation if (i) com assigns to variable 𝑥 ∉ Var Q , (ii) com contains variable 𝑥 ∉ Var Q ∪ IVar , or

(iii) com contains selector 𝑥 .sel with sel ∉ SelQ . We say 𝜏 contains a separation violation. �

Separation violations in P(R) can be found by a simple syntactic analysis of the program code.

The data structure and SMR implementations from Chapter 2 are free from separation violations.

We believe that our results can be lifted to more involved memory separations.

Hereafter, it will be convenient to access the control locations of P and R separately. To that end,

we dene pc1 ◦ pc2 as well as ctrl
P(𝜏) and ctrl R(𝜏) as follows:

pc1 ◦ pc2 ≔ 𝜆𝑡 . pc1(𝑡) ◦ pc2(𝑡)

and ctrl P(𝜏) ≔ { pc1 ∣ ∃ pc2. pc1 ◦ pc2 ∈ ctrl(𝜏) }

and ctrl R(𝜏) ≔ { pc2 ∣ ∃ pc1. pc1 ◦ pc2 ∈ ctrl(𝜏) }

Then, the set of program locations of thread 𝑡 are ctrlQ(𝜏)(𝑡) ≔ { pc(𝑡) ∣ pc ∈ ctrlQ(𝜏) }.

We formulate the requirements about the most general client𝑀𝐺𝐶 . We require that the𝑀𝐺𝐶

can mimic invocations, assignments to interface variables, and allocations performed by P . More

specically, we assume that for all threads 𝑡 and 𝜎 ∈ ⟦𝑀𝐺𝐶(R)⟧AdrAdr there is act = ⟨𝑡, com, up⟩
such that 𝜎.act ∈ ⟦𝑀𝐺𝐶(R)⟧AdrAdr , provided one of the following applies:

(i) com ≡ in∶func(𝑟1, . . . , 𝑟𝑛) and 𝑟𝑖 ∈ IVar and𝑚𝜎(𝑟𝑖) ≠ seg and skip ∈ ctrl R(𝜎)(𝑡),
(ii) com ≡ re∶func and await re∶func ∈ ctrl R(𝜎)(𝑡),
(iii) com ≡ 𝑝 ∶= malloc, or

(iv) up = [𝑝 ↦ 𝑎] and 𝑝 ∈ IVar and 𝑎 ∈ used(𝜎).

The rst two properties allow us to mimic function invocations and responses. The third property

allows us to mimic the allocations performed by P . The last property allows us to update the

interface variables using the addresses that the 𝑀𝐺𝐶 has already allocated and thus holds a

pointer to. Here, we assume that the𝑀𝐺𝐶 takes its variables from Var P and dene:

used(𝜎) ≔ {𝑚𝜎1 .act(𝑝) ∣ ∃𝜎2. 𝜎 = 𝜎1.act .𝜎2 ∧ act = ⟨•, 𝑝 ∶= malloc, •⟩ ∧ 𝑝 ∈ Var P }

We use a single action act for simplicity; a generalization to sequences of actions that mimic act on

the interface variables is straight forward. We now show that the simpler𝑀𝐺𝐶 over-approximates

P’s usage of R. Hence, R ⊧ O guarantees that R adheres to the specication O when used by P .

150 Appendix A Additional Material

Theorem A.2 (Proof C.5). Let 𝜏 ∈ ⟦P(R)⟧AdrAdr be free from separation violations. Then, there

is 𝜎 ∈ ⟦𝑀𝐺𝐶(R)⟧AdrAdr such that (i) ctrl R(𝜏) ⊆ ctrl R(𝜎), (ii) 𝑚R
𝜏 = 𝑚

R
𝜎 , (iii) 𝑚𝜏↓IVar = 𝑚𝜎↓IVar ,

(iv)H(𝜏) = H(𝜎), (v) fresh𝜏 ⊆ fresh𝜎 , (vi) freed𝜏 ⊆ freed𝜎 , and (vii) used(𝜏) ⊆ used(𝜎). �

Corollary A.3 (Proof C.6). We haveH(⟦P(R)⟧AdrAdr) ⊆ H(⟦𝑀𝐺𝐶(R)⟧AdrAdr) provided ⟦P(R)⟧AdrAdr

is free from separation violations. �

Now, we are ready to show that P can be veried against O rather than R, provided that P(R) is
free from separation violations and that R ⊧ O holds. More specically, we show that P(R) and
P(O) reach the same control locations wrt. P .

Theorem A.4 (Proof C.7). Let 𝜏 ∈ ⟦P(R)⟧AdrAdr be free from separation violations. If R ⊧ O,

then there is 𝜎 ∈ O⟦P⟧AdrAdr such that (i) ctrl P(𝜏) ⊆ ctrl(𝜎), (ii)𝑚P
𝜏 = 𝑚

P
𝜎 , (iii) H(𝜏) = H(𝜎),

(iv) fresh𝜏 ⊆ fresh𝜎 , (v) freed𝜏 ⊆ freed𝜎 , and (vi) retired𝜏 ⊆ retired𝜎 . �

In Chapter 5 we introduced the predicate good(𝜏) that tests whether or not a computation 𝜏

reaches a bad program location which we assumed to be in P . Formally, we let Fault be the

bad program locations and dene good(𝜏) ∶⟺ ctrl P(𝜏) ∩ Fault = ∅. Then, Theorems 5.10

and 5.11 are consequences of the above Theorem A.4.

A.2 Hazard Pointer Specification

Recall from Section 5.2 that there are two SMR automata specifying the hazard pointer technique

with two hazard pointers per thread: OBase ×O0
HP ×O1

HP and OBase ×O0,1
HP . We used the former

in the example from Figure 8.20 for typing Micheal&Scott’s queue. However,OBase ×O0
HP ×O1

HP

does not support the transfer of protections among hazard pointers (cf. Section 2.3.3). This feature

is crucial for more complicated data structures, like Micheal’s set [Michael 2002a]. To that end, we

use the SMR automaton OBase ×O0,1
HP . The denition of O0,1

HP is given Figure A.5. Intuitively, O0,1
HP

is the cross-product O0
HP ×O1

HP with additional transitions for tracking the correlation among

protections and for transferring the protection of the 0-th hazard pointer into the 1-st hazard

pointer. More precisely, locations 𝐿16 to 𝐿23 deal with protections of the 0-th hazard pointer.

Taking just locations 𝐿15 to 𝐿18 and 𝐿30 corresponds to O0
HP . If the same address is additionally

protected with the 1-st hazard pointer, then O0,1
HP moves to locations 𝐿19 to 𝐿21 after protect1

is invoked and to locations 𝐿22 and 𝐿23 after protect1 returns. When the protection of the 0-th

hazard pointer is revoked, the protection is transferred to the 1-st hazard pointer. In O0,1
HP this

is encoded by the transitions from 𝐿22 to 𝐿25 and 𝐿23 to 𝐿26. Locations 𝐿24 to 𝐿29 are the dual

of 𝐿16 to 𝐿23: they track the protections of the 1-st hazard pointer, similarly to O1
HP . In particular,

location 𝐿26 prevents frees of the tracked address. That is, the transition from 𝐿23 to 𝐿26 transfers

the protection indeed. However, when the 1-st hazard pointer is revoked, no transfer takes place.

Section A.2 Hazard Pointer Specification 151

This is reected by location 𝐿29 transitioning to 𝐿17 instead of 𝐿18. Indeed, 𝐿17 allows the tracked

address to be freed while 𝐿18 does not. Hence, O
0,1
HP faithfully species the transfer of hazard

pointers.

When using O0,1
HP with the type system from Chapter 8, we use four HP-specic guaran-

tees E1,E2,E3,E4 the locations of which are marked in Figure A.5. Their meaning is similar to

what we have seen in the aforementioned typing of Michael&Scott’s queue from Figure 8.20.

Guarantee E1 encodes that an invocation of protect0 has been issued. Guarantee E2 encodes

that the invocation has returned. Formally, we have:

∅, 𝑥, in∶protect0(𝑥) ↝ E1 and E1, 𝑥, re∶protect0 ↝ E2 .

Similarly, guarantees E3,E4 deal with protect1. The protection is successful if it is issued while

the address is active:

E2 ∧ A ↝ S and E4 ∧ A ↝ S .

We omit an explicit construction of the cross-product OBase ×O0,1
HP and a typing example. It is

analogous to the example from Figure 8.20.

A.3 Relaxation of Strong Pointer Races

Chapter 8 introduced the notion of strong pointer races. Strong pointer races extend ordinary

pointer races with unsafe assumptions, Denition 8.3. Recall that an assumption assume 𝑝 = 𝑞

is deemed unsafe if 𝑝 or 𝑞 is invalid. In practice, this restriction leads to false alarms during

verication. The reason for this is that data structures may compare invalid pointers with

constants like NULL; for an example consider Line 454 in Vechev&Yahav’s 2CAS set. Since the

addresses held by such constants, unlike ordinary pointers, do not undergo allocation-free-

reallocation cycles, the problematic comparisons are, in fact, not ABA prone. That is, the strong

pointer race is spurious and verication need not fail.

In the following, we present a lift of the reduction fromChapter 8 such that assumptions involving

invalid pointers and constants do not hinder verication. To that end, we introduce a set of

constant pointer variables CVar ⊆ PVar ∩ shared that may be compared to any other pointer,

valid or not.

DenitionA.6 (RelaxedUnsafeAssumption). A computation 𝜏 is a relaxed unsafe assumption

if there is some assume 𝑝 = 𝑞 ∈ next-com(𝜏) such that (i) 𝑝 ∉ valid𝜏 ∧ 𝑞 ∉ 𝐶𝐸𝑥𝑝 or (ii) 𝑝 ∉

𝐶𝐸𝑥𝑝 ∧ 𝑞 ∉ valid𝜏 . �

152 Appendix A Additional Material

Figure A.5: Hazard pointer specication OBase × O0,1
HP for two hazard pointer per thread

supporting the transfer of protections. The HP-specic guarantees E0,E1,E2,E3 are needed
when typing.

O0,1
HP

𝐿15 𝐿16 𝐿17 𝐿18

𝐿19 𝐿20𝐿21

𝐿22 𝐿23

𝐿24 𝐿25 𝐿26

𝐿27 𝐿28

𝐿29

𝐿30

𝐿17𝐿16

F

F

F

F

F

F

!P0

!P0

!P0
!P0

!P1
!P1!P1

!P1

!P1

!P0

R

!P0

!P0

!P1

!P0

!P0

!P1 !P1

!P1

!P1 !P1

!P0 !P0

P0 E0

P1 P1 P1

E0

E1

E1 E1

R

R

R

P1

E1

P0

P0 P0
E0

E0

R

R

∈ Loc(E1) ∈ Loc(E2) ∈ Loc(E3) ∈ Loc(E4)

𝑃0 ≔ in∶protect0(𝑡, 𝑎), 𝑡 = 𝑧𝑡 ∧ 𝑎 = 𝑧𝑎 𝑃1 ≔ in∶protect1(𝑡, 𝑎), 𝑡 = 𝑧𝑡 ∧ 𝑎 = 𝑧𝑎

!𝑃0 ≔ in∶protect0(𝑡, 𝑎), 𝑡 = 𝑧𝑡 ∧ 𝑎 ≠ 𝑧𝑎 !𝑃1 ≔ in∶protect1(𝑡, 𝑎), 𝑡 = 𝑧𝑡 ∧ 𝑎 ≠ 𝑧𝑎

in∶unprotect0(𝑡), 𝑡 = 𝑧𝑡 in∶unprotect1(𝑡), 𝑡 = 𝑧𝑡

𝐸0 ≔ re∶protect(𝑡), 𝑡 = 𝑧𝑡 𝐸1 ≔ re∶protect(𝑡), 𝑡 = 𝑧𝑡

𝑅 ≔ in∶retire(𝑡, 𝑎), 𝑎 = 𝑧𝑎 𝐹 ≔ free(𝑎), 𝑎 = 𝑧𝑎

Section A.3 Relaxation of Strong Pointer Races 153

Then, a moderate pointer race is either an ordinary pointer race or a relaxed unsafe assumption.

Note that strong pointer race freedom implies moderate pointer race freedom.

Denition A.7 (Moderate Pointer Race). A computation 𝜏 .act is a moderate pointer race if

(i) act is an ordinary pointer race, or (ii) 𝜏 .act is a relaxed unsafe assumption. �

For our results to apply, we require that constants point to addresses that have never been

freed before. This guarantees that constants are never equal to invalid pointers. That is, the

assumptions the above relaxation allows for are not enabled. The following denition formulates

the requirements.

Denition A.8 (Constant Violation). A computation 𝜏 is a constant violation if there is a

constant C ∈ CVar such that𝑚𝜏(C) ∈ frees𝜏 ∪ retired𝜏 . �

For simplicity, we assume thatO⟦P⟧AdrAdr is free from constant violations. The requirement can be

established easily with a syntactic check. For example, by ensuring that (i) constants are not

updated after the rst retirement, and (ii) no address held by a constant is retired. This aligns

with our intuition of constants: they are written once at the very beginning of a computation.

Assumption A.9 (No Constant Violations). There are no constant violations in O⟦P⟧AdrAdr . �

Provided that a program is free from moderate pointer races, we obtain the same reduction as

for strong pointer races in Chapter 8.

Theorem A.10 (Proof C.58). If O supports elision and O⟦P⟧∅Adr is free from moderate pointer

races and double retires, then we have good(O⟦P⟧AdrAdr) ⟺ good(⟦P⟧∅∅) and O⟦P⟧AdrAdr is free

from double retires. �

The type system from Chapter 8 can be adapted to moderate pointer races by adding the following

rules which types the newly allowed scenario:

(assume1-constant)

𝑇
′′
= (𝑇 ∧𝑇

′) \ {L } {𝑝, 𝑞 } ∩ CVar ≠ ∅

{ Γ, 𝑝 ∶𝑇, 𝑞 ∶𝑇 ′ } assume 𝑝 = 𝑞 { Γ, 𝑝 ∶𝑇 ′′, 𝑞 ∶𝑇 ′′ }

The extend type rules are sound and check for moderate pointer races.

Theorem A.11 (Proof C.84). If inv(⟦P⟧∅∅) and ⊢ P , then inv(O⟦P⟧∅Adr) and O⟦P⟧∅Adr is free
from moderate pointer races and double retires. �

For the type check, observe that constants are always active. Hence, corresponding annotations

can be added without the need to check them.

Proposition A.12 (Proof C.85). If 𝜏 ∈ O⟦P⟧AdrAdr , then𝑚𝜏(CVar) ⊆ active(𝜏). �

154 Appendix A Additional Material

Meta Theory B
We present the full meta theory developed for this thesis. The proofs can be found in Appendix C.

Hereafter, we use the following abbreviations for computations 𝜏 :

𝜏 DRF ∶⟺ 𝜏 is free from double retires, Denition 5.5,

𝜏 UAF ∶⟺ 𝜏 is free from unsafe accesses, Denition 7.10,

𝜏 PRF ∶⟺ 𝜏 is free from (ordinary) pointer races, Denition 7.13,

𝜏 SPRF ∶⟺ 𝜏 is free from strong pointer races, Denition 8.4,

𝜏 MPRF ∶⟺ 𝜏 is free from moderate pointer races, Denition A.7,

and similarly for sets of computations.

Repeated Assumption 5.2. SMR automata O satisfy: if 𝑠1−→
ℎ
𝑠2 and 𝑠1−→

ℎ
𝑠3, then 𝑠2 = 𝑠3. �

Repeated Assumption 5.6. SMR automata O are of the form O = OBase ×OSMR. �

B.1 Formal Definitions

We make formal the denitions that are missing in the main part. For convenience, we repeat

key denitions that play a central role in our development and are frequently invoked in Ap-

pendices B and C. We write com(act) = com to access the command com executed by action

act = ⟨𝑡, com, up⟩.

B.1.1 Computations

Denition B.1. We dene var ∩ Adr ≔ ∅ for var ∈ PVar ∪ DVar and 𝑎.sel∩ Adr ≔ {𝑎 }. �

Denition B.2. The addresses in use in𝑚 are: adr(𝑚) ≔ (range(𝑚) ∪ dom(𝑚)) ∩ Adr . �

Denition B.3. Memories𝑚 valuate sets𝑀 by𝑚(𝑀) ≔ {𝑚(exp) ∣ exp ∈ 𝑀 } \ { seg }. �

Denition B.4. The set of thread-local variables of 𝑡 is local𝑡 = {𝑝𝑡 ∣ 𝑝 ∉ shared } of non-shared
variables indexed by 𝑡 . �

Section B.1 Formal Definitions 155

Denition B.5. The fresh addresses after a computation 𝜏 , denoted fresh𝜏 , are dened by:

fresh𝜖 ≔ Adr

fresh𝜏 .act ≔ fresh𝜏 \ {𝑎 } if com(act) ≡ free(𝑎)

fresh𝜏 .act ≔ fresh𝜏 \ {𝑎 } if com(act) ≡ 𝑝 ∶= malloc ∧𝑚𝜏 .act(𝑝) = 𝑎

fresh𝜏 .act ≔ fresh𝜏 otherwise �

Denition B.6. The freed addresses after a computation 𝜏 , denoted freed𝜏 , are dened by:

freed𝜖 ≔ ∅

freed𝜏 .act ≔ freed𝜏 ∪ {𝑎 } if com(act) ≡ free(𝑎)

freed𝜏 .act ≔ freed𝜏 \ {𝑎 } if com(act) ≡ 𝑝 ∶= malloc ∧𝑚𝜏 .act(𝑝) = 𝑎

freed𝜏 .act ≔ freed𝜏 otherwise �

Denition B.7. The addresses freed in 𝜏 are:

frees𝜏 ≔ { 𝑎 ∣ ∃𝜏1, 𝜏2. 𝜏 = 𝜏1.𝜏2 ∧ 𝑎 ∈ freed𝜏1 } . �

Denition B.8. The retired addresses after a computation 𝜏 , denoted retired𝜏 , are dened by:

retired𝜖 ≔ ∅

retired𝜏 .act ≔ retired𝜏 ∪ {𝑎 } if com(act) ≡ in∶retire(𝑝) ∧𝑚𝜏(𝑝) = 𝑎

retired𝜏 .act ≔ retired𝜏 \ {𝑎 } if com(act) ≡ free(𝑎)

retired𝜏 .act ≔ retired𝜏 otherwise �

Denition B.9. The active addresses after 𝜏 are:

active(𝜏) ≔ Adr \ (freed𝜏 ∪ retired𝜏) . �

Denition B.10. The set of control-ow-enabled commands after 𝜏 are:

next-com(𝜏) ≔ { com ∣ ∃𝑡, pc, stmt . pc ∈ ctrl(𝜏) ∧ pc(𝑡) −−⇁com stmt } . �

Denition B.11.We dene:

VExp(𝜏) ≔ PVar ∪ { 𝑎.next ∣ 𝑎 ∈𝑚𝜏(valid𝜏) } . �

Denition B.12. Indexing a (pointer/angel/data) variable var by a thread 𝑡 yields a new vari-

able var𝑡 . Indexing a function func by a thread 𝑡 yields a new function func𝑡 , which we assume

to exist in the used SMR implementation. Indexing all non-shared variables var ∉ shared and all

functions func by a thread 𝑡 in P gives a new program P[𝑡]. �

Denition B.13. The initial program counter pcinit is pcinit = 𝜆𝑡 . P[𝑡] ◦ skip for the standard

semantics and pcinit = 𝜆𝑡 . P[𝑡] for the SMR semantics. �

156 Appendix B Meta Theory

B.1.2 SMR Automata

Denition B.14. The fresh addresses after a history ℎ, denoted by freshℎ , are dened by:

fresh𝜖 ≔ Adr

freshℎ.free(𝑎) ≔ freshℎ \ {𝑎 }

freshℎ.in∶func(𝑡,𝑣1,...,𝑣𝑛) ≔ freshℎ \ { 𝑣1, . . . , 𝑣𝑘 }

freshℎ.re∶func(𝑡) ≔ freshℎ �

Denition B.15. The addresses freed in ℎ are:

freesℎ ≔ { 𝑎 ∣ ∃ℎ1, ℎ2. ℎ = ℎ1.free(𝑎).ℎ2 } . �

Denition B.16. A set of locations 𝐿 in O is closed under interference if:

∀ 𝑙, 𝑙
′
, 𝑓 , 𝑡, 𝑟 , 𝑔. (𝑙 ∈ 𝐿 ∧ 𝑙−−−−−→

𝑓 (𝑡,𝑟), 𝑔
𝑙
′
∧ 𝑙

′
∉ 𝐿) ⟹ 𝑔 ⊧ 𝑡 = 𝑧𝑡

∧ (𝑙 ∈ 𝐿 ∧ 𝑙−−−−−−→
free(•), 𝑔

𝑙
′) ⟹ 𝑙

′
∈ 𝐿

where ⊧ denotes entailment among logic formulas. �

Denition B.17. The locations in O that grant safe dereferences, denoted SafeLoc(O), are:

𝐿safe ≔ { 𝑙 ∣ ∀ 𝑡, 𝑎, 𝑔 ∃ 𝑙
′
∈ 𝐿acc . 𝑙−−−−−−→

free(𝑎), 𝑔
𝑙
′
∧ SAT(𝑔 ∧ 𝑡 = 𝑧𝑡 ∧ 𝑎 = 𝑧𝑎) }

SafeLoc(O) ≔ ⋃ { 𝐿 ⊆ 𝐿safe ∣ 𝐿 closed under interference }

where 𝐿acc are the accepting locations inO and SAT(•) tests logic formulas for satisability. �

Denition B.18. The post locations of 𝐿 under com wrt. 𝑥 , denoted by post𝑥,com(𝐿), are:

post𝑥,com(𝐿) ≔ { 𝑙 ′ ∣ ∃𝑙 ∈ 𝐿 ∃ 𝑡, 𝑔. 𝑙−−−−−−−−−→
in∶func(𝑡,𝑟), 𝑔

𝑙
′
∧ SAT(𝑔 ∧ 𝑡 = 𝑧𝑡)

∧ (𝑥 ∈ 𝑟 ⟹ SAT(𝑔 ∧ 𝑥 = 𝑧𝑎)) } if com ≡ in∶func(𝑟)

post𝑥,com(𝐿) ≔ { 𝑙 ′ ∣ ∃𝑙 ∈ 𝐿 ∃ 𝑡, 𝑔. 𝑙−−−−−−−−→
re∶func(𝑡), 𝑔

𝑙
′
∧ SAT(𝑔 ∧ 𝑡 = 𝑧𝑡) } if com ≡ re∶func

post𝑥,com(𝐿) ≔ 𝐿 otherwise .

where SAT(•) tests logic formulas for satisability. �

Denition B.19. The locations reached by SMR automaton O after history ℎ wrt. thread 𝑡 and

address 𝑎, denoted by reachO𝑡,𝑎(ℎ), are dened by:

reachO𝑡,𝑎(ℎ) ≔ { 𝑙 ∣ ∃𝜑. (𝑙init, 𝜑)−→ℎ (𝑙, 𝜑) ∧ 𝜑(𝑧𝑡) = 𝑡 ∧ 𝜑(𝑧𝑎) = 𝑎 }

where 𝑙init is the initial location inO. For segwe dene reachO𝑡,seg(ℎ) ≔ Loc(O) to be all locations
of O. The denition extends naturally to (sets of) computations and histories. �

Section B.1 Formal Definitions 157

B.1.3 Elision

Denition B.20. An address mapping is a bijection swapadr ∶ Adr → Adr . For convenience, we

extend this function by swapadr(⊥) = ⊥ and swapadr(seg) = seg as well as swapadr(𝑑) = 𝑑 for

any 𝑑 ∈ Dom. The address mapping induces an expression mapping swapexp with

swapexp(𝑝) = 𝑝 swapexp(𝑎.next) = swapadr(𝑎).next

swapexp(𝑢) = 𝑢 swapexp(𝑎.data) = swapadr(𝑎).data

and a history mapping swaphist with

swaphist(𝜖) = 𝜖

swaphist(ℎ.free(𝑎)) = swaphist(ℎ).free(swapadr(𝑎))

swaphist(ℎ.in∶func(𝑡, 𝑣)) = swaphist(ℎ).func(𝑡, swapadr(𝑣))

swaphist(ℎ.re∶func(𝑡)) = swaphist(ℎ).re∶func(𝑡)

for any SMR function func. For 𝑣 = 𝑣1, . . . , 𝑣𝑘 we use swapadr(𝑣) = swapadr(𝑣1), . . . , swapadr(𝑣𝑘).

If swapadr is an address mapping, then we write swap−1exp and swap−1hist for the expression and

history mapping induced by the inverse address mapping swap−1adr . �

Denition B.21. The swap of addresses 𝑎 and 𝑏 in history ℎ is ℎ[𝑎/𝑏] ≔ swaphist(ℎ) where the
history mapping swaphist is induced by the address mapping swapadr such that swapadr(𝑎) = 𝑏

and swapadr(𝑏) = 𝑎 and swapadr(𝑐) = 𝑐 in all other cases. �

Repeated Denition 7.14 (Elision Support). SMR automaton O = OBase × OSMR supports

elision of memory reuse if for all histories ℎ,ℎ′ ∈ S(OBase) and for all addresses 𝑎, 𝑏, 𝑐 ∈ Adr the

following conditions are met:

(i) 𝑎 ≠ 𝑐 ≠ 𝑏 implies FOSMR(ℎ, 𝑐) = FOSMR(ℎ[𝑎/𝑏], 𝑐),
(ii) FO(ℎ, 𝑎) ⊆ FO(ℎ′, 𝑎) and 𝑏 ∈ freshℎ′ implies FOSMR(ℎ, 𝑏) ⊆ FOSMR(ℎ

′
, 𝑏), and

(iii) 𝑎 ≠ 𝑏 and ℎ.free(𝑎) ∈ S(O) implies FOSMR(ℎ, 𝑏) = FOSMR(ℎ.free(𝑎), 𝑏). �

158 Appendix B Meta Theory

B.1.4 Races

Repeated Denition 6.5 (Valid Expressions). The valid pointer expressions in 𝜏 ∈ O⟦P⟧AdrAdr ,

denoted by valid𝜏 ⊆ PExp, are dened by:

valid𝜖 ≔ PVar

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞,up⟩ ≔ valid𝜏 ∪ { 𝑝 } if 𝑞 ∈ valid𝜏

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞,up⟩ ≔ valid𝜏 \ { 𝑝 } if 𝑞 ∉ valid𝜏

valid𝜏 .⟨𝑡,𝑝.next ∶= 𝑞,up⟩ ≔ valid𝜏 ∪ {𝑎.next } if𝑚𝜏(𝑝) = 𝑎 ∈ Adr ∧ 𝑞 ∈ valid𝜏

valid𝜏 .⟨𝑡,𝑝.next ∶= 𝑞,up⟩ ≔ valid𝜏 \ {𝑎.next } if𝑚𝜏(𝑝) = 𝑎 ∈ Adr ∧ 𝑞 ∉ valid𝜏

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞.next,up⟩ ≔ valid𝜏 ∪ { 𝑝 } if 𝑞 ∈ valid𝜏 ∧𝑚𝜏(𝑞).next ∈ valid𝜏

valid𝜏 .⟨𝑡,𝑝 ∶= 𝑞.next,up⟩ ≔ valid𝜏 \ { 𝑝 } if 𝑞 ∉ valid𝜏 ∨𝑚𝜏(𝑞).next ∉ valid𝜏

valid𝜏 .⟨𝑡,free(𝑎),up⟩ ≔ valid𝜏 \ invalid𝑎
valid𝜏 .⟨𝑡,𝑝 ∶= malloc,up⟩ ≔ valid𝜏 ∪ {𝑝, 𝑎.next } if [𝑝 ↦ 𝑎] ∈ up

valid𝜏 .⟨𝑡,assume 𝑝=𝑞,up⟩ ≔ valid𝜏 ∪ {𝑝, 𝑞 } if { 𝑝, 𝑞 } ∩ valid𝜏 ≠ ∅

valid𝜏 .act ≔ valid𝜏 otherwise

with invalid𝑎 ≔ { 𝑝 ∣ 𝑚𝜏(𝑝) = 𝑎 } ∪ { 𝑏.next ∣ 𝑚𝜏(𝑏.next) = 𝑎 } ∪ {𝑎.next }. �

Repeated Denition 7.10 (Unsafe Access). A computation 𝜏 .⟨𝑡, com, up⟩ performs an unsafe

access if com contains 𝑝.data or 𝑝.next with 𝑝 ∉ valid𝜏 . �

Repeated Denition 7.12 (Racy SMR Calls). A computation 𝜏 .⟨𝑡, in∶func(𝑟),∅⟩ performs a

racy call if for H(𝜏) = ℎ and𝑚𝜏(𝑟) = 𝑣 we have:

∃𝑎 ∃𝑤. (∀𝑖 . (𝑣𝑖 = 𝑎 ∨ 𝑟𝑖 ∈ valid𝜏 ∨ 𝑟𝑖 ∈ DExp) ⟹ 𝑣𝑖 = 𝑤𝑖)

∧ FO(ℎ.in∶func(𝑡,𝑤), 𝑎) /⊆ FO(ℎ.in∶func(𝑡, 𝑣), 𝑎) �

Repeated Denition 7.13 (Pointer Race). A computation 𝜏 .act is a pointer race if act performs

(i) an unsafe access, or (ii) a racy SMR call. �

Repeated Denition 8.3 (Unsafe Assumption). A computation 𝜏 is prone to an unsafe as-

sumption if there is assume 𝑝 = 𝑞 ∈ next-com(𝜏) with 𝑝 ∉ valid𝜏 or 𝑞 ∉ valid𝜏 . �

Repeated Denition 8.4 (Strong Pointer Race). A computation 𝜏 .act is a strong pointer race

if act performs (i) an ordinary pointer race, or (ii) an unsafe assumption. �

Repeated Denition A.6 (Relaxed Unsafe Assumption). Computation 𝜏 is prone to a relaxed

unsafe assumption if there is assume 𝑝 = 𝑞 ∈ next-com(𝜏) with (i) 𝑝, 𝑞 ∉ valid𝜏 , (ii) 𝑝 ∉

valid𝜏 ∧ 𝑞 ∉ 𝐶𝐸𝑥𝑝 , or (iii) 𝑝 ∉ 𝐶𝐸𝑥𝑝 ∧ 𝑞 ∉ valid𝜏 . �

Repeated Denition A.7 (Moderate Pointer Race). A computation 𝜏 .act is a moderate pointer

race if (i) act is an ordinary pointer race, or (ii) 𝜏 .act is a relaxed unsafe assumption. �

Section B.1 Formal Definitions 159

B.1.5 Correspondences

Repeated Denition 7.3 (Restrictions). A restriction of memory𝑚 to a set 𝑃 ⊆ PExp, denoted

by𝑚∣𝑃 , is a new memory𝑚′ such that dom(𝑚′) ≔ 𝑃 ∪ DVar ∪ { 𝑎.data ∈ DExp ∣ 𝑎 ∈𝑚(𝑃) }
and𝑚(𝑒) =𝑚

′(𝑒) for all 𝑒 ∈ dom(𝑚′). �

Repeated Denition 7.4 (Computation Similarity). Two computations 𝜏 and 𝜎 are similar,

denoted by 𝜏 ∼ 𝜎 , if ctrl(𝜏) = ctrl(𝜎) and𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎 . �

Repeated Denition 7.7 (SMR Behavior). The behavior allowed by automatonO on address 𝑎

after history ℎ is the set FO(ℎ, 𝑎) ≔ { ℎ′ ∣ ℎ.ℎ
′
∈ S(O) ∧ freesℎ′ ⊆ 𝑎 }. �

Repeated Denition 7.8 (SMR Behavior Inclusion). Computation 𝜎 includes the SMR behav-

ior of 𝜏 , denoted by 𝜏 ⋖ 𝜎 , if FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎) holds for all 𝑎 ∈ adr(𝑚𝜏 ∣valid𝜏). �

Repeated Denition 7.17 (Address Alignment). Two computations 𝜏 and 𝜎 are 𝑎-aligned,

denoted by 𝜏 ≼𝑎 𝜎 , if

∀𝑝 ∈ PVar . 𝑚𝜏(𝑝) = 𝑎 ⟺ 𝑚𝜎(𝑝) = 𝑎

and ∀𝑏 ∈𝑚𝜏(valid𝜏). 𝑚𝜏(𝑏.next) = 𝑎 ⟺ 𝑚𝜎(𝑏.next) = 𝑎

and 𝑎 ∈ fresh𝜏 ∪ freed𝜏 ⟺ 𝑎 ∈ fresh𝜎 ∪ freed𝜎

and FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎)

and 𝑎 ∈ retired𝜏 ⟺ 𝑎 ∈ retired𝜎 . �

Repeated Denition 7.18 (Harmful ABA). O⟦P⟧oneAdr is free from harmful ABAs if:

∀𝜎𝑎 .act ∈ O⟦P⟧{𝑎 }Adr ∀𝜎𝑏 ∈ O⟦P⟧{𝑏 }Adr ∃𝜎
′
𝑏 ∈ O⟦P⟧{𝑏 }Adr .

𝜎𝑎 ∼ 𝜎𝑏 ∧ act = ⟨•, assume •, •⟩ ⟹ 𝜎𝑎 .act ∼ 𝜎
′
𝑏 ∧ 𝜎𝑏 ≼𝑏 𝜎

′
𝑏 ∧ 𝜎𝑎 .act ⋖ 𝜎

′
𝑏 . �

B.1.6 Types

Denition B.22. The initial type environment for P is Γinit . For P
[𝑡] it is Γ

[𝑡]
init . Formally:

Γinit ≔ { 𝑥 ∶ ∅ ∣ 𝑥 ∈ PVar ∪ AVar }

Γ
[𝑡]
init ≔ { 𝑝 ∶ ∅ ∣ 𝑝 ∈ PVar ∩ shared } ∪ { 𝑝𝑡 ∶ ∅ ∣ 𝑝 ∈ PVar \ shared }

∪ { 𝑟𝑡 ∶ ∅ ∣ 𝑟 ∈ AVar } �

Denition B.23. A type 𝑇 is valid, denoted by isValid(𝑇), if:

isValid(𝑇) ∶⟺ 𝑇 ∩ { S,A,L } ≠ ∅ . �

160 Appendix B Meta Theory

Denition B.24. A computation 𝜏 induces a straight-line program stmt(𝜏, 𝑡) for thread 𝑡 by:

stmt(𝜖, 𝑡) ≔ skip

stmt(𝜏 .act, 𝑡) ≔ stmt(𝜏, 𝑡); com if act = ⟨𝑡, com, up⟩

stmt(𝜏 .act, 𝑡) ≔ stmt(𝜏, 𝑡) if act = ⟨𝑡 ′, com, up⟩ ∧ 𝑡 ≠ 𝑡
′

�

Denition B.25. A pointer 𝑝 has no valid alias in a computation 𝜏 , denoted by noalias𝜏(𝑝), if
the following holds: seg ≠𝑚𝜏(𝑝) ∉𝑚𝜏(valid𝜏 \ { 𝑝 }). �

Denition B.26. Let 𝜏 ∈ O⟦P⟧AdrAdr . Let inv(𝜏) have the prenex normal form ∃𝑟1 . . .∃𝑟𝑛 .𝜙 , where

𝜙 is quantier-free. Let 𝑟𝑛 be the instance of angel 𝑟 resulting from the last allocation in 𝜏 . The

set of addresses possibly represented by angel 𝑟 after computation 𝜏 is

repr𝜏(𝑟) ≔ { 𝑎 ∈ Adr ∣ ∃𝐴1, . . . , 𝐴𝑛 ⊆ Adr . 𝑎 ∈ 𝐴𝑛 ∧ (𝐴1, . . . , 𝐴𝑛) ⊧ 𝜙 } .

We dene𝑚𝜏(𝑟) = repr𝜏(𝑟) �

Denition B.27. An invocation in∶func(𝑟) is approximatively race free in type environment Γ,

denoted by SafeCall(Γ, func(𝑟)), if:

SafeCall(Γ, func(𝑟))

∶⟺ ∄ℎ ∃ 𝑡, 𝑎, 𝑣,𝑤 . (∀𝑖 . 𝑟𝑖 ∉ DExp ⟹ reachO𝑡,𝑣𝑖 (ℎ) ⊆ Loc(Γ(𝑟𝑖)))

∧ (∀𝑖 . (𝑣𝑖 = 𝑎 ∨ isValid(Γ(𝑟𝑖)) ∨ 𝑟𝑖 ∈ DExp) ⟹ 𝑣𝑖 = 𝑤𝑖)

∧ FO(ℎ.in∶func(𝑡,𝑤), 𝑎) /⊆ FO(ℎ.in∶func(𝑡, 𝑣), 𝑎) . �

Repeated Denition 8.9 (Meaning of Types). The locations associated with types are:

Loc(∅) ≔ Loc(O) Loc(E𝐿) ≔ 𝐿

Loc(A) ≔ {𝐿2 } × Loc(OSMR) Loc(S) ≔ SafeLoc(O)

Loc(L) ≔ {𝐿2 } × Loc(OSMR) Loc(𝑇1 ∧𝑇2) ≔ Loc(𝑇1) ∩ Loc(𝑇2) .

where Loc(O) and Loc(OSMR) refer to all locations of O and OSMR respectively. �

Repeated Denition 8.10 (Type Transformer). The type transformer relation 𝑇, 𝑥, com ↝ 𝑇
′

is dened by:

𝑇, 𝑥, com ↝ 𝑇
′
∶⟺ post𝑥,com(Loc(𝑇)) ⊆ Loc(𝑇 ′)

∧ isValid(𝑇 ′) ⇒ isValid(𝑇)

∧ {L,A } ∩𝑇
′
⊆ {L,A } ∩𝑇 .

Moreover, we dene the following abbreviations:

Γ, com ↝ Γ
′
∶⟺ ∀𝑥 . Γ(𝑥), 𝑥, com ↝ Γ

′(𝑥)

and Γ ↝ Γ
′
∶⟺ Γ, skip ↝ Γ

′
. �

Section B.1 Formal Definitions 161

B.2 Compositionality

We present the meta theory for the compositionality result from Chapter 5.

Lemma B.28 (Proof C.1). The simulation relation ≤OEBR for SMR automaton OEBR is:

𝐿7 ≤OEBR 𝐿6 ≤OEBR 𝐿5 ≤OEBR 𝐿4 �

Lemma B.29 (Proof C.2). The simulation relation ≤O𝑘
HP

for SMR automaton O𝑘
HP is:

𝐿12 ≤O𝑘
HP

𝐿11 ≤O𝑘
HP

𝐿10 ≤O𝑘
HP

𝐿9 ≤O𝑘
HP

𝐿8 �

Lemma B.30 (Proof C.3). The simulation relation ≤O0,1
HP

for SMR automaton O0,1
HP is:

𝐿15 ≤O0,1
HP

𝐿15 𝐿16 ≤O0,1
HP

𝐿15, 𝐿16 𝐿17 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17

𝐿18 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17, 𝐿18 𝐿19 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17, 𝐿21, 𝐿19, 𝐿24

𝐿20 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17, 𝐿18, 𝐿21, 𝐿19, 𝐿20, 𝐿24 𝐿21 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿21, 𝐿24

𝐿22 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17, 𝐿21, 𝐿19, 𝐿22, 𝐿24, 𝐿25, 𝐿27

𝐿23 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17, 𝐿18, 𝐿21, 𝐿19, 𝐿20, 𝐿22, 𝐿23, 𝐿24, 𝐿25, 𝐿26, 𝐿27, 𝐿28, 𝐿29

𝐿24 ≤O0,1
HP

𝐿15, 𝐿24 𝐿25 ≤O0,1
HP

𝐿15, 𝐿24, 𝐿25 𝐿26 ≤O0,1
HP

𝐿15, 𝐿24, 𝐿25, 𝐿26

𝐿27 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿21, 𝐿24, 𝐿25, 𝐿27 𝐿28 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿21, 𝐿24, 𝐿25, 𝐿26, 𝐿27, 𝐿28

𝐿29 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17, 𝐿21, 𝐿19, 𝐿22, 𝐿24, 𝐿25, 𝐿26, 𝐿27, 𝐿28, 𝐿29

𝐿30 ≤O0,1
HP

𝐿15, 𝐿16, 𝐿17, 𝐿18, 𝐿21, 𝐿19, 𝐿20, 𝐿22, 𝐿23, 𝐿24, 𝐿25, 𝐿26, 𝐿27, 𝐿28, 𝐿29, 𝐿30 �

Repeated Proposition 5.3 (Proof C.4). If 𝑙 ≤O 𝑙
′, then S((𝑙, 𝜑)) ⊆ S((𝑙 ′, 𝜑)) for all 𝜑 . �

Repeated Theorem A.2 (Proof C.5). Let 𝜏 ∈ ⟦P(R)⟧AdrAdr be free from separation violations.

Then, there is some 𝜎 ∈ ⟦𝑀𝐺𝐶(R)⟧AdrAdr such that (i) ctrl R(𝜏) ⊆ ctrl R(𝜎), (ii) 𝑚R
𝜏 = 𝑚

R
𝜎 ,

(iii) 𝑚𝜏↓IVar = 𝑚𝜎↓IVar , (iv) H(𝜏) = H(𝜎), (v) fresh𝜏 ⊆ fresh𝜎 , (vi) freed𝜏 ⊆ freed𝜎 , and

(vii) used(𝜏) ⊆ used(𝜎). �

Repeated Theorem A.4 (Proof C.7). Consider 𝜏 ∈ ⟦P(R)⟧AdrAdr which is free from separation

violations. If R ⊧ O, then there is 𝜎 ∈ O⟦P⟧AdrAdr with (i) ctrl P(𝜏) ⊆ ctrl(𝜎), (ii) 𝑚P
𝜏 = 𝑚

P
𝜎 ,

(iii)H(𝜏) = H(𝜎), (iv) fresh𝜏 ⊆ fresh𝜎 , (v) freed𝜏 ⊆ freed𝜎 , and (vi) retired𝜏 ⊆ retired𝜎 . �

Repeated Theorem 5.10 (Proof C.8). If R ⊧ O and good(O⟦P⟧AdrAdr), then good(⟦P(R)⟧AdrAdr).
�

Repeated Theorem 5.11 (Proof C.9). If R ⊧ O, then ⟦P(R)⟧AdrAdr is DRF if O⟦P⟧AdrAdr is. �

162 Appendix B Meta Theory

B.3 Ownership

We present the meta theory for the ownership result from Chapter 6.

Repeated Theorem 6.7 (Proof C.10). Consider some 𝜏 ∈ O⟦P⟧AdrAdr with𝑚𝜏(𝑝) ∈ owned𝜏(𝑡).
Then, we have: 𝑝 ∈ valid𝜏 implies 𝑝 ∈ local𝑡 . �

B.4 Reductions

We present the meta theory for the reduction results from Chapters 7 and 8.

B.4.1 Useful Observations

We provide insights useful for the proofs. To simplify the presentation, all symbols that are not

explicitly quantied are implicitly universally quantied. Furthermore, we implicitly assume

computations 𝜏, 𝜏1, 𝜏2, 𝜏3 to be drawn from O⟦P⟧AdrAdr unless specied otherwise.

Lemma B.31 (Proof C.11). If 𝜏1 ∼ 𝜏2, then 𝜏2 ∼ 𝜏1. �

Lemma B.32 (Proof C.12). If 𝜏1 ∼ 𝜏2 ∼ 𝜏3, then 𝜏1 ∼ 𝜏3. �

Lemma B.33 (Proof C.13). If𝑚𝜏1(valid𝜏1) ⊆𝑚𝜏2(valid𝜏2) and 𝜏1 ≼𝐴 𝜏2 ≼𝐵 𝜏3 holds, then we

have 𝜏1 ≼𝐴∩𝐵 𝜏3. �

Lemma B.34 (Proof C.14). If adr(𝑚𝜏1∣valid𝜏1) ⊆ adr(𝑚𝜏2∣valid𝜏2) and 𝜏1 ⋖ 𝜏2 ⋖ 𝜏3 holds, then

we have 𝜏1 ⋖ 𝜏3. �

Lemma B.35 (Proof C.15). We have adr(𝑚𝜏 ∣valid𝜏) = (valid𝜏 ∩ Adr) ∪𝑚𝜏(valid𝜏). �

Lemma B.36 (Proof C.16). We have valid𝜏 ⊆ dom(𝑚𝜏). �

Lemma B.37 (Proof C.17). If 𝜏 ∼ 𝜎 , then valid𝜏 = valid𝜎 . �

Lemma B.38 (Proof C.18). If 𝜏 ∼ 𝜎 , then adr(𝑚𝜏 ∣valid𝜏) = adr(𝑚𝜎 ∣valid𝜎). �

Lemma B.39 (Proof C.19). If 𝜏 ∼ 𝜎 , then next-com(𝜏) = next-com(𝜎). �

Lemma B.40 (Proof C.20). If 𝜏 .⟨𝑡, com, up⟩ ∈ O⟦P⟧AdrAdr , 𝑡 ≠ ⊥, then com ∈ next-com(𝜏). �

Lemma B.41 (Proof C.21). If freesℎ2
⊆ {𝑎 }, then we have:

ℎ3 ∈ FO(ℎ1.ℎ2, 𝑎) ⟺ ℎ2.ℎ3 ∈ FO(ℎ1, 𝑎) . �

Lemma B.42 (Proof C.22). If 𝑎 ∈ fresh𝜏 , then 𝑎 ∉ range(𝑚𝜏). �

Lemma B.43 (Proof C.23). If 𝑎 ∈ fresh𝜏 , then 𝑎 ∉𝑚𝜏(valid𝜏) and 𝑎.next ∉ valid𝜏 . �

Lemma B.44 (Proof C.24). We have fresh𝜏 ∩ freed𝜏 = ∅ and fresh𝜏 ∩ retired𝜏 = ∅. �

Section B.4 Reductions 163

Lemma B.45 (Proof C.25). If 𝜑 = { 𝑧𝑎 ↦ 𝑎 }, then we have (𝐿2, 𝜑)−−−→
H(𝜏) (𝐿3, 𝜑) i 𝑎 ∈ retired𝜏

as well as (𝐿2, 𝜑)−−−→
H(𝜏) (𝐿2, 𝜑) i 𝑎 ∉ retired𝜏 . �

Lemma B.46 (Proof C.26). If 𝜏 .⟨𝑡, free(𝑎), up⟩ ∈ O⟦P⟧AdrAdr , then 𝑎 ∈ retired𝜏 . �

Lemma B.47 (Proof C.27). Let 𝜏 .act ∈ O⟦P⟧AdrAdr with act = ⟨𝑡, com, up⟩. We have:

𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏) ∪ {𝑚𝜏 .act(𝑝) } if com ≡ 𝑝 ∶= malloc

𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏) \ {𝑎 } if com ≡ free(𝑎)

𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏) if com ≡ env(𝑎)

𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏) if com ≡ exp ∶= exp′

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏(valid𝜏) otherwise

and adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) ∪ {𝑚𝜏 .act(𝑝) } if com ≡ 𝑝 ∶= malloc

adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) \ {𝑎 } if com ≡ free(𝑎)

adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) if com ≡ env(𝑎)

adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) if com ≡ exp ∶= exp′

adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝜏 ∣valid𝜏) otherwise . �

The next set of lemmas provides insights about computations free from unsafe accesses.

Lemma B.48 (Proof C.28). If 𝜏 UAF and 𝑎 ∈ freed𝜏 , so 𝑎 ∉𝑚𝜏(valid𝜏) and 𝑎.next ∉ valid𝜏 . �

Lemma B.49 (Proof C.29). If 𝜏 UAF, pexp∈VExp(𝜏), and𝑚𝜏(pexp)=seg, so pexp∈valid𝜏 . �

Lemma B.50 (Proof C.30). If 𝜏 UAF, then VExp(𝜏) ⊆ dom(𝑚𝜏). �

Lemma B.51 (Proof C.31). If 𝜏 ∈ O⟦P⟧AdrAdr UAF, then𝑚𝜏(VExp(𝜏) \ valid𝜏) ⊆ frees𝜏 . �

Lemma B.52 (Proof C.32). If 𝜏 ∈ O⟦P⟧∅Adr UAF, then𝑚𝜏(VExp(𝜏) \ valid𝜏) ⊆ freed𝜏 . �

Lemma B.53 (Proof C.33). If 𝜏 ∈ O⟦P⟧𝐴Adr UAF, then we have:

adr(𝑚𝜏 ∣valid𝜏) ∩𝑚𝜏(VExp(𝜏) \ valid𝜏) ⊆ 𝐴 . �

Lemma B.54 (Proof C.34). If 𝜏 ∈ O⟦P⟧AdrAdr UAF, then𝑚𝜏(CVar)∩𝑚𝜏(PVar \ valid𝜏) = ∅. �

Consider an SMR automaton O. By Assumption 5.6, it is of the form O = OBase ×OSMR. Recall

that elision support for O, Denition 7.14, provides properties for OSMR only. We generalize

them to full O.

Lemma B.55 (Proof C.35). Let O support elision. For all 𝜏 ∈ O⟦P⟧AdrAdr and 𝑎, 𝑏, 𝑐 ∈ Adr such

thatH(𝜏) = ℎ and 𝑎 ≠ 𝑐 ≠ 𝑏, we have FO(ℎ, 𝑐) = FO(ℎ[𝑎/𝑏], 𝑐). �

Lemma B.56 (Proof C.36). Let O supports elision. For all 𝜏 ∈ O⟦P⟧AdrAdr and 𝑎, 𝑏 ∈ Adr such

that 𝑎 ≠ 𝑏 and H(𝜏) = ℎ and ℎ.free(𝑎) ∈ S(O), we have FO(ℎ.free(𝑎), 𝑏) = FO(ℎ, 𝑏). �

164 Appendix B Meta Theory

Lemma B.57 (Proof C.37). Let O supports elision. For all 𝜏, 𝜎 ∈ O⟦P⟧AdrAdr and 𝑎, 𝑏 ∈ Adr such

that FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎) and 𝑏 ∉ retired𝜏 and 𝑏 ∈ fresh𝜎 , we have FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏). �

B.4.2 Elision Technique

We present the elision technique which forms the backbone of our reduction results. Intuitively,

the techniques allows us to rename addresses in a computation.

Lemma B.58 (Proof C.38). If swapadr is an address mapping, so is swap−1adr . �

Lemma B.59 (Proof C.39). If swaphist(ℎ1) = swaphist(ℎ2), then ℎ1 = ℎ2. �

Lemma B.60 (Proof C.40). We have swaphist(ℎ) ∈ swaphist(𝐻) ⟺ ℎ ∈ 𝐻 . �

Lemma B.61 (Proof C.41). For every ⊗ ∈ { \,∪,∩ } we have:

swapadr(𝐴1)⊗ swapadr(𝐴2) = swapadr(𝐴1 ⊗𝐴2)

swapexp(𝐵1)⊗ swapexp(𝐵2) = swapexp(𝐵1 ⊗ 𝐵2)

swaphist(𝐶1)⊗ swaphist(𝐶2) = swaphist(𝐶1 ⊗𝐶2) �

Lemma B.62 (Proof C.42). For all ℎ we have swap−1hist(swaphist(ℎ)) = ℎ. �

Lemma B.63 (Proof C.43). For all ℎ we have ℎ ∈ S(O) ⟺ swaphist(ℎ) ∈ S(O). �

Lemma B.64 (Proof C.44).We have swaphist(FO(ℎ, 𝑎)) = FO(swaphist(ℎ), swapadr(𝑎)) for
all addresses 𝑎 ∈ Adr . �

Theorem B.65 (Proof C.45). For all 𝜏 ∈ O⟦P⟧𝐴Adr and all address mappings swapadr , there is

some 𝜎 ∈ O⟦P⟧swapadr(𝐴)Adr such that:

𝑚𝜎 ◦ swapexp = swapadr ◦𝑚𝜏 H(𝜎) = swaphist(H(𝜏)) freed𝜎 = swapadr(freed𝜏)

valid𝜎 = swapexp(valid𝜏) ctrl(𝜎) = ctrl(𝜏) fresh𝜎 = swapadr(fresh𝜏) �

Lemma B.66 (Proof C.46). Let O support elision. If 𝜏 ∈ O⟦P⟧𝐴Adr and 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏) ∪𝐴,

then there is 𝜎 ∈ O⟦P⟧𝐴Adr such that (i) 𝜏 ∼ 𝜎 , (ii) 𝜏 ≼𝐴 𝜎 , (iii) 𝜏 ⋖ 𝜎 , (iv) retired𝜏 ⊆ retired𝜎∪{𝑎 },
(v) 𝑎 ∈ fresh𝜎 , (vi) if 𝑎 ∉ fresh𝜏 , then FO(𝜏, 𝑐) = FO(𝜎, 𝑐) for all 𝑐 ∈ fresh𝜎 \ {𝑎 }, and (vii) if

we have pexp, qexp ∈ VExp(𝜏), then𝑚𝜏(exp) ≠𝑚𝜏(exp′) implies𝑚𝜎(exp) ≠𝑚𝜎(exp′). �

B.4.3 Reduction Results

Towards the reduction results, we establish the following auxiliary lemmas which deal with the

less interesting cases of the reduction. Furthermore, we make an observation on indicators for

double retires.

Section B.4 Reductions 165

Lemma B.67 (Proof C.47). Consider 𝜏 .act ∈ O⟦P⟧AdrAdr and 𝜎 ∈ O⟦P⟧𝐴Adr with 𝜏 ∼ 𝜎 , 𝜏 ≼𝐴 𝜎 ,

and 𝜏 ⋖𝐴 𝜎 . Let act = ⟨𝑡, com, up⟩. If one of the following cases applies

(i) com ≡ 𝑥 ∶= 𝑦 with 𝑥,𝑦 ∈ Var ,

(ii) com ≡ 𝑥 ∶= 𝑞.sel with 𝑥 ∈ Var and 𝑞 ∈ valid𝜏 , or

(iii) com ≡ 𝑝.sel ∶= 𝑦 with 𝑦 ∈ Var and 𝑝 ∈ valid𝜏 ,

then, there is act ′ = ⟨𝑡, com, up′⟩with 𝜎.act ′ ∈ O⟦P⟧𝐴Adr as well as 𝜏 .act ∼ 𝜎.act ′, 𝜏 .act ≼𝐴 𝜎.act ′,

and 𝜏 .act ⋖ 𝜎.act ′. �

Lemma B.68 (Proof C.48). Consider 𝜏 .act ∈ O⟦P⟧AdrAdr and 𝜎 ∈ O⟦P⟧𝐴Adr with 𝜏 ∼ 𝜎 , 𝜏 ≼𝐴 𝜎 ,

and 𝜏 ⋖𝐴 𝜎 . Let act = ⟨𝑡, com, up⟩. If 𝜎.act ∈ O⟦P⟧𝐴Adr and one of the following cases applies:

(i) com ≡ in∶func(𝑟1, . . . , 𝑟𝑛) with𝑚𝜏(𝑟𝑖) =𝑚𝜎(𝑟𝑖) for all 1 ≤ 𝑖 ≤ 𝑛,

(ii) com ≡ re∶func,

(iii) com ≡ assume •,

(iv) com ≡ free(𝑎) with FO(ℎ.free(𝑎), 𝑏) = FO(ℎ, 𝑏) for all 𝑏 ≠ 𝑎 and ℎ ∈ {H(𝜏),H(𝜎) },
(v) com ≡ 𝑝 ∶= malloc with𝑚𝜏 .act(𝑝) = 𝑎 and 𝑎 ∉ 𝐴 ⟹ FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎), or
(vi) com ≡ env(𝑎).

then 𝜏 .act ∼ 𝜎.act, 𝜏 .act ≼𝐴 𝜎.act, and 𝜏 .act ⋖ 𝜎.act. �

Lemma B.69 (Proof C.49). Let 𝜏 = 𝜏1.⟨⊥, env(𝑎), up⟩.𝜏2 ∈ O⟦P⟧𝑌𝑋 UAF and 𝜎 = 𝜏1.𝜏2. Then:

(i) 𝜎 ∈ O⟦P⟧𝑌𝑋 , (ii) ctrl(𝜏) = ctrl(𝜎), (iii)H(𝜏) = H(𝜎), (iv) fresh𝜏 = fresh𝜎 , (v) freed𝜏 = freed𝜎 ,

(vi) retired𝜏 = retired𝜎 , and (vii) (exp∩Adr)∩ (fresh𝜏 ∪ freed𝜏) ≠ ∅ if𝑚𝜏(exp) ≠𝑚𝜎(exp). �

Lemma B.70 (Proof C.50). LetO supports elision. If 𝜏 ∈ O⟦P⟧𝑌𝑋 UAF and 𝑎 ∈ retired𝜏∩ freed𝜏 ,

then O⟦P⟧𝑌𝑋 contains a double retire. �

We turn to the reduction result from Chapter 7 which relies on pointer race freedom to ver-

ify O⟦P⟧AdrAdr under the much smaller semantics O⟦P⟧∅Adr .

Repeated Theorem 7.20 (Proof C.51). Let O support elision. Let O⟦P⟧oneAdr be PRF, DRF, and

free from harmful ABAs. Then, for all 𝜏 ∈ O⟦P⟧AdrAdr and all 𝑎 ∈ Adr there is 𝜎 ∈ O⟦P⟧{𝑎 }Adr such

that 𝜏 ∼ 𝜎 , 𝜏 ⋖ 𝜎 , and 𝜏 ≼𝑎 𝜎 . �

Repeated Theorem 7.21 (Proof C.52). Let O support elision. Let O⟦P⟧oneAdr be PRF, DRF, and

free from harmful ABAs. Then, good(O⟦P⟧AdrAdr) ⟺ good(O⟦P⟧oneAdr). �

Repeated Theorem 7.22 (Proof C.53). Let O support elision. Let O⟦P⟧oneAdr be PRF, DRF, and

free from harmful ABAs. Then, O⟦P⟧AdrAdr is DRF. �

Repeated Proposition 7.15 (Proof C.54). The SMR automata OBase ×OEBR and OBase ×O0,1
HP

and OBase ×O0
HP ×O1

HP support elision. �

Repeated Proposition 7.23 (Proof C.55). If a call is racy wrt. OBase ×OEBR or OBase ×O0,1
HP

or OBase ×O0
HP ×O1

HP , then it is a call to retire with an invalid pointer as its argument. �

166 Appendix B Meta Theory

Next, we turn to the reduction result from Chapter 8 which relies on strong pointer race freedom

to verify O⟦P⟧AdrAdr under ⟦P⟧∅∅. Technically, we establish the reduction for the generalization

from Appendix A.3 which relies on moderate pointer race freedom.

Theorem B.71 (Proof C.56). Let O support elision and let O⟦P⟧∅Adr be MPRF and DRF. Then:

for all 𝜏 ∈ O⟦P⟧AdrAdr there is 𝜎 ∈ O⟦P⟧∅Adr with: (i) 𝜏 ∼ 𝜎 , (ii) 𝜏 ⋖ 𝜎 , (iii)FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎) for
all 𝑎 ∈ fresh𝜎 , (iv) retired𝜏 ⊆ retired𝜎 , and (v)𝑚𝜏(pexp) ≠𝑚𝜏(qexp) ⟹𝑚𝜎(pexp) ≠𝑚𝜎(qexp)
for all pexp, qexp ∈ VExp(𝜏). Moreover, we have (vi) 𝜏 UAF, (vii) freed𝜏 ∩ adr(𝑚𝜏 ∣valid𝜏) = ∅,

and (viii) freed𝜏 ∩ retired𝜏 = ∅. �

Theorem B.72 (Proof C.57). For all 𝜏 ∈ O⟦P⟧∅Adr UAF there is 𝜎 ∈ ⟦P⟧∅∅ such that we have:

(i) ctrl(𝜏) = ctrl(𝜎), (ii) fresh𝜏 = fresh𝜎 , (iii) freed𝜏 = retired𝜎 , (iv) retired𝜏 = retired𝜎 , (v) inv(𝜎)
implies inv(𝜏), and (vi)𝑚𝜏(exp) ≠𝑚𝜎(exp) implies (exp ∩ Adr) ∩ (fresh𝜏 ∪ freed𝜏) ≠ ∅. �

Repeated Theorem A.10 (Proof C.58). If O supports elision and O⟦P⟧∅Adr is MPRF and DRF,

then we have good(O⟦P⟧AdrAdr) ⟺ good(⟦P⟧∅∅) and O⟦P⟧AdrAdr is DRF. �

Repeated Theorem 8.5 (Proof C.59). Let O support elision and let O⟦P⟧∅Adr be SPRF and

DRF. For all 𝜏 ∈ O⟦P⟧AdrAdr there is 𝜎 ∈ O⟦P⟧∅Adr with 𝜏 ∼ 𝜎 , 𝜏 ⋖ 𝜎 , and retired𝜏 ⊆ retired𝜎 . �

Repeated Theorem 8.6 (Proof C.60). If 𝜏 ∈ O⟦P⟧∅Adr is SPRF, then there is some 𝜎 ∈ ⟦P⟧∅∅
such that ctrl(𝜏) = ctrl(𝜎),𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜏 , and inv(𝜎) ⟹ inv(𝜏). �

Repeated Theorem 8.7 (Proof C.61). If O supports elision and O⟦P⟧∅Adr is SPRF and DRF,

then we have good(O⟦P⟧AdrAdr) ⟺ good(⟦P⟧∅∅) and O⟦P⟧AdrAdr is DRF. �

B.5 Type System

We present the meta theory for the type system from Chapter 8.

Repeated Assumption 8.8. SMR automata have two variables 𝑧𝑡 resp. 𝑧𝑎 tracking a thread resp.

an address. �

Repeated Assumption 8.11. Programs adhere to the following restricted syntax:

stmt F stmt; stmt ∣ stmt ⊕ stmt ∣ stmt∗ ∣ beginAtomic; stmt; endAtomic

∣ beginAtomic; com; endAtomic . �

Repeated Assumption A.9. There are no constant violations in O⟦P⟧AdrAdr . �

Lemma B.73 (Proof C.62). If Γ1 ↝ Γ2 and Γ2 ↝ Γ3, then Γ1 ↝ Γ3. �

Lemma B.74 (Proof C.63). If⊢ { Γ1 } stmt { Γ2 } and stmt −−⇁com stmt ′, then there is an interme-

diate environment Γ such that ⊢ { Γ1 } com { Γ } and ⊢ { Γ } stmt ′ { Γ2 }. �

Section B.5 Type System 167

Lemma B.75 (Proof C.64). Let ⊢ { Γinit } P { Γ }. Consider (pcinit, 𝜖) ⇢
∗ (pc, 𝜏) and some

thread 𝑡 . Then there is Γ1, Γ2 with ⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ1 } and ⊢ { Γ1 } pc(𝑡) { Γ2 }. �

Lemma B.76 (Proof C.65). Consider some 𝜏 .act ∈ O⟦P⟧∅Adr and 𝑡 ≠ thrd(act) ≠ ⊥. Then, we

have either stmt(𝜏, 𝑡) = skip or stmt(𝜏, 𝑡) = stmt; endAtomic. �

Lemma B.77 (Proof C.66). Let 𝜏 .act ∈ O⟦P⟧∅Adr and 𝑡 ≠ thrd(act) ≠ ⊥ and 𝑥 ∈ PVar ∪ AVar .

Assume ⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ }. Then, A ∉ Γ(𝑥) and 𝑥 ∉ local𝑡 ⟹ Γ(𝑥) ∩ {L, S } = ∅. �

Lemma B.78 (Proof C.67). Let 𝜏 .act ∈ O⟦P⟧∅Adr and 𝑡 ≠ thrd(act) ≠ ⊥ and 𝑝 ∈ PVar ∩ local𝑡 .

Then, 𝑝 ∈ valid𝜏 implies 𝑝 ∈ valid𝜏 .act . Moreover, noalias𝜏(𝑝) implies noalias𝜏 .act(𝑝). �

Lemma B.79 (Proof C.68). Consider 𝜏 .act ∈ O⟦P⟧∅Adr UAF such that act = ⟨𝑡, @inv 𝑝 = 𝑞, up⟩
and inv(𝜏 .act). Then, { 𝑝, 𝑞 } ∩ valid𝜏 ≠ ∅ implies { 𝑝, 𝑞 } ⊆ valid𝜏 . �

Lemma B.80 (Proof C.69). Let 𝜏 .act ∈ O⟦P⟧∅Adr UAF such that act = ⟨𝑡, @inv active(𝑝), up⟩
and inv(𝜏 .act). Then, 𝑝 ∈ valid𝜏 .act and reachO𝑡,𝑎(𝜏 .act) ⊆ Loc(A) for 𝑎 =𝑚𝜏 .act(𝑝). �

Lemma B.81 (Proof C.70). Consider 𝜏 .act ∈ O⟦P⟧∅Adr such that act = ⟨𝑡, @inv active(𝑟), up⟩
and inv(𝜏 .act). Then, we have for all 𝑎 ∈ repr𝜏 .act(𝑟):

repr𝜏 .act(𝑟) ∩ freed𝜏 .act = ∅ and reachO𝑡,𝑎(𝜏 .act) ⊆ Loc(A) . �

Lemma B.82 (Proof C.71). Consider 𝜏 ∈ O⟦P⟧∅Adr . Let Γ, Γ′ such that Γ ↝ Γ
′. Let 𝑡 be some

thread. Let 𝑝 ∈ PVar and 𝑎 =𝑚𝜏(𝑝). Let 𝑟 ∈ AVar and 𝑏 ∈ repr𝜏(𝑟). Then:

isValid(Γ(𝑝)) ⟹ 𝑝 ∈ valid𝜏 implies isValid(Γ′(𝑝)) ⟹ 𝑝 ∈ valid𝜏

isValid(Γ(𝑟)) ⟹ 𝑏 ∉ freed𝜏 implies isValid(Γ′(𝑟)) ⟹ 𝑏 ∉ freed𝜏

L ∈ Γ(𝑝) ⟹ noalias𝜏(𝑝) implies L ∈ Γ
′(𝑝) ⟹ noalias𝜏(𝑝)

reachO𝑡,𝑎(𝜏) ⊆ Loc(Γ(𝑝)) implies reachO𝑡,𝑎(𝜏) ⊆ Loc(Γ′(𝑝))

reachO𝑡,𝑏(𝜏) ⊆ Loc(Γ(𝑟)) implies reachO𝑡,𝑏(𝜏) ⊆ Loc(Γ′(𝑟)) �

Theorem B.83 (Proof C.72). Consider thread 𝑡 , environment Γ, and 𝜏 ∈ O⟦P⟧∅Adr UAF such
that inv(𝜏) and⊢{ Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ }. For all 𝑝 ∈ PVar , we have reachO

𝑡,𝑚𝜏 (𝑝)(𝜏) ⊆ Loc(Γ(𝑝))
and isValid(Γ(𝑝)) ⟹ 𝑝 ∈ valid𝜏 . �

Corollary B.84 (Proof C.73). Consider some thread 𝑡 , type environment Γ, and 𝜏 ∈ O⟦P⟧∅Adr
such that inv(𝜏) and⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ }. Then, 𝜏 is PRF. �

Theorem B.85 (Proof C.74). If ⊢ P and inv(⟦P⟧∅∅), then O⟦P⟧∅Adr is MPRF. �

Theorem B.86 (Proof C.75). If ⊢ P and inv(⟦P⟧∅∅), then O⟦P⟧∅Adr is DRF. �

Theorem B.87 (Proof C.76). If ⊢ P and inv(⟦P⟧∅∅), then inv(O⟦P⟧∅Adr). �

Repeated Theorem 8.14 (Proof C.77). For all threads 𝑡 and all 𝜏 ∈ O⟦P⟧∅Adr with inv(𝜏) we
have the following: ⊢ { Γinit } stmt(𝜏, 𝑡) { Γ } implies ⊧{ Γinit } stmt(𝜏, 𝑡) { Γ }. �

Repeated Theorem 8.15 (Proof C.78). If ⊢ P and inv(O⟦P⟧∅Adr), then O⟦P⟧∅Adr is SPRF. �

168 Appendix B Meta Theory

Repeated Theorem 8.16 (Proof C.79). If ⊢ P and inv(O⟦P⟧∅Adr), then O⟦P⟧AdrAdr is DRF. �

Repeated Theorem 8.21 (Proof C.80). If ⊢ P and inv(⟦P⟧∅∅), then O⟦P⟧∅Adr SPRF and we

have inv(O⟦P⟧∅Adr). �

Repeated Theorem 8.22 (Proof C.81). We have inv(⟦P⟧∅∅) i safe(⟦inst(P)⟧∅∅). The instru-
mentation is linear in size. �

Repeated Theorem 8.24 (Proof C.82). Type inference ⊢ P runs in time O(∣P∣2). �

Repeated Theorem 8.26 (Proof C.83). For Φ(Γinit, P, 𝑋) we have lsol(𝑋) = ⨅⊢ { Γinit } P { Γ } Γ.

Hence lsol(𝑋) ≠ ⊤ if and only if ⊢ P . �

Repeated Theorem A.11 (Proof C.84). If ⊢ P and inv(⟦P⟧∅∅), then O⟦P⟧∅Adr is MPRF and

DRF and we have inv(O⟦P⟧∅Adr). �

Repeated Proposition A.12 (Proof C.85). If 𝜏 ∈ O⟦P⟧AdrAdr , then𝑚𝜏(CVar) ⊆ active(𝜏). �

Section B.5 Type System 169

170

Proof of Meta Theory C
We give the proofs for the meta theory from Appendix B.

C.1 Compositionality

Proof C.1 (Lemma B.28). By denition of ≤• and OEBR. �

Proof C.2 (Lemma B.29). By denition of ≤• and O𝑘
HP . �

Proof C.3 (Lemma B.30). By denition of ≤• and O0,1
HP . �

Proof C.4 (Proposition 5.3). Consider some ℎ ∈ S((𝑙1, 𝜑)). We show that ℎ ∈ S((𝑙2, 𝜑)) holds.
To that end, we proceed by induction over the length of ℎ. In the base case, we have ℎ = 𝜖 . Then,

location 𝑙1 is not accepting by denition. By the simulation relation, 𝑙2 is not accepting as well.

Hence, ℎ ∈ S((𝑙2, 𝜑)) follows as required. For the induction step, consider 𝑓 (𝑣).ℎ ∈ S((𝑙1, 𝜑)).
By Assumption 5.2, there are steps (𝑙1, 𝜑)−−−→

𝑓 (𝑣) (𝑙 ′1, 𝜑) and (𝑙2, 𝜑)−−−→
𝑓 (𝑣) (𝑙 ′2, 𝜑). The former step

is due to a transition 𝑙1−−−−→
𝑓 (𝑟), 𝑔

𝑙
′
1 such that 𝜑(𝑔[𝑟 ↦ 𝑣]) evaluates to true. Similarly, the latter

step is due to a transition 𝑙2−−−−→
𝑓 (𝑟), 𝑔

𝑙
′
2 such that 𝜑(𝑔′[𝑟 ↦ 𝑣]) evaluates to true. This means 𝜑 is

a model for 𝑔 and 𝑔′. That is, 𝑔 ∧ 𝑔
′ is satisable. Then, 𝑙1 ≤O 𝑙2 yields 𝑙

′
1 ≤O 𝑙

′
2. Note that we

have ℎ ∈ S((𝑙 ′1, 𝜑)) by denition. By induction, we get ℎ ∈ S((𝑙 ′2, 𝜑)). Because SMR automata

are deterministic by Assumption 5.2, we conclude 𝑓 (𝑣).ℎ ∈ S((𝑙2, 𝜑)) as required. �

Proof C.5 (Theorem A.2).We proceed by induction over the structure of 𝜏 . In the base case,

we have the empty computation 𝜏 = 𝜖 . Then, the claim follows by denition for 𝜎 = 𝜖 . For the

induction step, consider 𝜏 ∈ ⟦P(R)⟧AdrAdr and the following step in the standard semantics:

(pc1 ◦ pc3, 𝜏) ⇢⇢Q,𝑡 (pc′1 ◦ pc
′
3, 𝜏 .act) with pc1 ◦ pc3 ∈ ctrl(𝜏) . (1)

By denition, 𝜏 .act ∈ ⟦P(R)⟧AdrAdr . Assume we already constructed for 𝜏 some 𝜎 ∈ ⟦𝑀𝐺𝐶(R)⟧AdrAdr

with the desired properties. That is, there is pc2 with pc2 ◦ pc3 ∈ ctrl(𝜎). Furthermore, we have

the following: 𝑚R
𝜏 = 𝑚

R
𝜎 , 𝑚𝜏↓IVar = 𝑚𝜎↓IVar , H(𝜏) = H(𝜎), fresh𝜏 ⊆ fresh𝜎 , freed𝜏 ⊆ freed𝜎 ,

Section C.1 Compositionality 171

and used(𝜏) ⊆ used(𝜎). We construct a computation 𝜎
′
∈ ⟦𝑀𝐺𝐶(R)⟧AdrAdr that mimics 𝜏 .act. To

that end, we show that there is a program step of the form:

(pc2 ◦ pc3, 𝜎) ⇢⇢
∗ (pc′2 ◦ pc

′
3, 𝜎

′) (2)

with the following: 𝑚R
𝜏 .act = 𝑚

R
𝜎 ′
,𝑚𝜏 .act↓IVar = 𝑚𝜎 ′↓IVar , fresh𝜏 .act ⊆ fresh𝜎 ′ , freed𝜏 .act ⊆ freed𝜎 ′ ,

and used(𝜏 .act) ⊆ used(𝜎 ′), as well as H(𝜏 .act) = H(𝜎 ′). Let act = ⟨𝑡, com, up⟩.

⋄ Case 1: Q = R

Step (1) is due to Rule (sos-std-par) followed by Rule (sos-std-smr). By denition, we

have pc′1 = pc1. Let stmt3 = pc3(𝑡). Then, pc
′
3 = pc3[𝑡 ↦ stmt ′3] with stmt3 −−⇀

com stmt ′3. By

denition of Rule (sos-std-par), we the step (stmt2◦ stmt3, 𝜎) ⇢⇢R,𝑡 (stmt2◦ stmt ′3, 𝜎 .act)
satises (2), provided we have act ∈ Act(𝜎, 𝑡, com). We show that act ∈ Act(𝜎, 𝑡, com) holds
and that 𝜎 ′ = 𝜎.act satises the required properties. To do this, we rely on the following:

∀exp. com contains exp ⟹ exp ∈ IVar ∪ Var R ∪ Sel R (3)

∀exp. com assigns to exp ⟹ exp ∈ Var R ∪ Sel R (4)

∀exp. exp ∈ IVar ∪ Var R ∪ Sel R ⟹ 𝑚𝜏(exp) =𝑚𝜎(exp) (5)

Implications (3) and (4) follow from 𝜏 .act being free from separation violations. The remaining

implication (5) is due to exp ∈ dom(𝑚𝜏↓IVar) ∪ dom(𝑚R
𝜏) by denition together with both

𝑚
R
𝜏 =𝑚

R
𝜎 and𝑚𝜏↓IVar =𝑚𝜎↓IVar by induction. Now, we do a case distinction over com.

⋄ Case 1.1: com ∈ { in∶func(𝑟), re∶func, env(𝑎) }
By denition of Rule (sos-std-smr), the case does apply.

⋄ Case 1.2: com ∈ { beginAtomic, endAtomic, com ≡ skip }
By denition, act ∈ Act(𝜎, 𝑡, com) as required. We conclude by induction:

𝑚
R
𝜏 .act =𝑚

R
𝜏 =𝑚

R
𝜎 =𝑚

R
𝜎.act

𝑚𝜏 .act↓IVar =𝑚𝜏↓IVar =𝑚𝜎↓IVar =𝑚𝜎.act↓IVar

fresh𝜏 .act = fresh𝜏 ⊆ fresh𝜎 = fresh𝜎.act

freed𝜏 .act = freed𝜏 ⊆ freed𝜎 = freed𝜎.act

used(𝜏 .act) = used(𝜏) ⊆ used(𝜎) = used(𝜎.act)

H(𝜏 .act) = H(𝜏) = H(𝜎) = H(𝜎.act)

⋄ Case 1.3: com ≡ exp ∶= exp′

First, we show act ∈ Act(𝜎, 𝑡, com). To that end, we show that the update up is an appro-

priate update for com after 𝜎 . If exp ∈ Var , then the update is up = [exp ↦ 𝑚𝜏(exp′)].
From (5), we obtain𝑚𝜏(exp′) =𝑚𝜎(exp′). That is, up is appropriate. Otherwise, we have

172 Appendix C Proof of Meta Theory

exp ∉ Var . This means exp ∈ Sel R by (3). So exp must be of the form exp ≡ 𝑝.sel. Let

𝑎 = 𝑚𝜏(𝑝). The update is up = [𝑎.sel ↦ 𝑚𝜏(exp′)]. From (5), we get𝑚𝜎(𝑝) = 𝑎 and

𝑚𝜏(exp′) =𝑚𝜎(exp′). Again, up is appropriate. Altogether, act ∈ Act(𝜎, 𝑡, com).

Observe that (4) yields exp ∈ Var R ∪ Sel R. We have𝑚𝜏(exp′) =𝑚𝜎(exp′) = 𝑏 for some

address 𝑏, as argued above. So we get:

𝑚𝜏 .act↓IVar =𝑚𝜏↓IVar =𝑚𝜎↓IVar =𝑚𝜎.act↓IVar

𝑚
R
𝜏 .act =𝑚

R
𝜏 [up] =𝑚

R
𝜎[up] =𝑚

R
𝜎.act

The remaining properties follow by denition and induction as before.

⋄ Case 1.4: com ≡ assume cond

Let exp be an expression in cond. Similarly to the previous cases,𝑚𝜏(exp) = 𝑚𝜎(exp)
follows (3) and (5). So act ∈ Act(𝜎, 𝑡, com) follows because cond has the same truth value

after 𝜏 and 𝜎 . The remaining properties follow immediately since act does not modify

the memory nor aects the fresh/free addresses.

⋄ Case 1.5: com ≡ 𝑝 ∶= malloc

Let 𝑎 = 𝑚𝜏 .act(𝑝) be the allocated address. We have 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . By induction,

we get 𝑎 ∈ fresh𝜎 ∪ freed𝜎 . This yields act ∈ Act(𝜎, 𝑡, com). Moreover, we get:

fresh𝜏 .act = fresh𝜏 \ {𝑎 } ⊆ fresh𝜎 \ {𝑎 } = fresh𝜎.act

freed𝜏 .act = freed𝜏 \ {𝑎 } ⊆ freed𝜎 \ {𝑎 } = freed𝜎.act

H(𝜏 .act) = H(𝜏) = H(𝜎) = H(𝜎.act)

We turn to the remaining properties. We have up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]
for some 𝑑 . Observe that 𝑝 ∈ Var R holds by (4). Since Var R ∩ IVar = ∅, we get:

𝑚𝜏 .act↓IVar =𝑚𝜏↓IVar =𝑚𝜎↓IVar =𝑚𝜎.act↓IVar

used(𝜏 .act) = used(𝜏) ⊆ used(𝜎) = used(𝜎.act)

For 𝑝 we have𝑚R
𝜏 .act(𝑝) = 𝑎 =𝑚

R
𝜎.act(𝑝). For 𝑎.next we have:

𝑚
R
𝜏 .act(𝑎.next) = seg =𝑚

R
𝜎.act(𝑎.next) if next ∈ Sel R

𝑚
R
𝜏 .act(𝑎.next) = ⊥ =𝑚

R
𝜎.act𝑎.next otherwise.

Similarly, we obtain 𝑚
R
𝜏 .act(𝑎.data) = 𝑚

R
𝜎.act(𝑎.data). Altogether, this establishes the

desired𝑚R
𝜏 .act =𝑚

R
𝜎.act as up does not modify expressions besides 𝑝 , 𝑎.next, and 𝑎.data.

Section C.1 Compositionality 173

⋄ Case 1.6: com ≡ free(𝑝)
We have act ∈ Act(𝜎, 𝑡, com) by denition. Let𝑚𝜏(𝑝) = 𝑎. As before,𝑚𝜏(𝑝) = 𝑚𝜎(𝑝)
follows from (3) and (5). Hence, we conclude as follows:

fresh𝜏 .act = fresh𝜏 \ {𝑎 } ⊆ fresh𝜎 \ {𝑎 } = fresh𝜎.act

freed𝜏 .act = freed𝜏 ∪ {𝑎 } ⊆ freed𝜎 ∪ {𝑎 } = freed𝜎.act

H(𝜏 .act) = H(𝜏).free(𝑎) = H(𝜎).free(𝑎) = H(𝜎.act)

used(𝜏 .act) = used(𝜏) ⊆ used(𝜎) = used(𝜎.act)

𝑚𝜏 .act↓IVar =𝑚𝜏↓IVar =𝑚𝜎↓IVar =𝑚𝜎.act↓IVar

𝑚
R
𝜏 .act =𝑚

R
𝜏 =𝑚

R
𝜎 =𝑚

R
𝜎.act

where the last two equalities are due to up = ∅.

⋄ Case 2: Q = P and com /≡ env(𝑎)
Step (1) is due to Rule (sos-std-par). Let stmt1 = pc1(𝑡) and stmt3 = pc3(𝑡). By denition,
pc′1 = pc1[𝑡 ↦ stmt ′1] and pc′3 = pc3[𝑡 ↦ stmt ′3] with stmt1 ◦ stmt3 −−⇀

com stmt ′1 ◦ stmt ′3.

⋄ Case 2.1: com ≡ in∶func(𝑟)
Step (1) involves Rule (sos-std-call): stmt3 ≡ skip and stmt ′3 ≡ R.func; await func.

Assume for a moment we have stmt2 −−⇀
com stmt ′2 and act ∈ Act(𝜎, 𝑡, com). Then, we

satises (2) by step (pc2 ◦ pc3, 𝜎) ⇢⇢R,𝑡 (pc′2 ◦ pc
′
3, 𝜎 .act) due to Rule (sos-std-call)

combined with Rule (sos-std-par). Now, we show that act is enabled after 𝜎 . By

assumption, 𝑟𝑖 ∈ IVar . By induction, seg ≠𝑚𝜏(𝑟𝑖) =𝑚𝜎(𝑟𝑖). So, 𝜎.act ∈ O⟦P⟧AdrAdr by the

assumptions on the𝑀𝐺𝐶 . This means we satisfy (2) because the step stmt2 −−⇀
com stmt ′2

exists and act ∈ Act(𝜎, 𝑡, com) holds. We turn to the remaining properties and establish

that 𝜎 ′ = 𝜎.act is an adequate choice. Let evt be an event such thatH(𝜏 .act) = H(𝜏).evt.
Since we have established𝑚𝜏(𝑟𝑖) = 𝑚𝜎(𝑟𝑖) already, we get H(𝜎.act) = H(𝜎).evt. By
induction, H(𝜏 .act) = H(𝜎.act). The remaining properties follow by denition together

with induction as before since act does not aect the memory nor the fresh/freed/used

addresses.

⋄ Case 2.2: com ≡ re∶func

The step is due to Rule (sos-std-return): stmt3 ≡ await func and stmt3 ≡ skip.

We show that 𝜎 ′ = 𝜎.act is an appropriate choice. We get 𝜎.act ∈ O⟦P⟧AdrAdr by the

assumptions on the 𝑀𝐺𝐶 . We nd a step (pc2 ◦ pc3, 𝜎) ⇢⇢R,𝑡 (pc′2 ◦ pc′3, 𝜎 .act) that

satises (2), as in the previous case. Further, we get:

H(𝜏 .act) = H(𝜏).re∶func(𝑡) = H(𝜎).re∶func(𝑡) = H(𝜎.act)

and conclude the remaining properties by denition together with induction as before.

174 Appendix C Proof of Meta Theory

⋄ Case 2.3: otherwise

The step is due to Rule (sos-std-ds). By denition, stmt3 ≡ stmt3. Observe that we

satisfy (2) with 𝜎
′
= 𝜎 and 𝜎 ′ = 𝜎.act ′ for any act ′ ∈ Act(𝜎, 𝑡, com). Depending on com,

we decide whether or not to append an action and show the remaining properties.

⋄ Case 2.3.1: com ≡ 𝑝 ∶= malloc and 𝑝 ∉ IVar

Let 𝑚𝜏 .act(𝑝) = 𝑎. The update up is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]
with some 𝑑 and 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . By induction, we have 𝑎 ∈ fresh𝜎 ∪ freed𝜎 .

Let 𝑞 be some pointer variable of the 𝑀𝐺𝐶 such that 𝑞 ∉ IVar and 𝑞 ∉ Var R. We

show that 𝜎 ′ = 𝜎.act ′ is an appropriate choice for act ′ = ⟨𝑡, 𝑞 ∶= malloc, up′⟩ with
update up = [𝑞 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]. By the assumptions on the 𝑀𝐺𝐶 ,

we have 𝜎.act ′ ∈ O⟦P⟧AdrAdr . That is, act
′
∈ Act(𝜎, 𝑡, com) holds. As stated before, this

satises (2). By induction and denition:

𝑚𝜏 .act↓IVar =𝑚𝜏↓IVar =𝑚𝜎↓IVar =𝑚𝜎.act↓IVar

H(𝜏 .act) = H(𝜏) = H(𝜎) = H(𝜎.act ′)

fresh𝜏 .act = fresh𝜏 ⊆ {𝑎 } ⊆ fresh𝜎 ⊆ {𝑎 } = fresh𝜎.act ′

freed𝜏 .act = freed𝜏 \ {𝑎 } ⊆ freed𝜎 \ {𝑎 } = freed𝜎.act ′

Next, observe that 𝑝 ∈ Var P since 𝜏 .act is free from separation violations. Hence, we

obtain:

used(𝜏 .act) = used(𝜏) ∪ {𝑚𝜏 .act(𝑝) } = used(𝜏) ∪ {𝑚𝜎.act ′(𝑞) }

⊆ used(𝜎) ∪ {𝑚𝜎.act ′(𝑞) } = used(𝜎.act ′)

It remains to show𝑚
R
𝜏 .act =𝑚

R
𝜎.act ′ . It suces to show𝑚

R
𝜏 .act(𝑎.sel) =𝑚

R
𝜎.act ′(𝑎.sel)

for all selectors sel ∈ Sel R since 𝑝 ∉ IVar (the selectors of all other addresses remain

unchanged). This follows from the fact that up and up′ agree on the updates they

perform on selectors. Formally, we have𝑚R
𝜏 .act(𝑎.sel) = 𝑣 = 𝑚

R
𝜎.act ′(𝑎.sel) where

we use 𝑣 = 𝑎 if sel = next and 𝑣 = 𝑑 if sel = data.

⋄ Case 2.3.2: com ≡ 𝑝 ∶= malloc and 𝑝 ∈ IVar

Follows analogously to the previous case. Here, we can simply choose 𝜎 ′ = 𝜎.act and

observe that𝑚R
𝜏 .act(𝑝) =𝑚

R
𝜎.act ′(𝑝) holds in order to obtain𝑚R

𝜏 .act =𝑚
R
𝜎.act ′ .

⋄ Case 2.3.3: com ≡ 𝑥 ∶= exp and 𝑥 ∈ IVar

Let up = [𝑥 ↦ 𝑣]. We show that 𝜎 ′ = 𝜎.act ′ with act ′ = ⟨𝑡, com′
, up⟩ is appropriate.

By the assumptions on the 𝑀𝐺𝐶 , act ′ exists and is enabled, 𝜎.act ′ ∈ O⟦P⟧AdrAdr . We

have act ′ ∈ Act(𝜎, 𝑡, com) and thus satisfy (2) as stated before. Moreover, we get:

𝑚𝜏 .act↓IVar =𝑚𝜏↓IVar[up] =𝑚𝜎↓IVar[up] =𝑚𝜎.act↓IVar

Section C.1 Compositionality 175

and conclude the remaining properties by denition and induction as before.

⋄ Case 2.3.4: com ≡ exp ∶= exp′ with exp ∉ IVar

We show that 𝜎 ′ = 𝜎 satises the desired properties. We get (2) for pc′2 = pc2. Next,

we show𝑚
R
𝜏 .act = 𝑚

R
𝜎 . To do so, it is sucient to show𝑚

R
𝜏 .act = 𝑚

R
𝜏 since𝑚R

𝜏 = 𝑚
R
𝜎

holds by induction. To the contrary, assume𝑚R
𝜏 .act ≠ 𝑚

R
𝜏 . Note that, by denition,

we have dom(𝑚R
𝜏) = dom(𝑚R

𝜏 .act). Consider 𝑝 ∈ dom(𝑚R
𝜏). Because 𝜏 .act is free from

separation violations, we have exp /≡ 𝑝 . Hence,𝑚R
𝜏 .act(𝑝) = 𝑚

R
𝜏 (𝑝) holds. That is,

there must be 𝑎.sel ∈ dom(𝑚R
𝜏) such that𝑚R

𝜏 .act(𝑎.sel) ≠ 𝑚
R
𝜏 (𝑎.sel). Hence, we

have exp ≡ 𝑞.sel with𝑚𝜏(𝑞) = 𝑎. Observe that 𝑎.sel ∈ dom(𝑚R
𝜏) means sel ∈ Sel R.

So, act is a separation violation. This contradicts the assumptions and thus concludes

the desired𝑚R
𝜏 .act =𝑚

R
𝜏 . The remaining properties follow by denition together with

induction.

⋄ Case 2.3.5: com ∈ { assume cond, beginAtomic, endAtomic, skip }
We can choose 𝜎 ′ = 𝜎 and immediately obtain the desired properties by induction.

⋄ Case 3: Q = P and com ≡ env(𝑎)
Step (1) is due to Rule (sos-std-env). We have pc′1 ≡ pc1 and pc′3 ≡ pc3 and 𝑡 = ⊥. By

denition, 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . By induction, 𝑎 ∈ fresh𝜎 ∪ freed𝜎 . So, act ∈ Act(𝜎,⊥, com).
That is, we obtain the step (pc2 ◦ pc3, 𝜎) ⇢⇢P,⊥ (pc2 ◦ pc3, 𝜎 .act) which satises (2). Next,

we establish𝑚R
𝜏 .act =𝑚

R
𝜎.act . To that end, consider exp ∈ PExp ∪ DExp. If exp ∩ Adr ≠ {𝑎 },

then we get𝑚R
𝜏 .actexp = 𝑚

R
𝜏 exp = 𝑚

R
𝜎exp = 𝑚

R
𝜎.actexp where the second equality holds by

induction and the rst/third equality holds by up. It remains to show, for all sel ∈ Sel R,

that𝑚R
𝜏 .act(𝑎.sel) =𝑚

R
𝜎.act ′(𝑎.sel) holds. This follows from the fact that up and up′ agree on

the updates they perform on selectors. The remaining properties follow by induction since

act does not aect the control locations nor the valuation of variables nor the history nor

the fresh/freed/used addresses.

The above case distinction is complete and thus concludes the claim. �

Proof C.6 (Corollary A.3). Consequence of Theorem A.2. �

Proof C.7 (Theorem A.4).We proceed by induction over the structure of 𝜏 . In the base case,

we have the empty computation 𝜏 = 𝜖 . Then, the claim follows by denition for 𝜎 = 𝜖 . For

the induction step, consider 𝜏 ∈ ⟦P(R)⟧AdrAdr and the following program step in the standard

semantics:

(pc1 ◦ pc2, 𝜏) ⇢⇢Q,𝑡 (pc′1 ◦ pc
′
2, 𝜏 .act) with pc1 ◦ pc2 ∈ ctrl(𝜏) . (6)

By denition, 𝜏 .act ∈ ⟦P(R)⟧AdrAdr . Assume we already constructed for 𝜏 some 𝜎 ∈ ⟦P(R)⟧AdrAdr

with the following: stmt1 ∈ ctrl(𝜎),𝑚P
𝜏 = 𝑚

P
𝜎 , H(𝜏) = H(𝜎), fresh𝜏 ⊆ fresh𝜎 , freed𝜏 ⊆ freed𝜎 ,

176 Appendix C Proof of Meta Theory

and retired𝜏 ⊆ retired𝜎 . We now construct a computation 𝜎
′
∈ ⟦P(R)⟧AdrAdr that mimics 𝜏 .act.

More precisely, we show that there is a program step in the SMR semantics of the form

(pc1, 𝜎) ⇢
∗ (pc′1, 𝜎

′) (7)

satisfying the following:𝑚P
𝜏 .act =𝑚

P
𝜎 ′ ,H(𝜏 .act) = H(𝜎 ′), fresh𝜏 .act ⊆ fresh𝜎 ′ , freed𝜏 .act ⊆ freed𝜎 ′ ,

and retired𝜏 .act ⊆ retired𝜎 ′ . Let act = ⟨𝑡, com, up⟩.

⋄ Case 1: Q = R

Step (6) is due to Rule (sos-std-par) followed by Rule (sos-std-smr). By denition,

we have pc′1 = pc1. Let stmt2 = pc2(𝑡). Then, pc
′
2 = pc2[𝑡 ↦ stmt ′2] with stmt2 −−⇀

com stmt ′2.

⋄ Case 1.1: com ∈ { in∶func(𝑟), re∶func }
According to Rule (sos-std-smr), the case does not apply.

⋄ Case 1.2: com ∈ { skip, beginAtomic, endAtomic, assume cond }
We show that 𝜎 ′ = 𝜎 is an appropriate choice. We immediately satisfy (7) by pc′1 = pc1.

For the remaining properties, we conclude by induction as follows:

𝑚
P
𝜏 .act =𝑚

P
𝜏 =𝑚

P
𝜎 =𝑚

P
𝜎.act

H(𝜏 .act) = H(𝜏) = H(𝜎) = H(𝜎.act)

fresh𝜏 .act = fresh𝜏 ⊆ fresh𝜎 = fresh𝜎.act

freed𝜏 .act = freed𝜏 ⊆ freed𝜎 = freed𝜎.act

retired𝜏 .act = retired𝜏 ⊆ retired𝜎 = retired𝜎.act

⋄ Case 1.3: com ≡ exp ∶= exp′

We choose 𝜎 ′ = 𝜎 . We immediately satisfy (7) by pc′1 = pc1. Next, we show𝑚
P
𝜏 .act =𝑚

P
𝜎 .

To that end, it suces to establish𝑚P
𝜏 .act =𝑚

P
𝜏 . First, consider the case where exp ∈ Var

holds. Then, exp ∈ Var R because 𝜏 .act is free from separation violations. By denition,

we obtain𝑚𝜏 .act =𝑚𝜏[exp ↦𝑚𝜏(exp′)]. That is,𝑚P
𝜏 .act =𝑚

P
𝜏 because Var R ∩ Var P = ∅.

Second, consider the remaining case where exp ∉ Var holds. So, exp ≡ 𝑝.sel for some

pointer 𝑝 and selector sel. Let 𝑎 = 𝑚𝜏(𝑝). We have𝑚𝜏 .act = 𝑚𝜏[𝑎.sel ↦ 𝑚𝜏(exp′)].
Since 𝜏 .act is free from separation violations, sel ∈ Sel R. So, we get𝑚P

𝜏 .act =𝑚
P
𝜏 because

of Sel R∩Sel P = ∅. The remaining properties follow by denition together with induction

as before.

⋄ Case 1.4: com ≡ 𝑝 ∶= malloc

Let 𝑎 = 𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some 𝑑 .

We choose 𝜎 ′ = 𝜎.act ′ with act ′ = ⟨𝑡, env(𝑎), up′⟩ and up = [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑].
By denition, we have 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . Hence, 𝑎 ∈ fresh𝜎 ∪ freed𝜎 by induction. So

we get act ′ ∈ Act(𝜎, 𝑡, env(𝑎)). Rule (sos-env) yields the step (pc1, 𝜎) ⇢ (pc1, 𝜎 .act
′)

Section C.1 Compositionality 177

which satises (7). Next, we show 𝑚
P
𝜏 .act = 𝑚

P
𝜎.act ′ . To that end, we establish, for all

expressions exp, that𝑚P
𝜏 .act(exp) =𝑚

P
𝜎.act ′(exp) holds. By induction, we have:

𝑚
P
𝜏 .act(exp) =𝑚

P
𝜏 (exp) =𝑚

P
𝜎(exp) =𝑚

P
𝜎.act ′(exp) if exp ∉ {𝑝, 𝑎.next, 𝑎.data } .

We turn to 𝑝 , 𝑎.next, and 𝑎.data. Regarding 𝑝 , note that we have 𝑝 ∈ Var R because 𝜏 .act

is free from separation violations. That is,𝑚P
𝜏 .act(𝑝) = ⊥ =𝑚

P
𝜎.act ′(𝑝). Consider 𝑎.next. If

next ∈ Sel P , we get𝑚P
𝜏 .act(𝑎.next) = 𝑎 =𝑚

P
𝜎.act ′(𝑎.next) due to the form of the updates

up and up′. Otherwise, we have𝑚P
𝜏 .act(𝑎.next) = ⊥ =𝑚

P
𝜎.act ′(𝑎.next) by denition of the

memory separation. Similarly, we obtain𝑚P
𝜏 .act(𝑎.data) =𝑚

P
𝜎.act ′(𝑎.data). Altogether,

we conclude the desired𝑚P
𝜏 .act =𝑚

P
𝜎.act ′ . The remaining properties follow by denition

and induction as before.

⋄ Case 1.5: com ≡ free(𝑝)
Let𝑚𝜏(𝑝) = 𝑎. We choose 𝜎 ′ = 𝜎.act ′ with act ′ = ⟨𝑡, free(𝑎),∅⟩. By the standard se-

mantics, we have act ∈ Act(𝜏, 𝑡, com). Hence, act ′ ∈ Act(𝜎,⊥, free(𝑎)) holds according
to the SMR semantics. Then, Rule (sos-free) yields (pc1, 𝜎) ⇢ (pc1, 𝜎 .act

′) which
satises (7). For the remaining properties, we conclude by denition and induction as

before.

⋄ Case 2: Q = P and com /≡ env(𝑎)
Step (6) is due to Rule (sos-std-par). Let stmt1 = pc1(𝑡) and stmt2 = pc2(𝑡). By denition,
pc′1 = pc1[𝑡 ↦ stmt ′1] and pc′2 = pc2[𝑡 ↦ stmt ′2] with stmt1 ◦ stmt2 −−⇀

com stmt ′1 ◦ stmt ′2. We

show that 𝜎 ′ = 𝜎.act is an appropriate choice. By the SMR semantics, stmt1 −−⇁
com stmt ′1

holds. Hence, Rule (sos-par) yields (pc1, 𝜎) ⇢ (pc′1, 𝜎 .act) satisfying (7), provided we

have act ∈ Act(𝜎, 𝑡, com). We establish act ∈ Act(𝜎, 𝑡, com) and the remaining properties.

⋄ Case 2.1: com ∈ { skip, beginAtomic, endAtomic }
By denition, act ∈ Act(𝜎, 𝑡, com). We conclude by denition and induction:

𝑚
P
𝜏 .act =𝑚

P
𝜏 =𝑚

P
𝜎 =𝑚

P
𝜎.act

H(𝜏 .act) = H(𝜏) = H(𝜎) = H(𝜎.act)

fresh𝜏 .act = fresh𝜏 ⊆ fresh𝜎 = fresh𝜎.act

freed𝜏 .act = freed𝜏 ⊆ freed𝜎 = freed𝜎.act

retired𝜏 .act = retired𝜏 ⊆ retired𝜎 = retired𝜎.act

⋄ Case 2.2: com ≡ in∶func(𝑟)
Step (6) involves Rule (sos-std-call). By assumption, we have 𝑟𝑖 ∈ IVar . By induction,

we get𝑚𝜏(𝑟𝑖) = 𝑚𝜎(𝑟𝑖). Hence,𝑚𝜎(𝑟𝑖) ≠ seg because𝑚𝜏(𝑟𝑖) ≠ seg according to the

semantics. This gives act ∈ Act(𝜎, 𝑡, com) by denition. Now, let evt be the event emitted

178 Appendix C Proof of Meta Theory

by act after 𝜏 , that is,H(𝜏 .act) = H(𝜏).evt. Becausewe have already established𝑚𝜏(𝑟𝑖) =
𝑚𝜎(𝑟𝑖), act must emit the same event after 𝜎 , i.e., H(𝜎.act) = H(𝜎).evt. So, H(𝜏 .act) =
H(𝜎.act) follows by induction. For the remaining property, let 𝑀 ⊆ Adr such that

𝑀 = {𝑎 } if evt ≡ in∶retire(𝑡, 𝑎) and𝑀 = ∅ otherwise. Then, we get:

retired𝜏 .act = retired𝜏 ∪𝑀 ⊆ retired𝜎 ∪𝑀 = retired𝜎.act .

The remaining properties follow by denition and induction as before.

⋄ Case 2.3: com ≡ re∶func

Step (6) involves Rule (sos-std-return). By denition, act ∈ Act(𝜎, 𝑡, re∶func). We

get:

H(𝜏 .act) = H(𝜏).re∶func(𝑡) = H(𝜎).re∶func(𝑡) = H(𝜎.act)

and conclude the remaining properties by denition and induction as before.

⋄ Case 2.4: com ≡ 𝑝 ∶= malloc

Let 𝑎 =𝑚𝜏 .act(𝑝). Then, the update is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some

data value 𝑑 . By denition, 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . So, 𝑎 ∈ fresh𝜎 ∪ freed𝜎 by induction.

This means act ∈ Act(𝜎, 𝑡, com). Moreover, we get:

fresh𝜏 .act = fresh𝜏 \ {𝑎 } ⊆ fresh𝜎 \ {𝑎 } = fresh𝜎.act

freed𝜏 .act = freed𝜏 \ {𝑎 } ⊆ freed𝜎 \ {𝑎 } = freed𝜎.act

retired𝜏 .act = retired𝜏 ⊆ retired𝜎 = retired𝜎.act

H(𝜏 .act) = H(𝜏) = H(𝜎) = H(𝜎.act)

It remains to establish𝑚P
𝜏 .act =𝑚

P
𝜎.act . By induction and the form of up, we have:

𝑚
P
𝜏 .act(exp) =𝑚

P
𝜏 (exp) =𝑚

P
𝜎(exp) =𝑚

P
𝜎.act ′(exp) if exp ∉ {𝑝, 𝑎.next, 𝑎.data } .

Hence, it suces to show𝑚
P
𝜏 .act(exp′) =𝑚

P
𝜎.act(exp′) for exp′ ∈ { 𝑝, 𝑎.next, 𝑎.data }. By

the denition of the memory separation, it suces to show𝑚𝜏 .act(exp′) =𝑚𝜎.act(exp′).
This follows immediately from the performed update up.

⋄ Case 2.5: com ≡ 𝑝.sel ∶= exp

By denition of the syntax, we have exp ∈ Var . Let 𝑎 = 𝑚𝜏(𝑝) and let 𝑣 = 𝑚𝜏(exp).
Then, the update is up = [𝑎.sel ↦ 𝑣]. Since 𝜏 .act is free from separation violations, we

get 𝑝, exp ∈ Var P and sel ∈ Sel P . Hence, { 𝑝, exp, 𝑎.sel } ⊆ dom(𝑚P
𝜏). By induction, we

have𝑚𝜎(𝑝) = 𝑎 and𝑚𝜎(exp) = 𝑣 . This means up is a valid for act after 𝜎 . That is, we

obtain act ∈ Act(𝜎, 𝑡, com). From sel ∈ Sel P we get:

𝑚
P
𝜏 .act =𝑚

P
𝜏 [𝑎.sel ↦ 𝑣] =𝑚

P
𝜎[𝑎.sel ↦ 𝑣] =𝑚

P
𝜎.act .

Section C.1 Compositionality 179

The remaining properties follow by denition and induction as before.

⋄ Case 2.6: com ≡ 𝑝 ∶= exp′

Analogous to the previous case.

⋄ Case 2.7: com ≡ assume cond

Let exp be an expression in cond. Similarly to the previous cases,𝑚𝜏(exp) = 𝑚𝜎(exp)
by induction together with the fact that 𝜏 .act is free from separation violations and thus

only variables from Var P and selectors from Sel P can occur in exp. Then, we arrive

at act ∈ Act(𝜎, 𝑡, com) since cond has the same truth value after 𝜏 and 𝜎 . The remaining

properties follow by induction.

⋄ Case 3: Q = P and com ≡ env(𝑎)
Step (6) is due to Rule (sos-std-env). By denition of the rule, we have pc1 = pc′1 as well

as up = [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some value 𝑑 . By denition, 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

By induction, 𝑎 ∈ fresh𝜎 ∪ freed𝜎 . Hence, we obtain act ∈ Act(𝜎, 𝑡, com) such that the

step (pc1, 𝜎) ⇢ (pc′1, 𝜎 .act) by Rule (sos-env) satises (7). Next, we show𝑚
P
𝜏 .act =𝑚

P
𝜎.act .

By induction together with the form of up, we have:

𝑚
P
𝜏 .act(exp) =𝑚

P
𝜏 (exp) =𝑚

P
𝜎(exp) =𝑚

P
𝜎.act ′(exp) if exp ∉ {𝑎.next, 𝑎.data } .

Hence, it suces to show𝑚
P
𝜏 .act(exp′) =𝑚

P
𝜎.act(exp′) for exp′ ∈ {𝑝, 𝑎.next, 𝑎.data }. By the

denition of the memory separation, it suces to show𝑚𝜏 .act(exp′) = 𝑚𝜎.act(exp′). This
follows from the performed update up. The remaining properties follow by denition and

induction as before.

The above case distinction is complete and thus concludes the induction. �

Proof C.8 (Theorem 5.10). Note that Theorem A.4 implicitly assumes that ⟦P(R)⟧AdrAdr is free

from separation violations—these requirements were stated informally in Section 5.3. This

means that Theorem A.4 is applicable. Consider now some computation 𝜏 ∈ ⟦P(R)⟧AdrAdr . From

Theorem A.4 we get 𝜎 ∈ O⟦P⟧AdrAdr with ctrl P(𝜏) = ctrl(𝜎). By assumption, we have good(𝜎).
That is, ctrl P(𝜎) ∩ Fault = ∅. From this we get ctrl P(𝜏) ∩ Fault = ∅. This gives good(𝜏) as
required. �

Proof C.9 (Theorem 5.11). As noted in Proof C.8 already, Theorem 5.11 comes with the implicit

assumption that ⟦P(R)⟧AdrAdr is free from separation violations. Towards a contradiction, assume

that ⟦P(R)⟧AdrAdr is not free from double retires. That is, there is a computation 𝜏 .act ∈ ⟦P(R)⟧AdrAdr

with act = ⟨𝑡, in∶retire(𝑝), up⟩ and𝑚𝜏 .act(𝑝) ∈ retired𝜏 . Theorem A.4 yields 𝜎 ∈ O⟦P⟧AdrAdr

with𝑚P
𝜏 = 𝑚

P
𝜎 and retired𝜏 ⊆ retired𝜎 . We obtain 𝜎.act ∈ O⟦P⟧AdrAdr . To see that act is enabled,

note that 𝑝 ∈ IVar ⊆ Var P by assumption and thus 𝑚𝜎(𝑝) = 𝑚𝜏(𝑝) ≠ seg. Moreover, this

180 Appendix C Proof of Meta Theory

means𝑚𝜎(𝑝) ∈ retired𝜎 . That is, 𝜎.act is a double retire. This contradicts the assumption of the

semantics O⟦P⟧AdrAdr being free from double retires. �

C.2 Ownership

Proof C.10 (Theorem 6.7). We show the contrapositive:

∀𝜏, 𝑝, 𝑡 . 𝑝 ∉ local𝑡 ∧ 𝑝 ∈ valid𝜏 ⟹ 𝑚𝜏(𝑝) ∉ owned𝜏(𝑡) .

To that end, we proceed by induction over the structure of 𝜏 ∈ O⟦P⟧AdrAdr . In the base case, 𝜏 = 𝜖 .

Then, the claim follows by owned𝜏(𝑡) = ∅. For the induction step, consider 𝜏 .act ∈ O⟦P⟧AdrAdr

and assume that the claim holds for 𝜏 . Consider some thread 𝑡 and some 𝑥 ∈ PVar \ local𝑡 such
that 𝑝 ∈ valid𝜏 . We show that𝑚𝜏(𝑝) ∉ owned𝜏(𝑡) holds. Let act = ⟨𝑡 ′, com, up⟩.

⋄ Case 1: 𝑡 ≠ 𝑡
′

By denition, we have owned𝜏 .act(𝑡) ⊆ owned𝜏(𝑡).

⋄ Case 1.1: 𝑥 ∉ shared

If 𝑥 ∉ shared, then 𝑥 cannot occur in com by to the semantics. Hence, 𝑥 ∈ valid𝜏 .act
implies 𝑥 ∈ valid𝜏 . Moreover, 𝑚𝜏 .act(𝑥) = 𝑚𝜏(𝑥). By induction, 𝑚𝜏(𝑥) ∉ owned𝜏(𝑡).
Hence, we obtain𝑚𝜏 .act(𝑥) ∉ owned𝜏 .act(𝑡) as required.

⋄ Case 1.2: 𝑥 ∈ shared and [𝑥 ↦ •] /⊆ up

That 𝑥 does not receive an update means that it is not the target of an assignment nor

an allocation. We get𝑚𝜏(𝑥) =𝑚𝜏 .act(𝑥) by denition. Moreover, we obtain 𝑥 ∈ valid𝜏
by 𝑥 ∈ valid𝜏 .act . By induction,𝑚𝜏(𝑥) ∉ owned𝜏(𝑡). Hence,𝑚𝜏 .act(𝑥) ∉ owned𝜏 .act(𝑡) as
required.

⋄ Case 1.3: 𝑥 ∈ shared and [𝑥 ↦ 𝑎] ⊆ up

By owned𝜏 .act(𝑡) ⊆ owned𝜏(𝑡), we know that com cannot be an allocation targeting 𝑥 .

So, com ≡ 𝑥 ∶= pexp. First, consider pexp ∈ PVar . To arrive at 𝑥 ∈ valid𝜏 .act , we must

have pexp ∈ valid𝜏 . As this gives a contradicting𝑚𝜏 .act(𝑥) = 𝑎 ∉ owned𝜏 .act(𝑡), the case
cannot apply. That is, pexp ≡ 𝑝.next. Let 𝑏 = 𝑚𝜏(𝑝). To arrive at 𝑥 ∈ valid𝜏 .act , we

must have 𝑝,𝑏.next ∈ valid𝜏 . By denition, this results in𝑚𝜏 .act(𝑥) = 𝑎 ∉ owned𝜏 .act(𝑡).
Hence, the case cannot apply.

⋄ Case 2: 𝑡 = 𝑡
′

We distinguish three cases.

⋄ Case 2.1: 𝑥 ∉ shared

By the semantics, 𝑥 cannot occur in com. We get 𝑥 ∈ valid𝜏 and 𝑚𝜏(𝑥) = 𝑚𝜏 .act(𝑥).

Section C.2 Ownership 181

Hence,𝑚𝜏 .act(𝑥) ∉ owned𝜏(𝑡). If owned𝜏 .act(𝑡) ⊆ owned𝜏(𝑡), then nothing remains to

be shown. Consider now owned𝜏 .act(𝑡) /⊆ owned𝜏(𝑡). By denition, this means we must

have com ≡ 𝑝 ∶= malloc and thus owned𝜏 .act(𝑡) = owned𝜏(𝑡)∪{𝑎 }where 𝑎 =𝑚𝜏 .act(𝑝).
If𝑚𝜏(𝑥) = 𝑎, then 𝑥 ∉ valid𝜏 by the denition of validity. Since this contradicts the

previous 𝑥 ∈ valid𝜏 , we must have𝑚𝜏(𝑥) ≠ 𝑎. Hence,𝑚𝜏 .act(𝑥) ∉ owned𝜏 .act(𝑡) follows
as required.

⋄ Case 2.2: 𝑥 ∈ shared and [𝑥 ↦ •] /⊆ up

That 𝑥 does not receive an update means it is not the target of an assignment nor an

allocation. We get 𝑥 ∈ valid𝜏 and𝑚𝜏(𝑥) = 𝑚𝜏 .act(𝑥). We conclude as in the previous

case.

⋄ Case 2.3: 𝑥 ∈ shared and [𝑥 ↦ 𝑎] ⊆ up

To the contrary, assume com ≡ 𝑥 ∶= malloc. This means𝑚𝜏 .act(𝑥) ∈ fresh𝜏 ∪ freed𝜏 . By

denition,𝑚𝜏 .act(𝑥) ∉ owned𝜏(𝑡). Because of 𝑥 ∈ shared, the allocated address is not

owned, that is,𝑚𝜏 .act(𝑥) ∉ owned𝜏 .act(𝑡) by denition. Since this contradicts the choice

of 𝑥 , we must have com /≡ 𝑥 ∶= malloc. Hence, we get𝑚𝜏 .act(𝑥) ∈ owned𝜏 .act(𝑡) ⊆ 𝜏𝑡 .

Because com is no allocation but updates 𝑥 , it must be an assignment, com ≡ 𝑥 ∶= pexp.

By 𝑥 ∈ shared, we must have pexp ∈ PVar in order to get𝑚𝜏 .act(𝑥) = 𝑎 ∈ owned𝜏 .act(𝑡).
To get 𝑥 ∈ valid𝜏 .act , we must have pexp ∈ valid𝜏 . We get𝑚𝜏 .act(𝑥) = 𝑎 ∉ owned𝜏 .act(𝑡).
Since this contradicts the choice of 𝑥 , the case cannot apply.

The above case distinction is complete and thus concludes the induction. �

C.3 Reductions

Proof C.11 (Lemma B.31). By denition. �

Proof C.12 (Lemma B.32). By denition. �

Proof C.13 (Lemma B.33). By denition. �

Proof C.14 (Lemma B.34). By denition. �

Proof C.15 (Lemma B.35). By denition we have:

182 Appendix C Proof of Meta Theory

dom(𝑚𝜏 ∣valid𝜏) ∩ Adr = (valid𝜏 ∪ DVar ∪ { 𝑎.data ∣ 𝑎 ∈𝑚𝜏(valid𝜏) }) ∩ Adr

= (valid𝜏 ∩ Adr) ∪ ({ 𝑎.data ∣ 𝑎 ∈𝑚𝜏(valid𝜏) } ∩ Adr)

= (valid𝜏 ∩ Adr) ∪ ({ 𝑎 ∣ 𝑎 ∈𝑚𝜏(valid𝜏) })

= (valid𝜏 ∩ Adr) ∪𝑚𝜏(valid𝜏)

and range(𝑚𝜏 ∣valid𝜏) ∩ Adr =𝑚𝜏(dom(𝑚𝜏 ∣valid𝜏)) ∩ Adr =𝑚𝜏(dom(𝑚𝜏 ∣valid𝜏) ∩ PExp)

=𝑚𝜏(valid𝜏)

so that we conclude as follows

adr(𝑚𝜏 ∣valid𝜏) ∩ Adr = (dom(𝑚𝜏 ∣valid𝜏) ∩ range(𝑚𝜏 ∣valid𝜏)) ∩ Adr

= (valid𝜏 ∩ Adr) ∪𝑚𝜏(valid𝜏) ∪𝑚𝜏(valid𝜏)

= (valid𝜏 ∩ Adr) ∪𝑚𝜏(valid𝜏) . �

Proof C.16 (Lemma B.36). The claim holds for 𝜖 since valid𝜏 = PVar and PVar ⊆ dom(𝑚𝜖) by
denition. Towards a contradiction, assume the claim does not hold. Then, there is a shortest

computation 𝜏 .act ∈ O⟦P⟧AdrAdr with valid𝜏 .act /⊆ dom(𝑚𝜏 .act). That is, there is pexp ∈ valid𝜏 .act
with 𝑚𝜏 .act(pexp) = ⊥. First, consider the case pexp ∉ valid𝜏 . In order to validate pexp, act

must be (i) an allocation 𝑝 ∶= malloc with𝑚𝜏 .act(𝑝) = 𝑎 as well as pexp ∈ { 𝑝, 𝑎.next }, (ii) an

assumption assume pexp = 𝑞 with 𝑞 ∈ valid𝜏 , or (iii) an assignment of the form pexp ∶= qexp

with qexp ∈ valid𝜏 . Case (i) cannot apply as it results in pexp ∈ dom(𝑚𝜏 .act). Case (ii) cannot
apply because 𝑚𝜏(pexp) = 𝑚𝜏(𝑞) together with 𝑞 ∈ dom(𝑚𝜏) = dom(𝑚𝜏 .act) by minimality

gives pexp ∈ dom(𝑚𝜏 .act). So case (iii) must apply. By minimality, however, qexp ∈ valid𝜏 yields

𝑚𝜏(qexp) ≠ ⊥. We get𝑚𝜏 .act(pexp) ≠ ⊥, contradicting the choice of pexp. So the case does not

apply and pexp ∈ valid𝜏 must hold.

Consider now the pexp ∈ valid𝜏 . By minimality,𝑚𝜏(pexp) ≠ ⊥. So act must update pexp to⊥.

To do that, act must be an assignment pexp ∶= qexp with𝑚𝜏(qexp) = ⊥. We have qexp ∉ valid𝜏 .

Hence, we get pexp ∉ valid𝜏 .act . This contradicts the choice of pexp. �

Proof C.17 (Lemma B.37). We conclude as follows using the denition of 𝜏 ∼ 𝜎 , set theory, and

the denition of restrictions:

𝜏 ∼ 𝜎 ⟹ 𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎 ⟹ dom(𝑚𝜏 ∣valid𝜏) = dom(𝑚𝜎 ∣valid𝜎)

⟹ dom(𝑚𝜏 ∣valid𝜏) ∩ PExp = dom(𝑚𝜎 ∣valid𝜎) ∩ PExp ⟹ valid𝜏 = valid𝜎

where the last implication is due to Lemma B.36. �

Proof C.18 (Lemma B.38). Follows immediately from 𝜏 ∼ 𝜎 , Lemma B.35, and Lemma B.37. �

Section C.3 Reductions 183

Proof C.19 (Lemma B.39). Let 𝜏 ∼ 𝜎 and let com ∈ next-com(𝜏). By denition, pc ∈ ctrl(𝜏)
exists such that for some thread 𝑡 we have pc(𝑡) −−⇁com •. By 𝜏 ∼ 𝜎 , we have ctrl(𝜏) = ctrl(𝜎).
Hence, com ∈ next-com(𝜎). �

Proof C.20 (Lemma B.40). Let 𝜏 .act ∈ O⟦P⟧AdrAdr with act = ⟨𝑡, com, up⟩ and 𝑡 ≠ ⊥. By the

semantics, there is (pc, 𝜏) ⇢ (pc[𝑡 ↦ stmt], 𝜏 .act) for some pc ∈ ctrl(𝜏) with pc(𝑡) −−⇁com stmt.

Hence, the required com ∈ next-com(𝜏) follows by denition. �

Proof C.21 (Lemma B.41). The direction from right to left follows by denition. So consider

the direction from left to right. To that end, let ℎ3 ∈ FO(ℎ1.ℎ2, 𝑎). Towards a contradicting,
assume that ℎ2.ℎ3 ∉ FO(ℎ1, 𝑎) holds. We have freesℎ2

⊆ {𝑎 } by assumption and freesℎ3
⊆ {𝑎 }

by denition. So, ℎ1.ℎ2.ℎ3 ∉ S(OSMR). By denition, however, this gives ℎ3 ∉ FO(ℎ1.ℎ2, 𝑎),
contradicting the assumption. �

Proof C.22 (Lemma B.42). To the contrary, let 𝜏 .act ∈ O⟦P⟧AdrAdr be the shortest computation

such that there is 𝑎 ∈ fresh𝜏 .act with 𝑎 ∈ range(𝑚𝜏 .act). By denition, there is pexp ∈ PExp

with𝑚𝜏 .act(pexp) = 𝑎. Moreover, 𝑎 ∈ fresh𝜏 . By minimality, we get𝑚𝜏(pexp) ≠ 𝑎. Hence, act

must update pexp to 𝑎. That is, act performs an allocation or a pointer assignment. In the

former case, we have act = ⟨𝑡, pexp ∶= malloc, [𝑝 ↦ 𝑎, . . .]⟩. Then, 𝑎 ∉ fresh𝜏 .act follows by

denition. Since this contradicts the assumption, the case cannot apply. That is, act is of the

form act = ⟨𝑡, pexp ∶= qexp, up⟩ with𝑚𝜏(qexp) = 𝑎. This means 𝑎 ∈ range(𝑚𝜏), contradicting
the minimality of 𝜏 .act. �

Proof C.23 (Lemma B.43). Towards a contradiction, assume there is a shortest 𝜏 .act ∈ O⟦P⟧AdrAdr

such that there is some 𝑎 ∈ fresh𝜏 .act with 𝑎 ∈ 𝑚𝜏 .act(valid𝜏 .act) ∨ 𝑎.next ∈ valid𝜏 .act . Note

that 𝜏 .act is indeed the shortest such computation since the claim holds for 𝜖 . By monotonicity,

we have 𝑎 ∈ fresh𝜏 . By minimality of 𝜏 .act we have 𝑎 ∉ 𝑚𝜏(valid𝜏) and 𝑎.next ∉ valid𝜏 .

If 𝑎.next ∈ valid𝜏 .act , then act is an assignment of the form 𝑝.next ∶= 𝑞 with𝑚𝜏(𝑝) = 𝑎; note

that an allocation of 𝑎 could validate 𝑎.next as well but would give 𝑎 ∉ fresh𝜏 .act , contradicting the

assumption. This means 𝑎 ∈ range(𝑚𝜏). So we get 𝑎 ∉ fresh𝜏 from Lemma B.42. This contradicts

𝑎 ∈ fresh𝜏 from above. Hence, the case does not apply and have 𝑎.next ∉ valid𝜏 .act . By

assumption then, 𝑎 ∈𝑚𝜏 .act(valid𝜏 .act). So there is some pexp ∈ valid𝜏 .act with𝑚𝜏 .act(pexp) = 𝑎.

Since we already established 𝑎 ∉ 𝑚𝜏(valid𝜏), we must have pexp ∉ valid𝜏 or 𝑚𝜏(pexp) ≠ 𝑎.

Consider pexp ∉ valid𝜏 . That is, act validates pexp. To do so, act must be an assignment, an

allocation, or an assumption. We do a case distinction.

⋄ Case 1: act = ⟨𝑡, pexp ∶= qexp, up⟩
Then qexp ∈ valid𝜏 and 𝑚𝜏(qexp) = 𝑎. We obtain 𝑎 ∈ 𝑚𝜏(valid𝜏). This constitutes a

contradiction, the case does not apply.

184 Appendix C Proof of Meta Theory

⋄ Case 2: act = ⟨𝑡, 𝑝 ∶= malloc, [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]⟩
We obtain 𝑎 ∉ fresh𝜏 .act what contradicts the assumption. The case does not apply.

⋄ Case 3: act = ⟨𝑡, assume 𝑝 = 𝑞, up⟩
Wlog. pexp ≡ 𝑝 and 𝑞 ∈ valid𝜏 and 𝑎 = 𝑚𝜏 .act(pexp) = 𝑚𝜏(pexp) = 𝑚𝜏(𝑞) must hold. We

then obtain 𝑎 ∈𝑚𝜏(valid𝜏). This constitutes a contradiction, the case does not apply.

So pexp ∈ valid𝜏 must hold and thus𝑚𝜏(pexp) ≠ 𝑎. That is, act updates pexp to 𝑎 (with 𝑎 ≠ seg).

To do so, act must be an assignment or an allocation. We conclude a contradiction as before. �

Proof C.24 (Lemma B.44). Towards a contradiction, assume fresh𝜏 ∩ freed𝜏 ≠ ∅. Let 𝑎 ∈ fresh𝜏
and 𝑎 ∈ freed𝜏 . The latter means that 𝜏 is of the form 𝜏 = 𝜏1.act .𝜏2 with act = ⟨𝑡, free(𝑎), up⟩.
Then, by denition, 𝑎 ∉ fresh𝜏1 .act . By monotonicity, this yields 𝑎 ∉ fresh𝜏 . Since this contradicts

the assumption, we must have fresh𝜏 ∩ freed𝜏 = ∅ as required.

Towards a contradiction, assume fresh𝜏 ∩ retired𝜏 ≠ ∅. Let 𝑎 ∈ fresh𝜏 and 𝑎 ∈ retired𝜏 . The

latter means that 𝜏 is of the form 𝜏 = 𝜏1.act .𝜏2 with act = ⟨𝑡, in∶retire(𝑝), up⟩ and𝑚𝜏1(𝑝) = 𝑎.

The contrapositive of Lemma B.42 gives 𝑎 ∉ fresh𝜏1 . By monotonicity, we get 𝑎 ∉ fresh𝜏 . Since

this contradicts the assumption, we must have fresh𝜏 ∩ retired𝜏 = ∅ as required. �

Proof C.25 (Lemma B.45). Let 𝑎 ∈ Adr and 𝜑 = { 𝑧𝑎 ↦ 𝑎 }. The claim holds for 𝜖 . Towards

a contradiction, assume there is a shortest 𝜏 .act ∈ O⟦P⟧AdrAdr such that (𝐿2, 𝜑)−−−−−−→
H(𝜏 .act) (𝐿3, 𝜑)

and 𝑎 ∉ retired𝜏 .act . If H(𝜏 .act) = H(𝜏), then we have retired𝜏 .act = retired𝜏 . This contradicts

the minimality of 𝜏 .act. SoH(𝜏 .act) is of the formH(𝜏 .act) = ℎ.evt with ℎ = H(𝜏).

⋄ Case 1: (𝐿2, 𝜑)−→ℎ (𝐿1, 𝜑)
By denition of OBase, there is not step (𝐿1, 𝜑)−−→evt (𝐿3, 𝜑). Hence, this case cannot apply.

⋄ Case 2: (𝐿2, 𝜑)−→ℎ (𝐿2, 𝜑)
We must have (𝐿2, 𝜑)−−→evt (𝐿3, 𝜑). This means evt is of the form evt = retire(𝑡, 𝑎) for some 𝑡 .

That is, act = ⟨𝑡, retire(𝑝), up⟩ with𝑚𝜏(𝑝) = 𝑎. Thus, 𝑎 ∈ retired𝜏 .act , contradicting the

assumption.

⋄ Case 3: (𝐿2, 𝜑)−→ℎ (𝐿3, 𝜑)
By minimality, we have 𝑎 ∈ retired𝜏 . To arrive at 𝑎 ∉ retired𝜏 , we must have evt = free(𝑎).
This yields (𝐿3, 𝜑)−−→evt (𝐿2, 𝜑). So, (𝐿2, 𝜑)−−−−−−→

H(𝜏 .act) (𝐿2, 𝜑). This contradicts the assumption.

The above case distinction is complete and proves that (𝐿2, 𝜑)−−−→
H(𝜏) (𝐿3, 𝜑) implies 𝑎 ∈ retired𝜏 .

Consider now the reverse direction. To that end, consider 𝜏 ∈ O⟦P⟧AdrAdr and 𝑎 ∉ retired𝜏 . Using

the contrapositive of the above, we get (𝐿2, 𝜑)−−−→
H(𝜏) (𝑙, 𝜑) with 𝑙 ≠ 𝐿3. We have 𝑙 ≠ 𝐿1 as for

otherwise 𝜏 ∉ O⟦P⟧AdrAdr . Hence, 𝑙 = 𝐿2. The remaining follows analogously. �

Section C.3 Reductions 185

Proof C.26 (Lemma B.46). Let 𝜏 .act ∈ O⟦P⟧AdrAdr with act = ⟨𝑡, free(𝑎), up⟩. Let 𝜑 = { 𝑧𝑎 ↦ 𝑎 }.
We have H(𝜏 .act) = ℎ.free(𝑎) with ℎ = H(𝜏). By denition, we have ℎ.free(𝑎) ∈ S(O).
Since O = OBase ×OSMR by convention, we have ℎ.free(𝑎) ∈ S(OBase). So (𝐿2, 𝜑)−→ℎ (𝐿3, 𝜑) as
for otherwise free(𝑎) would take OBase to 𝐿1 and thus give 𝜏 .act ∉ O⟦P⟧AdrAdr . Now, Lemma B.45

yields the desired 𝑎 ∈ retired𝜏 . �

Proof C.27 (Lemma B.47). Let 𝜏 .act ∈ O⟦P⟧AdrAdr with act = ⟨𝑡, com, up⟩.

⋄ Case 1: com ≡ exp ∶= exp′

We show𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏) and adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏).

⋄ Case 1.1: com ≡ 𝑝 ∶= 𝑞.next

Let 𝑎 = 𝑚𝜏(𝑞). By denition, 𝑎 ≠ seg. Let 𝑏 = 𝑚𝜏(𝑎.next). Hence, up = [𝑝 ↦ 𝑏].
If 𝑎.next ∈ valid𝜏 and 𝑞 ∈ valid𝜏 we have:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏 .act(valid𝜏 \ { 𝑝 }) ∪ {𝑚𝜏 .act(𝑝) } =𝑚𝜏(valid𝜏 \ { 𝑝 }) ∪ {𝑏 }

⊆𝑚𝜏(valid𝜏) ∪ {𝑏 } =𝑚𝜏(valid𝜏)

where the last equality holds by 𝑏 =𝑚𝜏(𝑎.next) ∈𝑚𝜏(valid𝜏). Otherwise, we get:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏 .act(valid𝜏 \ { 𝑝 }) =𝑚𝜏(valid𝜏 \ { 𝑝 }) ⊆𝑚𝜏(valid𝜏) .

Altogether, we obtain𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏) as required. Combining this with

valid𝜏 .act ∩ Adr ⊆ (valid𝜏 ∪ {𝑝 }) ∩ Adr = valid𝜏 ∩ Adr

yields adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35.

⋄ Case 1.2: com ≡ 𝑝 ∶= 𝑞 or com ≡ 𝑝.next ∶= 𝑞

Analogous to the previous case.

⋄ Case 1.3: com ∈ {𝑢 ∶= op(𝑢), 𝑢 ∶= 𝑞.data, 𝑝 .data ∶= 𝑢 }
By denition, valid𝜏 .act = valid𝜏 and𝑚𝜏(pexp) = 𝑚𝜏 .act(pexp) for all pexp ∈ PExp. So,

we conclude𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏(valid𝜏) and adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝜏 ∣valid𝜏).

⋄ Case 2: com ≡ 𝑝 ∶= malloc

Let 𝑎 = 𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some 𝑑 . We

have valid𝜏 .act = valid𝜏 ∪ {𝑝, 𝑎.next }. So, valid𝜏 .act ∩ Adr = (valid𝜏 ∩ Adr)∪ {𝑎 }. We get:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏 .act(valid𝜏 \ { 𝑝, 𝑎.next }) ∪𝑚𝜏 .act({𝑝, 𝑎.next })

=𝑚𝜏(valid𝜏 \ { 𝑝, 𝑎.next }) ∪ {𝑎 } ⊆𝑚𝜏(valid𝜏) ∪ {𝑎 } .

Combining the above yields adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35.

186 Appendix C Proof of Meta Theory

⋄ Case 3: com ≡ free(𝑎)
We have𝑚𝜏 .act = 𝑚𝜏 and valid𝜏 .act ⊆ valid𝜏 . Hence,𝑚𝜏 .act(valid𝜏 .act) ⊆ 𝑚𝜏(valid𝜏). More-

over, valid𝜏 .act∩Adr ⊆ valid𝜏 ∩Adr . So adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35.

⋄ Case 4: com ≡ env(𝑎)
The update takes the form up = [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some value 𝑑 . By denition,

we have valid𝜏 .act = valid𝜏 and thus valid𝜏 .act ∩ Adr = valid𝜏 ∩ Adr . Moreover, we get:

𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏 .act(valid𝜏 \ {𝑎.next }) ∪𝑚𝜏 .act({ {𝑎.next } })

=𝑚𝜏(valid𝜏 \ {𝑎.next }) ∪∅ ⊆𝑚𝜏(valid𝜏) .

Combining the above yields the desired adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35.

⋄ Case 5: otherwise

We show𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏(valid𝜏) and adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝜏 ∣valid𝜏).

⋄ Case 5.1: com ∈ { in∶func(𝑣), re∶func, skip, beginAtomic, endAtomic, @inv • }
By denition, we have valid𝜏 .act = valid𝜏 and 𝑚𝜏 .act = 𝑚𝜏 . Hence, we conclude the

desired𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏(valid𝜏) and adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝜏 ∣valid𝜏).

⋄ Case 5.2: com ≡ assume cond

We have𝑚𝜏(valid𝜏) =𝑚𝜏 .act(valid𝜏 .act). This follows from act validating only pointers

that are equal to already valid pointers. Further, valid𝜏 .act ∩Adr = valid𝜏 ∩Adr since act

may only validate pointers. Hence, adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35.

The above case distinction is complete and concludes the claim. �

Proof C.28 (Lemma B.48). To the contrary, assume there is a shortest 𝜏 .act ∈ O⟦P⟧AdrAdr PRF such

that there is 𝑎 ∈ freed𝜏 .act with 𝑎 ∈ 𝑚𝜏 .act(valid𝜏 .act) ∨ 𝑎.next ∈ valid𝜏 .act . Note that 𝜏 .act is

indeed the shortest such computation since the claim is vacuously true for 𝜖 . First, consider the

case where 𝑎 ∈ freed𝜏 . By minimality, 𝑎 ∉𝑚𝜏(valid𝜏) and 𝑎.next ∉ valid𝜏 . If 𝑎.next ∈ valid𝜏 .act
holds, then act must be an assignment of the form 𝑝.next ∶= 𝑞 with𝑚𝜏(𝑝) = 𝑎. (Note that an

allocation of 𝑎 could validate 𝑎.next as well but would give 𝑎 ∉ freed𝜏 .act and thus contradict the

assumption.) Now, 𝑝 ∉ valid𝜏 must hold because 𝑎 ∉ 𝑚𝜏(valid𝜏). Hence, act raises an unsafe

access. This contradicts the assumption. So we must have 𝑎 ∈𝑚𝜏 .act(valid𝜏 .act). Recall that we
have 𝑎 ∉𝑚𝜏(valid𝜏). Along the lines of Proof C.23 of Lemma B.43, this means that act must be

an allocation of 𝑎. So, 𝑎 ∉ freed𝜏 .act follows by denition. As this contradicts the assumption,

the case cannot apply. Altogether, we must have 𝑎 ∉ freed𝜏 . Then, act must execute free(𝑎).
We get 𝑎.next ∉ valid𝜏 .act and pexp ∉ valid𝜏 .act for all pexp that satisfy𝑚𝜏(pexp) = 𝑎. That is,

we obtain 𝑎 ∉𝑚𝜏 .act(valid𝜏 .act) and 𝑎.next ∉ valid𝜏 .act . This contradicts the assumption. �

Section C.3 Reductions 187

Proof C.29 (Lemma B.49). We show the following proposition:

∀𝜏, pexp. 𝜏 UAF ∧𝑚𝜏(pexp) = seg ∧ pexp ∉ valid𝜏

⟹ (pexp ∩ Adr) ∩ (fresh𝜏 ∪ freed𝜏) ≠ ∅

which implies the lemma. To see this, let 𝜏 UAF and pexp ∈ VExp(𝜏) with𝑚𝜏(pexp) = seg. To

the contrary, assume pexp ∉ valid𝜏 . Then the above yields (pexp∩Adr)∩ (fresh𝜏 ∪ freed𝜏) ≠ ∅.
Hence, pexp must be of the form pexp ≡ 𝑎.next with 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . Lemmas B.42 and B.48

give 𝑎 ∉𝑚𝜏(valid𝜏). This means 𝑎.next ∉ VExp(𝜏). Because this contradicts pexp ∈ VExp(𝜏),
we must have pexp ∈ valid𝜏 as required.

We now show the above proposition. To the contrary, assume there is a shortest 𝜏 .act ∈ O⟦P⟧AdrAdr

UAFwith𝑚𝜏 .act(pexp) = seg and pexp ∉ valid𝜏 .act and (pexp∩Adr)∩(fresh𝜏 .act∪freed𝜏 .act) = ∅.

First, consider pexp ∈ PVar . Then, we obtain (pexp ∩ Adr) ∩ (fresh𝜏 ∪ freed𝜏) = ∅ because

of pexp ∩ Adr = ∅. By minimality of 𝜏 .act, we must have𝑚𝜏(pexp) ≠ seg or pexp ∈ valid𝜏 . In

the former case, act executes an assignment of the form pexp ∶= qexp with𝑚𝜏(qexp) = seg. To

arrive at pexp ∉ valid𝜏 .act , we must have qexp ∈ PVar \ valid𝜏 or qexp ≡ 𝑞.next ∧ 𝑞 ∉ valid𝜏
or qexp ≡ 𝑞.next ∧𝑚𝜏(𝑞).next ∉ valid𝜏 . By minimality and PVar ∩ Adr = ∅, the rst case

cannot apply. The second case cannot apply because it raises an unsafe access, contradicting

the assumption that 𝜏 .act is UAF. So, qexp ≡ 𝑞.next with𝑚𝜏(𝑞) = 𝑎 and 𝑎.next ∉ valid𝜏 . This

means qexp ∩ Adr = {𝑎 }. We get 𝑎 ∈ fresh𝜏 ∪ freed𝜏 by minimality. Then, Lemmas B.43

and B.48 yield 𝑎 ∉ 𝑚𝜏(valid𝜏). That is, 𝑞 ∉ valid𝜏 . Consequently, act raises an unsafe access,

contradicting the UAF assumption. Hence, the case cannot apply; we must have𝑚𝜏(pexp) = seg

and pexp ∈ valid𝜏 . In order for act to invalidate pexp, it must assignment to pexp from an

invalid seg-holding expression (note that value seg cannot be the target of a free command).

We conclude a contradiction to 𝜏 .act UAF as before. Altogether, pexp ∈ PVar cannot hold. We

must have pexp ∉ PVar .

Consider now pexp ∉ PVar . That is, pexp ≡ 𝑎.next for some address 𝑎 ∈ Adr . By denition, we

get pexp ∩ Adr = {𝑎 }. By minimality,𝑚𝜏(pexp) ≠ seg or pexp ∈ valid𝜏 or 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

In the latter case, act must allocate 𝑎 to arrive at (pexp∩Adr)∩(fresh𝜏 .act∪ freed𝜏 .act) = ∅. This,
however, validates 𝑎.next, contradicting pexp ∉ valid𝜏 .act . Hence, we have 𝑎 ∉ fresh𝜏 ∪ freed𝜏 .

If we have pexp ∈ valid𝜏 , then act must invalidate pexp. To do this, act must execute free(𝑎)
or 𝑝.next ∶= 𝑞 with 𝑚𝜏(𝑝) = 𝑎. In the former case, we get 𝑎 ∈ freed𝜏 .act . Hence, we arrive

at (pexp∩Adr)∩ (fresh𝜏 .act ∪ freed𝜏 .act) = {𝑎 }, contradicting the assumption. That is, the case

cannot apply so that act must be an assignment. To get𝑚𝜏 .act(pexp) = seg and pexp ∉ valid𝜏 .act ,

we must have𝑚𝜏(𝑞) = seg and 𝑞 ∉ valid𝜏 . Since we have 𝑞 ∈ PVar , 𝑞 ∩ Adr = ∅ follows. That

is, (𝑞 ∩ Adr) ∩ (fresh𝜏 ∪ freed𝜏) = ∅. Altogether, this contradicts the minimality of 𝜏 .act. �

188 Appendix C Proof of Meta Theory

Proof C.30 (Lemma B.50).We show the following proposition:

∀𝜏, pexp. 𝜏 UAF ∧𝑚𝜏(pexp) = ⊥ ⟹ { pexp } ∩ Adr /⊆𝑚𝜏(valid𝜏)

which implies the lemma. To see this, consider 𝜏 UAF and pexp ∈ VExp(𝜏). To the contrary,

assume pexp ∉ dom(𝑚𝜏). That is, 𝑚𝜏(pexp) = ⊥. The above then yields pexp ∩ Adr /⊆
𝑚𝜏(valid𝜏). Because ∅ ⊆𝑚𝜏(valid𝜏) trivially holds, we must have pexp ∩ Adr = {𝑎 } for some

address 𝑎 with 𝑎 ∉𝑚𝜏(valid𝜏). This means pexp ≡ 𝑎.next. Hence, pexp ∉ VExp(𝜏) by denition.
Because this contradicts the choice of pexp, we must have pexp ∈ dom(𝑚𝜏) as required.

We now establish the above proposition. To the contrary, assume a shortest 𝜏 .act ∈ O⟦P⟧AdrAdr

UAF such that there is some pexp with𝑚𝜏 .act(pexp) = ⊥ and { pexp }∩ Adr ⊆𝑚𝜏 .act(valid𝜏 .act).
By minimality,𝑚𝜏(pexp) ≠ ⊥ or { pexp } ∩ Adr /⊆ 𝑚𝜏(valid𝜏). First, consider𝑚𝜏(pexp) ≠ ⊥.

In order to arrive at 𝑚𝜏 .act(pexp) = ⊥, action act must execute an assignment pexp ∶= qexp

with𝑚𝜏(qexp) = ⊥. If qexp ∈ PVar , then we have { qexp } ∩ Adr = ∅ ⊆ 𝑚𝜏(valid𝜏). As this
contradicts minimality, qexp must be of the form qexp ≡ 𝑏.next. By minimality, 𝑏 ∉𝑚𝜏(valid𝜏).
This means act raises an unsafe access. This contradicts the assumption of 𝜏 .act being UAF.

Altogether, we get𝑚𝜏(pexp) = ⊥ and thus we must have { pexp } ∩ Adr /⊆𝑚𝜏(valid𝜏).

Consider the case { pexp }∩Adr /⊆𝑚𝜏(valid𝜏) now. Observe that PVar∩Adr = ∅ ⊆𝑚𝜏(valid𝜏).
So, pexpmust be pexp ≡ 𝑎.next. We get { pexp }∩Adr = {𝑎 } and thus 𝑎 ∉𝑚𝜏(valid𝜏). Similarly,

to arrive at { pexp } ∩ Adr ⊆𝑚𝜏 .act(valid𝜏 .act) we must have 𝑎 ∈𝑚𝜏 .act(valid𝜏 .act). That is, act
produces a valid pointer expression referencing 𝑎 without having such an expression at hand.

Along the lines of Proof C.23 of Lemma B.43, act must perform an allocation of 𝑎 to do that:

act = ⟨𝑡, 𝑝 ∶= malloc, [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑]⟩

for some 𝑑 . However, this results in𝑚𝜏 .act(pexp) = seg ≠ ⊥, contradicting the assumption. �

Proof C.31 (Lemma B.51). We proceed by induction over the structure of 𝜏 . In the base case, 𝜏 = 𝜖 .

Then, the claim follows from VExp(𝜖) = PVar ⊆ valid𝜖 by denition. For the induction step,

consider some 𝜏 .act ∈ O⟦P⟧AdrAdr UAF and assume we have already establish that pexp ∉ valid𝜏
implies𝑚𝜏(pexp) ∈ frees𝜏 . Let pexp ∈ VExp(𝜏 .act) with pexp ∉ valid𝜏 .act . We now establish

that𝑚𝜏 .act(pexp) ∈ frees𝜏 .act holds. Let act = ⟨𝑡, com, up⟩.

⋄ Case 1: com ≡ 𝑝 ∶= 𝑞.next

Let 𝑎 =𝑚𝜏(𝑞). By denition, we have 𝑎 ≠ seg. Let 𝑏 =𝑚𝜏(𝑎.next). So, up = [𝑝 ↦ 𝑏]. First,
consider the case pexp ≡ 𝑝 . By denition, pexp ∈ VExp(𝜏). Further, 𝑞 ∈ valid𝜏 since 𝜏 .act

is UAF by assumption. So, we must have 𝑎.next ∉ valid𝜏 to arrive at pexp ∉ valid𝜏 . By

induction, we get𝑚𝜏(𝑎.next) ∈ frees𝜏 = frees𝜏 .act . Hence,𝑚𝜏 .act(𝑝) ∈ frees𝜏 .act as required

Section C.3 Reductions 189

Consider now pexp /≡ 𝑝 . Then, pexp ∉ valid𝜏 by denition and. Moreover, Lemma B.47

yields𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏). Hence, we obtain pexp ∈ VExp(𝜏). By induction, we

get𝑚𝜏(pexp) ∈ frees𝜏 . By denition, this means𝑚𝜏 .act(pexp) ∈ frees𝜏 .act as required.

⋄ Case 2: com ≡ 𝑝 ∶= 𝑞 or com ≡ 𝑝.next ∶= 𝑞

Analogous to the previous case.

⋄ Case 3: com ≡ 𝑢 ∶= op(𝑢)
By denition, frees𝜏 = frees𝜏 .act and valid𝜏 = valid𝜏 .act . Moreover,𝑚𝜏(pexp) =𝑚𝜏 .act(pexp)
for all pexp ∈ PExp. We obtain VExp(𝜏) = VExp(𝜏 .act). Hence, we conclude by induction.

⋄ Case 4: com ∈ {𝑢 ∶= 𝑞.data, 𝑝 .data ∶= 𝑢 }
Analogous to the previous case.

⋄ Case 5: com ∈ { in∶func(𝑣), re∶func, skip, beginAtomic, endAtomic, @inv • }
Analogous to the previous case.

⋄ Case 6: com ≡ 𝑝 ∶= malloc

Let 𝑎 = 𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some 𝑑 . We

have 𝑝, 𝑎.next ∈ valid𝜏 .act by denition. So, pexp ∉ {𝑝, 𝑎.next } and pexp ∉ valid𝜏 . Then,

we obtain𝑚𝜏 .act(pexp) =𝑚𝜏(pexp). Moreover, we get𝑚𝜏 .act(valid𝜏 .act) ⊆𝑚𝜏(valid𝜏)∪ {𝑎 }
by Lemma B.47. Hence, pexp ∈ VExp(𝜏) because pexp /≡ 𝑎.next. So by induction, we obtain

the desired𝑚𝜏 .act(pexp) =𝑚𝜏(pexp) ∈ frees𝜏 = frees𝜏 .act .

⋄ Case 7: com ≡ assume cond

By denition, we have frees𝜏 = frees𝜏 .act and𝑚𝜏(valid𝜏) =𝑚𝜏 .actvalid𝜏 .act . The latter follows

from the fact that act validates only pointers that are equal to already valid pointers. Hence,

we obtain pexp ∈ VExp(𝜏). Then, we conclude𝑚𝜏 .act(pexp) =𝑚𝜏(pexp) ∈ frees𝜏 = frees𝜏 .act
by induction.

⋄ Case 8: com ≡ free(𝑎)
We have𝑚𝜏 .act =𝑚𝜏 and valid𝜏 .act ⊆ valid𝜏 by denition. Further, we get that𝑚𝜏(qexp) = 𝑎

implies qexp ∉ valid𝜏 .act for all qexp. That is, we have 𝑎 ∉ 𝑚𝜏 .act(valid𝜏 .act) ⊆ 𝑚𝜏(valid𝜏).
Hence, pexp ∈ VExp(𝜏) \ {𝑎.next }. Moreover, frees𝜏 .act = frees𝜏 ∪ {𝑎 }. If pexp ∉ valid𝜏 ,

then we conclude by induction. Otherwise, we have pexp ∈ valid𝜏 . That is, pexp is invalidated

by act. This means pexp ≡ 𝑎.next or𝑚𝜏(pexp) = 𝑎. Since we already showed that the former

case cannot apply, we have𝑚𝜏(pexp) = 𝑎. Then,𝑚𝜏 .act(pexp) = 𝑎 ∈ frees𝜏 .act .

190 Appendix C Proof of Meta Theory

⋄ Case 9: com ≡ env(𝑎)
The update takes the form up = [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some data value 𝑑 . By

denition, we have valid𝜏 .act = valid𝜏 and so we get:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏 .act(valid𝜏) ⊆𝑚𝜏 .act(valid𝜏 \ {𝑎.next }) ∪𝑚𝜏 .act({𝑎.next })

=𝑚𝜏(valid𝜏 \ {𝑎.next }) ∪∅ ⊆𝑚𝜏(valid𝜏) .

This means pexp ∈ VExp(𝜏) and pexp ∉ valid𝜏 . By induction,𝑚𝜏(pexp) ∈ frees𝜏 = frees𝜏 .act .

Because 𝑎 ∈ fresh𝜏 ∪ freed𝜏 according to the semantics, we get 𝑎 ∉ 𝑚𝜏(valid𝜏) by Lem-

mas B.43 and B.48. That is, 𝑎.next ∉ VExp(𝜏) by denition. Thus, pexp /≡ 𝑎.next. By the

update, we get𝑚𝜏(pexp) =𝑚𝜏 .act(pexp). We arrive at the desired𝑚𝜏 .act(pexp) ∈ frees𝜏 .act

The above case distinction is complete and concludes the induction. �

Proof C.32 (Lemma B.52). Let pexp ∈ VExp(𝜏) \ valid𝜏 . By Lemma B.51,𝑚𝜏(pexp) = 𝑎 ∈ frees𝜏
for some address 𝑎. Since 𝜏 ∈ O⟦P⟧∅Adr , address 𝑎 remains free once it is freed, it cannot be

reallocated. Hence,𝑚𝜏(pexp) ∈ freed𝜏 follows as required. �

Proof C.33 (LemmaB.53). Let 𝜏 ∈ O⟦P⟧𝐴Adr UAF. Consider some𝑎 ∈ Adr with𝑎 ∈ adr(𝑚𝜏 ∣valid𝜏)
and 𝑎 ∈𝑚𝜏(VExp(𝜏)\valid𝜏). We show 𝑎 ∈ 𝐴. The latter and Lemma B.51 yields 𝑎 ∈ frees𝜏 . The

former and Lemma B.35 yields 𝑎 ∈ valid𝜏 ∩ Adr or 𝑎 ∈𝑚𝜏(valid𝜏). Note that 𝑎 ∈ valid𝜏 ∩ Adr

implies 𝑎.next ∈ valid𝜏 . Hence, the contrapositive of Lemma B.48 gives 𝑎 ∉ freed𝜏 . Altogether,

this means that 𝑎 has been freed and reallocated in 𝜏 . That is, 𝑎 ∈ 𝐴 must hold. �

Proof C.34 (Lemma B.54). Let 𝜏 ∈ O⟦P⟧AdrAdr UAF. Consider some C ∈ CVar and 𝑝 ∈ PVar\valid𝜏 .
By Assumption A.9, we have𝑚𝜏(C) ∉ frees𝜏 ∪ retired𝜏 . By denition, 𝑝 ∈ VExp(𝜏) \ valid𝜏 .

Then, Lemma B.51 yields𝑚𝜏(𝑝) ∈ frees𝜏 . Hence,𝑚𝜏(C) ≠𝑚𝜏(𝑝) must hold as required. �

Proof C.35 (Lemma B.55). Let O support elision. Let 𝜏 ∈ O⟦P⟧AdrAdr with H(𝜏) = ℎ. By the

semantics, we have ℎ ∈ S(OBase) and can thus invoke Denition 7.14 with ℎ. Let 𝑎, 𝑏, 𝑐 ∈ Adr

be addresses with 𝑎 ≠ 𝑐 ≠ 𝑏. We show FO(ℎ, 𝑐) = FO(ℎ[𝑎/𝑏], 𝑐). By assumption, O supports

elision. By Assumption 5.6, O = OBase × OSMR. Hence, FOSMR(ℎ, 𝑐) = FOSMR(ℎ[𝑎/𝑏], 𝑐) by
Property (i) of Denition 7.14. We get FOBase(ℎ, 𝑐) = FOBase(ℎ[𝑎/𝑏], 𝑐) by denition of OBase.

To see this, consider some ℎ′ ∈ FOBase(ℎ, 𝑐). By denition, freesℎ′ ⊆ { 𝑐 } and ℎ.ℎ′ ∈ S(OBase).
Note that only events of the form free(•) can reach an accepting location in OBase. Because

all free events in ℎ
′ are of the form free(𝑐) and (free(𝑐))[𝑎/𝑏] = free(𝑐), we derive that ℎ′

takes OBase to an accepting location (after ℎ) if and only if ℎ′[𝑎/𝑏] does. This concludes the
required FOBase(ℎ, 𝑐) = FOBase(ℎ[𝑎/𝑏], 𝑐).

Now, consider ℎ′ ∈ FO(ℎ, 𝑐). By denition, we have freesℎ′ ⊆ { 𝑐 } and ℎ.ℎ
′
∈ S(O). The

former gives freesℎ′[𝑎/𝑏] ⊆ { 𝑐 }. Because of O = OBase ×OSMR, we have both ℎ.ℎ
′
∈ S(OBase)

Section C.3 Reductions 191

and ℎ.ℎ′ ∈ S(OSMR). Then, ℎ′ ∈ FOBase(ℎ, 𝑐) and ℎ
′
∈ FOSMR(ℎ, 𝑐). So ℎ

′
∈ FOBase(ℎ[𝑎/𝑏], 𝑐)

and ℎ
′
∈ FOSMR(ℎ[𝑎/𝑏], 𝑐). That is, ℎ.ℎ

′[𝑎/𝑏] ∈ S(OBase) as well as ℎ.ℎ′[𝑎/𝑏] ∈ S(OSMR).
Finally, we arrive at ℎ.ℎ′[𝑎/𝑏] ∈ S(O). That is, we have ℎ′[𝑎/𝑏] ∈ FO(ℎ, 𝑐). Altogether, we
have established FO(ℎ, 𝑐) ⊆ FO(ℎ[𝑎/𝑏], 𝑐). The reverse direction follows analogously. �

Proof C.36 (Lemma B.56). Let O support elision. Let 𝜏 ∈ O⟦P⟧AdrAdr with H(𝜏) = ℎ. By the

semantics, we have ℎ ∈ S(OBase) and can thus invoke Denition 7.14 with ℎ. Let 𝑎 ≠ 𝑏. Assume

we have ℎ.free(𝑎) ∈ S(O). By Assumption 5.6, O = OBase × OSMR. Elision support, Prop-

erty (iii) of Denition 7.14, gives FOSMR(ℎ.free(𝑎), 𝑏) = FOSMR(ℎ, 𝑏). To conclude, it remains

to show FOBase(ℎ.free(𝑎), 𝑏) = FOBase(ℎ, 𝑏). The inclusion FOBase(ℎ.free(𝑎), 𝑏) ⊆ FOBase(ℎ, 𝑏)
follows from the denition of OBase. The interesting case is the reverse inclusion. Consider

some ℎ′ ∈ FOBase(ℎ, 𝑏). By denition, freesℎ′ ⊆ {𝑏 } and ℎ.ℎ
′
∈ S(OBase). The latter means

that for all addresses 𝑐 and all steps (𝐿2, 𝜑)−→ℎ (𝑙1, 𝜑)−→ℎ
′

(𝑙2, 𝜑) of O with 𝜑 = { 𝑧𝑎 ↦ 𝑐 } we

have that 𝑙2 is not accepting. Observe that ℎ.free(𝑎) ∈ S(O) means 𝑙1 is not accepting as

well. If we have 𝑐 ≠ 𝑎, then (𝑙1, 𝜑)−−−−−→
free(𝑎) (𝑙1, 𝜑). So we get (𝐿2, 𝜑)−−−−−−−−→

ℎ.free(𝑎).ℎ′ (𝑙2, 𝜑) by As-

sumption 5.2. Otherwise, there is a program step (𝑙1, 𝜑)−−−−−→
free(𝑎) (𝑙 ′1, 𝜑) for some 𝑙 ′1. Note that

location 𝑙
′
1 is not accepting because we have ℎ.free(𝑎) ∈ S(O). Now, let 𝑙 ′2 be any location

with (𝑙 ′1, 𝜑)−→ℎ
′

(𝑙 ′2, 𝜑). By denition, we know that only a free(𝑎) event can take OBase to an

accepting location for 𝜑 . That is, 𝑙 ′2 is not accepting because of 𝑎 ∉ freesℎ′ . Altogether, we

obtain ℎ.free(𝑎).ℎ′ ∈ S(OBase) in any case. That is, we arrive at ℎ′ ∈ FOBase(ℎ.free(𝑎), 𝑏). We

conclude the desired FOBase(ℎ.free(𝑎), 𝑏) = FOBase(ℎ, 𝑏). �

Proof C.37 (Lemma B.57). Let 𝜏, 𝜎 ∈ O⟦P⟧AdrAdr . Let ℎ = H(𝜏) and let ℎ′ = H(𝜎). Let 𝑎, 𝑏 ∈ Adr .

By assumption, we have FO(ℎ, 𝑎) ⊆ FO(ℎ′, 𝑎) as well as 𝑏 ∉ retiredℎ and 𝑏 ∈ freshℎ′ . We

now establish that FO(ℎ, 𝑏) ⊆ FO(ℎ′, 𝑏) holds. By Assumption 5.6, O = OBase × OSMR. By

elision support, Property (ii) of Denition 7.14, we have FOSMR(ℎ, 𝑏) ⊆ FOSMR(ℎ
′
, 𝑏). In order

to conclude, it remains to show FOBase(ℎ, 𝑏) ⊆ FOBase(ℎ
′
, 𝑏). Consider ℎ̂ ∈ FOBase(ℎ, 𝑏). By

denition, we have:

freesℎ̂ ⊆ {𝑏 } and ℎ.ℎ̂ ∈ S(OBase) .

Let 𝑐 be some address and let 𝜑 = { 𝑧𝑎 ↦ 𝑐 }. Consider the following steps:

(𝐿2, 𝜑)−→ℎ (𝑙1, 𝜑)−→ℎ̂ (𝑙2, 𝜑) and (𝐿2, 𝜑)−→ℎ
′

(𝑙 ′1, 𝜑)−→ℎ̂ (𝑙 ′2, 𝜑) .

From ℎ.ℎ̂ ∈ S(OBase) follows that 𝑙2 is not accepting. We show that 𝑙 ′2 is not accepting either.

⋄ Case 1: 𝑏 = 𝑐

We rst show that 𝑙1 = 𝑙
′
1 holds. Since 𝑏 ∈ freshℎ′ , we have 𝑙

′
1 = 𝐿2. To that end, observe

that 𝑙1 is not accepting. This follows from 𝑙2 being not accepting together with 𝑐 ∉ freesℎ̂
and the fact that only free(𝑐) can take OBase to an accepting location for 𝜑 . That is, we

192 Appendix C Proof of Meta Theory

have 𝑙1 ∈ {𝐿2, 𝐿3 }. Recall that 𝑏 ∉ retiredℎ . This means that, every in∶retire(•, 𝑏) event is
followed by an free(𝑏) event. Hence, 𝑙1 ≠ 𝐿3 according to the transitions inOBase. We arrive

at the desired 𝑙1 = 𝐿2 = 𝑙
′
1. By Assumption 5.2, we get 𝑙2 = 𝑙

′
2. Hence, 𝑙

′
2 is not accepting.

⋄ Case 2: 𝑏 ≠ 𝑐

Assume for a moment that 𝑙 ′1 is not accepting. Then 𝑙2 is not accepting because 𝑐 ∉ freesℎ̂ and

only free(𝑐) can takeOBase to an accepting location for 𝜑 . So it remains to show that location

𝑙
′
1 is not accepting indeed. To that end, recall ℎ

′
= H(𝜎) and 𝜎 ∈ O⟦P⟧∅Adr . As argued before,

OBase reaches its nal location 𝐿1 only upon events evt of the form evt = free(•) and cannot
leave 𝐿1 afterwards. So, if ℎ

′
∉ S(OBase)was true, then there is decomposition of 𝜎 that takes

the form 𝜎 = 𝜎1.act .𝜎2 with act = ⟨𝑡, free(•), up⟩ and H(𝜎1.act) ∉ S(OBase). The latter
meansH(𝜎1.act) ∉ S(O). This contradicts the enabledness of 𝜎1.act and thus contradicts

𝜎 ∈ O⟦P⟧AdrAdr . Hence, ℎ
′
∈ S(OBase). That is, 𝑙 ′1 is not accepting, as required.

That 𝑙 ′2 is not accepting for any 𝜑 means ℎ′.ℎ̂ ∈ S(OBase). Hence, ℎ̂ ∈ FOBase(ℎ
′
, 𝑏) as required.

�

Proof C.38 (Lemma B.58). Follows from the fact that swapadr is a bijection. �

Proof C.39 (Lemma B.59). To the contrary, assume there is a shortest history ℎ.evt such that

there are ℎ1.evt1 ≠ ℎ2.evt2 with swapadr(ℎ1.evt1) = ℎ.evt = swapadr(ℎ2.evt2). Note that ℎ1.evt1
and ℎ2.evt2 and ℎ.evt all must have the same length. Also note that ℎ.evt is indeed a shortest

such history because the claim holds for 𝜖 . Let evt be of the form evt ≡ in∶func(𝑡, 𝑣). By

choice, we have swaphist(evt𝑖) = evt. That is, evt𝑖 must be of the form evt𝑖 ≡ in∶func(𝑡, 𝑣𝑖)
with 𝑣 = swapadr(𝑣𝑖). So 𝑣1 = swap−1adr(𝑣) = 𝑣2. Hence, evt1 = evt2. Moreover, ℎ1 = ℎ2 by

minimality of ℎ.evt. Altogether, we obtain ℎ1.evt1 = ℎ2.evt2 which contradicts the assumption.

The remaining cases follow analogously. �

Proof C.40 (Lemma B.60). If ℎ ∈ 𝐻 , then ℎ
′
∈ swaphist(𝐻) for swaphist(ℎ) = ℎ

′ by denition.

For the reverse direction, we know that there is some ℎ̂ ∈ 𝐻 with swaphist(ℎ̂) = ℎ
′. Lemma B.59

yields ℎ̂ = ℎ. This yields ℎ ∈ 𝐻 as desired. �

Proof C.41 (Lemma B.61). Consider 𝑎′ ∈ Adr . Since swapadr is a bijection, there is 𝑎 ∈ Adr

such that 𝑎′ = swapadr(𝑎) and 𝑎
′
∉ swapadr(Adr \ {𝑎 }). Hence, 𝑎 ∉ 𝐴1 ⟹ 𝑎

′
∉ swapadr(𝐴1).

Moreover, 𝑎 ∈ 𝐴1 ⟹ 𝑎
′
∈ swapadr(𝐴1) by choice of 𝑎. So 𝑎

′
∈ swapadr(𝐴1) ⟺ 𝑎 ∈ 𝐴1.

Similarly, 𝑎′ ∈ swapadr(𝐴2) ⟺ 𝑎 ∈ 𝐴2. Thus, 𝑎
′
∈ swapadr(𝐴1)⊗swapadr(𝐴2) ⟺ 𝑎 ∈ 𝐴1⊗𝐴2.

With the same arguments we get 𝑎 ∈ 𝐴1 ⊗𝐴2 ⟺ 𝑎
′
∈ swapadr(𝐴1 ⊗𝐴2), concluding the rst

equivalence.

As before, we have

𝑎
′
.next ∈ swapexp(𝐵1) ⟺ 𝑎.next ∈ 𝐵1 and 𝑎

′
.next ∈ swapexp(𝐵2) ⟺ 𝑎.next ∈ 𝐵2

Section C.3 Reductions 193

and derive 𝑎′.next ∈ swapexp(𝐵1) ⊗ swapexp(𝐵2) ⟺ 𝑎.next ∈ 𝐵1 ⊗ 𝐵2. And with the same

arguments we get 𝑎.next ∈ 𝐵1⊗𝐵2 ⟺ 𝑎
′
.next ∈ swapexp(𝐵1⊗𝐵2). This concludes the second

equivalence.

Consider now some history ℎ
′. Since swapadr is a bijection, there is ℎ with swaphist(ℎ) = ℎ

′.

Then, Lemma B.60 yields ℎ′ ∈ swaphist(𝐶1) ⟺ ℎ ∈ 𝐶1. Similarly, ℎ′ ∈ swaphist(𝐶2) ⟺ ℎ ∈ 𝐶2.

We arrive at ℎ′ ∈ swaphist(𝐶1) ⊗ swaphist(𝐶2) ⟺ ℎ ∈ 𝐶1 ⊗ 𝐶2. Finally, Lemma B.60 yields

that ℎ ∈ 𝐶1 ⊗𝐶2 ⟺ ℎ
′
∈ swaphist(𝐶1 ⊗𝐶2) holds. This concludes the third equivalence. �

Proof C.42 (Lemma B.62). Consider some event evt ≡ in∶func(𝑡, 𝑣). Then we have:

swap−1hist(swaphist(evt)) = swap−1hist(swaphist(in∶func𝑡, 𝑣)) = swap−1hist(in∶func(𝑡, swapadr(𝑣)))

= in∶func(𝑡, swap−1adr(swapadr(𝑣))) = in∶func(𝑡, 𝑣) .

Analogously, for free(𝑎) and re∶func(𝑡). The overall claim follows then from inductively

applying the above to ℎ. In the base case, we have ℎ = 𝜖 and swap−1hist(swaphist(𝜖)) = 𝜖 by

denition. For ℎ.evt one has

swap−1hist(swaphist(ℎ.evt)) = swap−1hist(swaphist(ℎ).swaphist(evt))

= swap−1hist(swaphist(ℎ)).swap
−1
hist(swaphist(evt)) = ℎ.evt

where the last equality is due to induction (for ℎ) and due to the above reasoning (for evt). �

Proof C.43 (Lemma B.63). We rst show the following auxiliary:

(𝑙, 𝜑)−→ℎ (𝑙 ′, 𝜑) ⟺ (𝑙, swapadr ◦ 𝜑)−−−−−−−→
swaphist(ℎ) (𝑙 ′, swapadr ◦ 𝜑) . (8)

To that end, let (𝑙, 𝜑)−−→evt (𝑙 ′, 𝜑) be some SMR automaton step and let 𝑧 = dom(𝜑) be the SMR

automaton variables. We show that also

(𝑙, 𝜑 ′)−−−−−−−−→swaphist(evt) (𝑙 ′, 𝜑 ′) with 𝜑
′
= swapadr ◦ 𝜑

is an SMR automaton step. We focus on events of the form evt ≡ in∶func(𝑡, 𝑣); the remaining

cases follow analogously. By the denition, there is a transition

𝑙−−−−−−→
func(𝑟), 𝑔

𝑙
′ such that 𝑔[𝑟 ↦ 𝑣, 𝑧 ↦ 𝜑(𝑧)] ⊨⊨true .

Now, turn to swaphist(evt). It takes the form swaphist(evt) ≡ in∶func(𝑤) with𝑤 = swapadr(𝑣).
Hence, the above transition matches. We show that it is also enabled. To that end, we need show

that the guard evaluates to true, i.e., 𝑔[𝑟 ↦ 𝑤, 𝑧 ↦ 𝜑
′(𝑧)] ⊨⊨true. Intuitively, this holds because

194 Appendix C Proof of Meta Theory

guards are composed of (in)equalities which are stable under the bijection swapadr . Formally, 𝑔 is

equivalent to:

𝑔 ⊨⊨⋁
𝑖

⋀
𝑗

var𝑖, 𝑗,1 ≜ var𝑖, 𝑗,2 with var𝑖, 𝑗,𝑘 ∈ { 𝑟, 𝑧 } and ≜∈ {=,≠ } .

Hence, we have to show

(var ≜ var ′)[𝑟 ↦ 𝑣, 𝑧 ↦ 𝜑(𝑧)] ⊨⊨true ⟺ (var ≜ var ′)[𝑟 ↦ 𝑤, 𝑧 ↦ 𝜑
′(𝑧)] ⊨⊨true

for every 𝑖, 𝑗 and var = var𝑖, 𝑗,1 and var ′ = var𝑖, 𝑗,2. We conclude this as follows:

(var ≜ var ′)[𝑟 ↦ 𝑣, 𝑧 ↦ 𝜑(𝑧)] ⊨⊨true

⟺ var[𝑟 ↦ 𝑣, 𝑧 ↦ 𝜑(𝑧)] ≜ var ′[𝑟 ↦ 𝑣, 𝑧 ↦ 𝜑(𝑧)]

⟺ swapadr(var[𝑟 ↦ 𝑣, 𝑧 ↦ 𝜑(𝑧)]) ≜ swapadr(var
′[𝑟 ↦ 𝑣, 𝑧 ↦ 𝜑(𝑧)])

⟺ var[𝑟 ↦ swapadr(𝑣), 𝑧 ↦ swapadr(𝜑(𝑧))] ≜ var ′[𝑟 ↦ swapadr(𝑣), 𝑧 ↦ swapadr(𝜑(𝑧))]

⟺ var[𝑟 ↦ 𝑤, 𝑧 ↦ 𝜑
′(𝑧)] ≜ var ′[𝑟 ↦ 𝑤, 𝑧 ↦ 𝜑

′(𝑧)]

⟺ (var ≜ var ′)[𝑟 ↦ 𝑤, 𝑧 ↦ 𝜑
′(𝑧)] ⊨⊨true

where the second equivalence holds because swapadr is a bijections, and the third equivalence

holds because var and var ′ are either contained in 𝑟 or 𝑧 by the denition of SMR automata. We

conclude (8).

Altogether, the overall implication

(𝑙, 𝜑)−→ℎ (𝑙 ′, 𝜑) ⟹ (𝑙, swapadr ◦ 𝜑)−−−−−−−→
swaphist(ℎ) (𝑙 ′, swapadr ◦ 𝜑)

follows by applying (8) inductively to every event/step of history ℎ. For the reverse direction,

we use Lemma B.58. More precisely, we apply (8) to (𝑙, swapadr ◦ 𝜑)−−−−−−−→
swaphist(ℎ) (𝑙 ′, swapadr ◦ 𝜑)

using the address mapping swap−1adr . This yields:

(𝑙, swapadr ◦ 𝜑)−−−−−−−→
swaphist(ℎ) (𝑙 ′, swapadr ◦ 𝜑)

⟹ (𝑙, swap−1adr ◦ swapadr ◦ 𝜑)−−−−−−−−−−−−−→
swap−1hist(swaphist(ℎ)) (𝑙 ′, swap−1adr ◦ swapadr ◦ 𝜑) .

Then, Lemma B.62 together with swap−1adr ◦ swapadr = id gives:

(𝑙, swap−1adr ◦ swapadr ◦ 𝜑)−−−−−−−−−−−−−→
swap−1hist(swaphist(ℎ)) (𝑙 ′, swap−1adr ◦ swapadr ◦ 𝜑)

⟹ (𝑙, swapadr ◦ 𝜑)−−−−−−−→
swaphist(ℎ) (𝑙 ′, swapadr ◦ 𝜑) .

This concludes the claim. �

Section C.3 Reductions 195

Proof C.44 (Lemma B.64). Let 𝑎 ∈ Adr . We conclude as follows:

ℎ
′
∈ FO(ℎ, 𝑎)

⟺ ℎ.ℎ
′
∈ S(O) ∧ frees(ℎ′) ⊆ {𝑎 }

⟺ swaphist(ℎ).swaphist(ℎ
′) ∈ S(O) ∧ frees(swaphist(ℎ

′)) ⊆ { swapadr(𝑎) }

⟺ swaphist(ℎ
′) ∈ FO(swaphist(ℎ), swapadr(𝑎))

where the second equivalence holds because of Lemma B.63. �

Proof C.45 (Theorem B.65). We proceed by induction over the structure of computations. In the

base case, we have 𝜏 = 𝜖 . By denition, choosing 𝜎 = 𝜖 satises the claim. For the induction

step, consider some 𝜏 .act ∈ O⟦P⟧𝐴Adr and assume that we have already constructed 𝜎 with:

(P1) 𝜎 ∈ O⟦P⟧swapadr(𝐴)Adr

(P2) ∀pexp ∈ PExp. 𝑚𝜎(swapexp(pexp)) = swapadr(𝑚𝜏(pexp))
(P3) ∀dexp ∈ DExp. 𝑚𝜎(swapexp(dexp)) =𝑚𝜏(dexp)
(P4) valid𝜎 = swapexp(valid𝜏)
(P5) freed𝜎 = swapadr(freed𝜏)
(P6) fresh𝜎 = swapadr(fresh𝜏)
(P7) H(𝜎) = swaphist(H(𝜏))
(P8) ctrl(𝜎) = ctrl(𝜏)

Let act = ⟨𝑡, com, up⟩. We show that there is act ′ = ⟨𝑡, com′
, up′⟩ such that 𝜎.act ′ satises the

claim, that is, satises the following:

(G1) 𝜎.act ′ ∈ O⟦P⟧swapadr(𝐴)Adr

(G2) ∀pexp ∈ PExp. 𝑚𝜎.act ′(swapexp(pexp)) = swapadr(𝑚𝜏 .act(pexp))
(G3) ∀dexp ∈ DExp. 𝑚𝜎.act ′(swapexp(dexp)) =𝑚𝜏 .act(dexp)
(G4) valid𝜎.act ′ = swapexp(valid𝜏 .act)
(G5) freed𝜎.act ′ = swapadr(freed𝜏 .act)
(G6) fresh𝜎.act ′ = swapadr(fresh𝜏 .act)
(G7) H(𝜎.act ′) = swaphist(H(𝜏 .act))
(G8) ctrl(𝜎.act ′) = ctrl(𝜏 .act)

We choose com′
= com if com /≡ free(𝑎) and com /≡ env(𝑎). Otherwise, we replace the address

that is used: com′
= free(swapadr(𝑎)) or com′

= env(swapadr(𝑎)). Thus, (G8) will follow

from (P8) together with the semantics; we will not comment on this property hereafter. For (G1)

we will only argue that act ′ is enabled after 𝜎 . This, together with (P1) yields the desired property.

We do a case distinction on the executed command com.

⋄ Case 1: com ≡ 𝑝 ∶= 𝑞

Let 𝑎 = 𝑚𝜏(𝑏). The update is up = [𝑝 ↦ 𝑎]. Choose up′ = [𝑝 ↦ swapadr(𝑎)]. Then, (G5)

196 Appendix C Proof of Meta Theory

to (G7) follow from (P5) to (P7) because the fresh/freed addresses are not changed and no

event is emitted.

⋄ Ad (G1). We have to show that swapadr(𝑎) =𝑚𝜎(𝑞) holds. By the choice of 𝑎, this boils

down to showing𝑚𝜎(𝑞) = swapadr(𝑚𝜏(𝑞)). This follows from (P2) with swapexp(𝑞) = 𝑞.

⋄ Ad (G2). For 𝑝 the claim follows by choice of up′. So consider pexp ∈ PExp \ { 𝑝 }. Then,
we conclude as follows:

𝑚𝜎.act ′(swapexp(pexp)) =𝑚𝜎(swapexp(pexp)) = swapadr(𝑚𝜏(pexp))

= swapadr(𝑚𝜏 .act(pexp))

where the rst equality holds because only 𝑝 is updated by up′ and swapexp(pexp) ≠ 𝑝 ,

the second equality holds by (P2), and the third equality holds because only 𝑝 is updated

by up.

⋄ Ad (G3). Neither up nor up′ update data expressions. We get𝑚𝜏 .act(dexp) =𝑚𝜏(dexp)
and𝑚𝜎.act ′(dexp) =𝑚𝜎(dexp) for all dexp ∈ DExp. Hence, the claim follows from (P3).

⋄ Ad (G4). By swapexp(𝑞) = 𝑞 we have 𝑞 ∈ valid𝜏 ⟺ 𝑞 ∈ valid𝜎 . We conclude by (P4),

Lemma B.61, and the denition of validity and swapexp as follows:

valid𝜎.act ′ = valid𝜎 ⊗ {𝑝 } = swapexp(valid𝜏)⊗ swapexp({𝑝 })

= swapexp(valid𝜏 ⊗ { 𝑝 }) = swapexp(valid𝜏 .act)

with ⊗ ∶= ∪ if 𝑞 ∈ valid𝜏 and ⊗ ∶= \ otherwise.

⋄ Case 2: com ≡ 𝑝 = 𝑞.next

Let 𝑎 =𝑚𝜏(𝑞). By denition, 𝑎 ≠ seg. Let 𝑏 =𝑚𝜏(𝑎.next). So the update is up = [𝑝 ↦ 𝑏].
We choose up′ = [𝑝 ↦ swapadr(𝑏)]. Then, (G5) to (G7) follow immediately from (P5) to (P7)

because the fresh/freed addresses are not changed and no event is emitted.

⋄ Ad (G1). Let 𝑎′ =𝑚𝜎(𝑞) and 𝑏 ′ =𝑚𝜎(𝑎′.next). We have to show 𝑏
′
= swapadr(𝑏). First,

note that by (P2) we have:

𝑎
′
=𝑚𝜎(𝑞) =𝑚𝜎(swapexp(𝑞)) = swapadr(𝑚𝜏(𝑞)) = swapadr(𝑎) .

Observe that this means 𝑎′ ≠ seg. Then, we conclude as follows:

𝑏
′
=𝑚𝜎(𝑎′.next) =𝑚𝜎(swapadr(𝑎).next) =𝑚𝜎(swapexp(𝑎.next))

= swapadr(𝑚𝜏(𝑎.next)) = swapadr(𝑏) .

Section C.3 Reductions 197

⋄ Ad (G2). For 𝑝 the claim follows by choice of up′. For pexp ∈ PExp \ { 𝑝 } the claim

follows from (P2) together with up and up′ not modifying the valuation of pexp, as in the

previous case.

⋄ Ad (G3). Neither up nor up′ update data expressions. Hence, the claim follows by (P3).

⋄ Ad (G4). By denition, swapexp(𝑞) = 𝑞. So (P4) yields 𝑞 ∈ valid𝜏 ⟺ 𝑞 ∈ valid𝜎 .

Since (G1) from above gives 𝑎′ = swapadr(𝑎), we have swapexp(𝑎.next) = 𝑎
′
.next. As

a consequence, (P4) yields 𝑎.next ∈ valid𝜏 ⟺ 𝑎
′
.next ∈ valid𝜎 . This means we

have 𝑝 ∈ valid𝜏 .act ⟺ 𝑝 ∈ valid𝜎.act ′ because𝑚𝜏(𝑞) ∈ Adr . Together with (P4) this

concludes the claim because act/act ′ aects only the validity of 𝑝 .

⋄ Case 3: com ≡ 𝑝.next = 𝑞

Analogous to the previous case.

⋄ Case 4: com ≡ 𝑢 = op(𝑢1, . . . , 𝑢𝑛)
The update is up = [𝑢 ↦ 𝑑] with 𝑑 = op(𝑚𝜏(𝑢1), . . . ,𝑚𝜏(𝑢1)). Choose up′ = up. Since the

pointer expression valuations, the validity, and the fresh/freed address are not altered as

well as no event is emitted by act/act ′, (G2) and (G4) to (G7) follow immediately from (P2)

and (P4) to (P7).

⋄ Ad (G1). By (P3) we have𝑚𝜎(𝑢𝑖) =𝑚𝜏(𝑢𝑖). Hence, act ′ is enabled after 𝜎 .

⋄ Ad (G3). We have𝑚𝜎.act ′(swapexp(𝑢)) = 𝑚𝜎.act ′(𝑢) = 𝑑 = 𝑚𝜏 .act(𝑢). And because no

other data expressions are updated by up/up′, the claim follows from (P3).

⋄ Case 5: com ≡ 𝑢 = 𝑞.data

Let 𝑎 = 𝑚𝜏(𝑞). By denition, 𝑎 ≠ seg. Let 𝑑 = 𝑚𝜏(𝑎.data). So up = [𝑢 ↦ 𝑑]. Choose
up′ = up. Since the pointer expression valuations, the validity, and the fresh/freed address

are not altered as well as no event is emitted by act/act ′, (G2) and (G4) to (G7) follow from

(P2) and (P4) to (P7)

⋄ Ad (G1). Let 𝑎′ =𝑚𝜎(𝑞) and 𝑑 ′ =𝑚𝜎(𝑎′.data). For enabledness of act ′, we have to show
𝑑
′
= 𝑑 . To see this, rst note that by (P2) we have:

𝑎
′
=𝑚𝜎(𝑞) =𝑚𝜎(swapexp(𝑞)) = swapadr(𝑚𝜏(𝑞)) = swapadr(𝑎) .

This means 𝑎′ ≠ seg. Together with (P3) we conclude as follows:

𝑑
′
=𝑚𝜎(𝑎′.data) =𝑚𝜎(swapexp(𝑎.data)) =𝑚𝜏(𝑎.data) = 𝑑 .

⋄ Ad (G3). We have𝑚𝜎.act ′(𝑢) = 𝑑 = 𝑚𝜏 .act(𝑢) = 𝑚𝜏 .act(swapexp(𝑢)). And because no

other data expressions are updated by up/up′, the claim follows from (P3).

198 Appendix C Proof of Meta Theory

⋄ Case 6: com ≡ 𝑝.data = 𝑢

Analogous to the previous case.

⋄ Case 7: com ≡ 𝑝 ∶= malloc

Let 𝑎 = 𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some 𝑑 . By

denition, we have 𝑎 ∈ fresh𝜏 ∪ (freed𝜏 ∩𝐴). Choose up′ as follows

up′ = [𝑝 ↦ swapadr(𝑎), swapadr(𝑎).next ↦ seg, swapadr(𝑎).data ↦ 𝑑] .

Then, (G7) follows immediately from (P7) because no event is emitted.

⋄ Ad (G1). We have to show that swapadr(𝑎) ∈ fresh𝜎 ∪ (freed𝜎 ∩ swapadr(𝐴)). By (P5)

and (P6) and Lemma B.61 we have:

fresh𝜎 ∪ (freed𝜎 ∩ swapadr(𝐴))

= swapadr(fresh𝜏) ∪ (swapadr(freed𝜏) ∩ swapadr(𝐴))

= swapadr(fresh𝜏 ∪ (freed𝜏 ∩𝐴)) .

Then, 𝑎 ∈ fresh𝜏 ∪ (freed𝜏 ∩𝐴) yields swapadr(𝑎) ∈ fresh𝜎 ∪ (freed𝜎 ∩ swapadr(𝐴)).

⋄ Ad (G2). We have

𝑚𝜎.act ′(swapexp(𝑝)) =𝑚𝜎.act ′(𝑝) = swapadr(𝑎) = swapadr(𝑚𝜏 .act(𝑝))

and 𝑚𝜎.act ′(swapexp(𝑎.next)) =𝑚𝜎.act ′(swapadr(𝑎).next) = seg

= swapadr(seg) = swapadr(𝑚𝜏 .act(𝑎.next)) .

Since no other pointer expressions are updated, the claim follows from (P2).

⋄ Ad (G3). We have:

𝑚𝜎.act ′(swapexp(𝑎.data)) =𝑚𝜎.act ′(swapadr(𝑎).data) = 𝑑 =𝑚𝜏 .act(𝑎.data) .

Since no other data expression is updated, the follows from (P3).

⋄ Ad (G4). We conclude using (P4) and Lemma B.61 as follows:

valid𝜎.act ′ = valid𝜎 ∪ {𝑝, swapadr(𝑎).next } = swapexp(valid𝜏) ∪ swapexp({𝑝, 𝑎.next })

= swapexp(valid𝜏 ∪ { 𝑝, 𝑎.next }) = swapexp(valid𝜏 .act) .

⋄ Ad (G5). We conclude using (P5) and Lemma B.61 as follows:

freed𝜎.act ′ = freed𝜎 \ swapadr(𝑎) = swapadr(freed𝜏) \ swapadr(𝑎)

= swapadr(freed𝜏 \ 𝑎) = swapadr(freed𝜏 .act) .

Section C.3 Reductions 199

⋄ Ad (G6). We conclude using (P6) and Lemma B.61 as follows:

fresh𝜎.act ′ = fresh𝜎 \ swapadr(𝑎) = swapadr(fresh𝜏) \ swapadr(𝑎)

= swapadr(fresh𝜏 \ 𝑎) = swapadr(fresh𝜏 .act) .

⋄ Case 8: com ≡ free(𝑎)
The update is up = ∅. Choose com′

= free(swapadr(𝑎)) and up′ = ∅. Then, (G2) and (G3)

follow from (P2) and (P3) because𝑚𝜏 =𝑚𝜏 .act and𝑚𝜎 =𝑚𝜎.act ′ .

⋄ Ad (G1). By the semantics, free(𝑎) ∈ FO(𝜏, 𝑎). By (P7) together with Lemma B.64 we

get free(swapadr(𝑎)) ∈ FO(𝜎, swapadr(𝑎)). Hence, act
′ is enabled after 𝜎 .

⋄ Ad (G4). Consider pexp′ ∈ PExp. Since swapadr is a bijection, there is some pexp ∈ PExp

such that swapexp(pexp) = pexp′. First, we get:

pexp′ ∈ valid𝜎 ⟺ swapexp(pexp) ∈ valid𝜎

⟺ swapexp(pexp) ∈ swapexp(valid𝜏) ⟺ pexp ∈ valid𝜏

where the second equivalence is due to (P4) and the third equivalence holds since swapadr
is a bijection. Second, we have:

𝑚𝜎(pexp′) ≠ swapadr(𝑎) ⟺ 𝑚𝜎(swapexp(pexp)) ≠ swapadr(𝑎)

⟺ swapadr(𝑚𝜏(pexp)) ≠ swapadr(𝑎) ⟺ 𝑚𝜏(pexp) ≠ 𝑎

where the second equivalence is due to (P2) and the third equivalence holds since swapadr
is a bijection. Last, we have:

pexp′ ∩ Adr ≠ { swapadr(𝑎) } ⟺ swapexp(pexp) ∩ Adr ≠ { swapadr(𝑎) }

⟺ pexp ∩ Adr ≠ {𝑎 }

Altogether, this gives:

pexp′ ∈ valid𝜎.act ′

⟺ pexp′ ∈ valid𝜎 ∧𝑚𝜎(pexp′) ≠ swapadr(𝑎) ∧ pexp′ ∩ Adr ≠ { swapadr(𝑎) }

⟺ pexp ∈ valid𝜏 ∧𝑚𝜏(pexp) ≠ 𝑎 ∧ pexp ∩ Adr ≠ {𝑎 }

⟺ pexp ∈ valid𝜏 .act

⟺ swapexp(pexp) ∈ swapexp(valid𝜏 .act)

⟺ pexp′ ∈ swapexp(valid𝜏 .act)

where the last but rst equivalence holds because swapadr is a bijection.

200 Appendix C Proof of Meta Theory

⋄ Ad (G5). We conclude using (P5) and Lemma B.61:

freed𝜎.act ′ = freed𝜎 ∪ { swapadr(𝑎) } = swapadr(freed𝜏) ∪ { swapadr(𝑎) }

= swapadr(freed𝜏 ∪ {𝑎 }) = swapadr(freed𝜏 .act) .

⋄ Ad (G6). We conclude using (P6) and Lemma B.61:

fresh𝜎.act ′ = fresh𝜎 \ { swapadr(𝑎) } = swapadr(fresh𝜏) \ { swapadr(𝑎) }

= swapadr(fresh𝜏 \ {𝑎 }) = swapadr(fresh𝜏 .act) .

⋄ Ad (G7). We conclude using (P7)

H(𝜎.act ′) = H(𝜎).free(swapadr(𝑎)) = swaphist(H(𝜏)).swaphist(free(𝑎))

= swaphist(H(𝜏).free(𝑎)) = swaphist(H(𝜏 .act)) .

⋄ Case 9: com ≡ assume cond

The update is up = ∅. Choose up′ = ∅. Since the memory and the fresh/freed address

are not altered as well as no event is emitted by act/act ′, (G2), (G3) and (G5) to (G7) follow

immediately from (P2), (P3) and (P5) to (P7).

⋄ Ad (G1). First, consider the case where cond is a condition over data variables 𝑢,𝑢 ′.

By (P3) we have𝑚𝜎(𝑢) = 𝑚𝜏(𝑢) and𝑚𝜎(𝑢 ′) = 𝑚𝜏(𝑢 ′). Hence, act ′ is enabled after 𝜎 .

Now, consider the case where cond is a condition over pointer variables 𝑝, 𝑞. We arrive

at𝑚𝜎(𝑝) = swapadr(𝑚𝜏(𝑝)) and𝑚𝜎(𝑞) = swapadr(𝑚𝜏(𝑞)). So we get𝑚𝜎(𝑝) = 𝑚𝜎(𝑞)
i𝑚𝜏(𝑝) =𝑚𝜏(𝑞). Hence, act ′ is enabled after 𝜎 .

⋄ Ad (G4). Note that we have:

valid𝜎.act ′ ≠ valid𝜎

⟺ cond ≡ 𝑝 = 𝑞 ∧ {𝑝, 𝑞 } ∩ valid𝜎 ≠ ∅∧ { 𝑝, 𝑞 } /⊆ valid𝜎

⟺ cond ≡ 𝑝 = 𝑞 ∧ {𝑝, 𝑞 } ∩ swapexp(valid𝜏) ≠ ∅∧ {𝑝, 𝑞 } /⊆ swapexp(valid𝜏)

⟺ cond ≡ 𝑝 = 𝑞 ∧ {𝑝, 𝑞 } ∩ valid𝜏 ≠ ∅∧ { 𝑝, 𝑞 } /⊆ valid𝜏

⟺ valid𝜏 .act ≠ valid𝜏

where the second equivalence is by (P4). Consider the case valid𝜎.act ′ ≠ valid𝜎 . So we

conclude using (P4) and Lemma B.61:

valid𝜎.act ′ = valid𝜎 ∪ {𝑝, 𝑞 } = swapexp(valid𝜏) ∪ swapexp({𝑝, 𝑞 })

= swapexp(valid𝜏 ∪ { 𝑝, 𝑞 }) = swapexp(valid𝜏 .act) .

Section C.3 Reductions 201

In all other cases, we have valid𝜏 .act = valid𝜏 and valid𝜎.act ′ = valid𝜎 . Then, the claim

follows immediately from (P4).

⋄ Case 10: com ≡ in∶func(𝑟1, . . . , 𝑟𝑛)
The update is up = ∅ and we choose up′ = ∅. Since the memory, the validity, and the

fresh/freed address are not altered, (G2) to (G6) follow immediately from (P2) to (P6).

⋄ Ad (G1). Consider some 𝑖 ∈ { 1, . . . , 𝑛 }. By denition, we have𝑚𝜏(𝑝𝑖) ∈ Adr ∪ Dom.

Hence, we get swapadr(𝑚𝜏(𝑝𝑖)) ∈ Adr ∪ Dom. Then (P2) yields𝑚𝜎(𝑝𝑖) ∈ Adr ∪ Dom.

So act is enabled.

⋄ Ad (G7). We have𝑚𝜏(𝑟𝑖),𝑚𝜎(𝑟𝑖) ∈ Adr ∪ Dom as observed for (G1) above. Let act emit

the event in∶func(𝑡, 𝑣𝑖 , . . . , 𝑣𝑛) with 𝑣𝑖 =𝑚𝜏(𝑟𝑖). By (P2) and (P3),𝑚𝜎(𝑟𝑖) = swapadr(𝑣𝑖).
So, act ′ emits the event in∶func(𝑡, swapadr(𝑣1), . . . , swapadr(𝑣𝑛)). We conclude by (P7):

H(𝜎.act ′) = H(𝜎).in∶func(𝑡, swapadr(𝑣1), . . . , swapadr(𝑣𝑛))

= swaphist(H(𝜏)).swaphist(in∶func(𝑡, 𝑣1, . . . , 𝑣𝑛))

= swaphist(H(𝜏).in∶func(𝑡, 𝑣1, . . . , 𝑣𝑛)) = swaphist(H(𝜏 .act)) .

⋄ Case 11: com ≡ re

Follows analogously to the previous case.

⋄ Case 12: com ≡ env(𝑎)
We have up = [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some 𝑑 . By denition, 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

Choose com′
= env(swapadr(𝑎)) and [swapadr(𝑎).next ↦ seg, swapadr(𝑎).data ↦ 𝑑]. Then,

(G4) to (G7) follow immediately from (P4) to (P7).

⋄ Ad (G1). We have to show that swapadr(𝑎) ∈ fresh𝜎 ∪ freed𝜎 . This follows immediately

from (P5) and (P6) together with 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

⋄ Ad (G2). We have:

𝑚𝜎.act ′(swapexp(𝑎.next)) =𝑚𝜎.act ′(swapadr(𝑎).next) = ⊥

=𝑚𝜏 .act(𝑎.next) = swapadr(𝑚𝜏 .act(𝑎.next)) .

For all other pexp ∈ PExp \ 𝑎.next we conclude with (P2) as follows:

𝑚𝜎.act ′(swapexp(pexp)) =𝑚𝜎(swapexp(pexp)) = swapadr(𝑚𝜏(pexp))

= swapadr(𝑚𝜏 .act(pexp)) .

202 Appendix C Proof of Meta Theory

⋄ Ad (G3). We have:

𝑚𝜎.act ′(swapexp(𝑎.data)) =𝑚𝜎.act ′(swapadr(𝑎).data) = 𝑑 =𝑚𝜏 .act(𝑎.data) .

For all other dexp ∈ DExp \ {𝑎.data } we conclude with (P3) as follows:

𝑚𝜎.act ′(swapexp(dexp)) =𝑚𝜎(swapexp(dexp)) =𝑚𝜏(dexp) =𝑚𝜏 .act(dexp) .

⋄ Case 13: com ∈ { skip, beginAtomic, endAtomic, @inv • }
Since act does not aect the computation, (G1) to (G8) follows immediately from (P1) to (P8).

The case distinction is complete and thus concludes the claim. �

Proof C.46 (Lemma B.66). Let O support elision. Let 𝑏 ∈ fresh𝜏 \𝐴. Let swapadr ∶ Adr → Adr

be the address mapping dened by swapadr(𝑎) = 𝑏, swapadr(𝑏) = 𝑎, and swapadr(𝑐) = 𝑐 such

that 𝑎 ≠ 𝑐 ≠ 𝑏. Theorem B.65 yields 𝜎 ∈ O⟦P⟧swapadr(𝐴)Adr with

• 𝑚𝜎 ◦ swapexp = swapadr ◦𝑚𝜏 ,

• H(𝜎) = swaphist(H(𝜏)),
• valid𝜎 = swapexp(valid𝜏),
• fresh𝜎 = swapadr(fresh𝜏),
• freed𝜎 = swapadr(freed𝜏), and
• ctrl(𝜎) = ctrl(𝜏).

We show that 𝜎 satises the claim. First, note that swapadr(𝐴) = 𝐴 by 𝑎, 𝑏 ∉ 𝐴. Consequently,

we have 𝜎 ∈ O⟦P⟧𝐴Adr . We rst show the following auxiliaries:

𝑎.next, 𝑏.next ∉ valid𝜏 (9)

𝑓 = 𝑓
−1 for 𝑓 ∈ { swapadr , swapexp, swaphist } (10)

∀pexp ∈ valid𝜏 . pexp ≡ swapexp(pexp) (11)

∀pexp ∈ valid𝜏 . 𝑚𝜏(pexp) = swapadr(𝑚𝜏(pexp)) (12)

∀𝑐 ∈𝑚𝜏(valid𝜏). 𝑐 .data ≡ swapexp(𝑐.data) (13)

∀𝑐 ∈ Adr \ {𝑎, 𝑏 }. FO(𝜏, 𝑐) ⊆ FO(𝜎, 𝑐) (14)

∀𝑐 ∈ 𝐴. 𝑐 ∈ retired𝜏 ⟺ 𝑐 ∈ retired𝜎 (15)

⋄ Ad (9). Holds by 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏), and by 𝑏 ∈ fresh𝜏 together with Lemma B.48.

⋄ Ad (10). Holds by choice of swapadr .

⋄ Ad (11). Holds by (9) and the denition of swapadr and its induced swapexp.

⋄ Ad (12). Holds by 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏) giving 𝑎 ∉𝑚𝜏(valid𝜏) by Lemma B.35, and 𝑏 ∈ fresh𝜏
giving 𝑏 ∉ range(𝑚𝜏) by Lemma B.42 and thus 𝑏 ∉𝑚𝜏(valid𝜏).

Section C.3 Reductions 203

⋄ Ad (13). From 𝑐 ∈ 𝑚𝜏(valid𝜏) we get some pexp ∈ valid𝜏 with𝑚𝜏(pexp) = 𝑐 . Thus, (12)

yields the following: 𝑐 =𝑚𝜏(pexp) = swapadr(𝑚𝜏(pexp)) = swapadr(𝑐).

⋄ Ad (14). Let 𝑐 ∈ Adr \ {𝑎, 𝑐 }. Then,

FO(𝜏, 𝑐) = FO(H(𝜏), 𝑐) = FO(swaphist(H(𝜏)), 𝑐) = FO(H(𝜎), 𝑐) = FO(𝜎, 𝑐)

where the second equality holds by Lemma B.55 and the third equality holds by the properties

given by Theorem B.65 listed above.

⋄ Ad (15). Let 𝑐 ∈ 𝐴. We have 𝑎 ≠ 𝑐 ≠ 𝑏 and thus swapadr(𝑐) = 𝑐 . To the contrary, assume that

we have 𝑐 ∈ retired𝜏 but 𝑐 ∉ retired𝜎 . The former means that 𝜏 is of the form 𝜏 = 𝜏1.act .𝜏2
with act = ⟨𝑡, com, up⟩ and com ≡ in∶retired𝑝 and𝑚𝜏1(𝑝) = 𝑐 . Let H(𝜏) = ℎ1.evt .ℎ2 such

that we have H(𝜏1) = ℎ1. Then, 𝑐 ∉ freesℎ2
since 𝑐 ∈ retired𝜏 . By the construction of 𝜎

in Proof C.45 of Theorem B.65, we know that 𝜎 is of the form 𝜎 = 𝜎1.act .𝜎2. Moreover,

we have H(𝜎) = swaphist(H(𝜏)). Hence, we get swaphist(H(𝜎)) = H(𝜏). This, in turn,

means that 𝑐 ∉ swap−1hist(freesℎ2
). By swapadr(𝑐) = 𝑐 , we obtain that 𝑐 ∉ freesℎ2

holds.

Further, swap−1hist(in∶retire(𝑡, 𝑐)) = in∶retire(𝑡, 𝑐) by swapadr(𝑐) = 𝑐 . Hence, we arrive at

𝑐 ∈ retired𝜎 . The reverse direction follows analogously.

⋄ Ad 𝜏 ∼ 𝜎 . We already have ctrl(𝜎) = ctrl(𝜏). We get:

dom(𝑚𝜎 ∣valid𝜎)

= valid𝜎 ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜎(valid𝜎) }

= swapexp(valid𝜏) ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈ swapadr(𝑚𝜏(swap−1exp(valid𝜏))) }

= swapexp(valid𝜏) ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈ swapadr(𝑚𝜏(swapexp(valid𝜏))) }

= valid𝜏 ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈ swapadr(𝑚𝜏(valid𝜏)) }

= valid𝜏 ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏(valid𝜏) } = dom(𝑚𝜏 ∣valid𝜏)

where the rst equality is by denition, the second by the properties of 𝜎 , the third by (10),

the fourth by (11), the fth by (12), and the last by denition. Then, we get for all pointer

expression pexp ∈ dom(𝑚𝜎 ∣valid𝜎) ∩ PExp:

𝑚𝜎(pexp) = swapadr(𝑚𝜏(swap−1exp(pexp))) = swapadr(𝑚𝜏(pexp)) =𝑚𝜏(pexp)

using the properties of 𝜎 , the fact that pexp ∈ valid𝜏 must hold, and (10) to (12). Moreover,

we get for dexp ∈ dom(𝑚𝜎 ∣valid𝜎) ∩ DExp:

𝑚𝜎(dexp) =𝑚𝜏(swap−1exp(dexp)) =𝑚𝜏(dexp) .

by (13) because 𝑐.data ∈ dom(𝑚𝜎 ∣valid𝜎) = dom(𝑚𝜏 ∣valid𝜏) implies 𝑐 ∈ 𝑚𝜏(valid𝜏). Alto-
gether, this yields the desired𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎 .

204 Appendix C Proof of Meta Theory

⋄ Ad 𝜏 ≼𝐴 𝜎 . Let 𝑐 ∈ 𝐴. We show 𝜏 ≼𝑐 𝜎 . We have 𝑎 ≠ 𝑐 ≠ 𝑏 and thus swapadr(𝑐) = 𝑐 . So

using (10) we get:

𝑐 ∈ fresh𝜎 ∪ freed𝜎 ⟺ 𝑐 ∈ swapadr(fresh𝜏) ∪ swapadr(freed𝜏)

⟺ 𝑐 ∈ swapadr(fresh𝜏 ∪ freed𝜏)

⟺ swapadr(𝑐) ∈ swapadr(swapadr(fresh𝜏 ∪ freed𝜏))

⟺ 𝑐 ∈ fresh𝜏 ∪ freed𝜏 .

Moreover, we have by (15):

𝑐 ∈ retired𝜏 ⟺ 𝑐 ∈ retired𝜎 .

From (14) we get FO(𝜏, 𝑐) ⊆ FO(𝜎, 𝑐). Then, we have for 𝑝 ∈ PVar :

𝑐 =𝑚𝜎(𝑝) ⟺ 𝑐 = swapadr(𝑚𝜏(swapexp(𝑝)))

⟺ swapadr(𝑐) = swapadr(swapadr(𝑚𝜏(𝑝)))

⟺ 𝑐 =𝑚𝜏(𝑝) .

Now, consider 𝑐 ′ ∈𝑚𝜏(valid𝜏). We have:

𝑐 =𝑚𝜎(𝑐 ′.next) ⟺ 𝑐 = swapadr(𝑚𝜏(swapexp(𝑐
′
.next)))

⟺ swapadr(𝑐) = swapadr(swapadr(𝑚𝜏(swapexp(𝑐
′
.next))))

⟺ 𝑐 =𝑚𝜏(swapexp(𝑐
′
.next)) .

In order to conclude, it remains to show that swapexp(𝑐
′
.next) = 𝑐.next. To that end, it

suces to show that 𝑐 ′ ≠ 𝑎 and 𝑐 ′ ≠ 𝑏. The former follows from 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏) together
with Lemma B.35. The latter follows form 𝑏 ∈ fresh𝜏 together with Lemma B.43.

⋄ Ad 𝜏 ⋖ 𝜎 . Follows from (14) with 𝑎, 𝑏 ∉ adr(𝑚𝜏 ∣valid𝜏) by Lemmas B.35 and B.43.

⋄ Ad 𝑎 ∈ fresh𝜎 . We have 𝑏 ∈ fresh𝜏 . So 𝑎 = swapadr(𝑏) ∈ swapadr(fresh𝜏) = fresh𝜎 .

⋄ Ad retired𝜏 ⊆ retired𝜎 ∪ {𝑎 }. Along the lines of (15), we get retired𝜎 = swapadr(retired𝜏).
Let 𝑐 ∈ retired𝜏 . If 𝑎 ≠ 𝑐 ≠ 𝑏, we immediately get 𝑐 ∈ retired𝜎 . If 𝑎 = 𝑐 , then 𝑐 ∈ {𝑎 }
holds. Otherwise, 𝑏 = 𝑐 . The case cannot apply since 𝑏 ∈ fresh𝜏 gives 𝑏 ∉ retired𝜏 which

contradicts the choice of 𝑐 ∈ retired𝜏 .

⋄ Ad Memory Implication. Let exp, exp′ ∈ VExp(𝜏) with𝑚𝜏(exp) ≠ 𝑚𝜏(exp′). If exp ∈ PVar ,

then swapexp(exp) = exp. Otherwise, exp ≡ 𝑐.next with 𝑐 ∈ 𝑚𝜏(valid𝜏). By assumption

Section C.3 Reductions 205

together with Lemma B.35, 𝑐 ≠ 𝑎. And by Lemma B.43, 𝑐 ≠ 𝑏. So swapexp(exp) = exp must

hold. Similarly, we get swapexp(exp
′) = exp′. Then, we have:

𝑚𝜎(exp) = swapadr(𝑚𝜏(swapexp(exp))) = swapadr(𝑚𝜏(exp))

and 𝑚𝜎(exp′) = swapadr(𝑚𝜏(swapexp(exp
′))) = swapadr(𝑚𝜏(exp′)) .

Since swapadr is a bijection,𝑚𝜏(exp) ≠𝑚𝜏(exp′) implies the desired𝑚𝜎(exp) ≠𝑚𝜎(exp′).

⋄ Ad SMR automaton implication. Assume 𝑎 ∉ fresh𝜏 . Let 𝑐 ∈ fresh𝜎 \ {𝑎 }. From 𝑎 ∉ fresh𝜏
we get swapadr(𝑎) ∉ swapadr(fresh𝜏). Hence, 𝑏 ∉ fresh𝜎 follows from the properties of 𝜎 .

That is, 𝑐 ∈ Adr \ {𝑎, 𝑏 }. So (14) yields the desired FO(𝜏, 𝑐) ⊆ FO(𝜎, 𝑐).

This concludes the claim. �

Proof C.47 (LemmaB.67). Let 𝜏 .act ∈ O⟦P⟧AdrAdr and𝜎 ∈ O⟦P⟧𝐴Adr with 𝜏 ∼ 𝜎 , 𝜏 ≼𝐴 𝜎 , and 𝜏 ⋖𝐴 𝜎 .

Unrolling the premise gives:

(P1) ctrl(𝜏) = ctrl(𝜎)
(P2) 𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎
(P3) ∀𝑏 ∈ adr(𝑚𝜏 ∣valid𝜏) ∪𝐴. FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏)
(P4) ∀𝑎 ∈ 𝐴 ∀𝑝 ∈ PVar . 𝑚𝜏(𝑝) = 𝑎 ⟺ 𝑚𝜎(𝑝) = 𝑎

(P5) ∀𝑎 ∈ 𝐴 ∀𝑏 ∈𝑚𝜏(valid𝜏). 𝑚𝜏(𝑏.next) = 𝑎 ⟺ 𝑚𝜎(𝑏.next) = 𝑎

(P6) ∀𝑎 ∈ 𝐴. 𝑎 ∈ fresh𝜏 ∪ freed𝜏 ⟺ 𝑎 ∈ fresh𝜎 ∪ freed𝜎
(P7) ∀𝑎 ∈ 𝐴. 𝑎 ∈ retired𝜏 ⟺ 𝑎 ∈ retired𝜎

Let act = ⟨𝑡, com, up⟩. We show that there is act ′ = ⟨𝑡, com, up′⟩ such that:

(G0) 𝜎.act ′ ∈ O⟦P⟧𝐴Adr
(G1) ctrl(𝜏 .act) = ctrl(𝜎.act ′)
(G2) 𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜎.act ′∣valid𝜎.act′

(G3) ∀𝑏 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act) ∪𝐴. FO(𝜏 .act, 𝑏) ⊆ FO(𝜎.act ′, 𝑏)
(G4) ∀𝑎 ∈ 𝐴 ∀𝑝 ∈ PVar . 𝑚𝜏 .act(𝑝) = 𝑎 ⟺ 𝑚𝜎.act ′(𝑝) = 𝑎

(G5) ∀𝑎 ∈ 𝐴 ∀𝑏 ∈𝑚𝜏 .act(valid𝜏 .act). 𝑚𝜏 .act(𝑏.next) = 𝑎 ⟺ 𝑚𝜎.act ′(𝑏.next) = 𝑎

(G6) ∀𝑎 ∈ 𝐴. 𝑎 ∈ fresh𝜏 .act ∪ freed𝜏 .act ⟺ 𝑎 ∈ fresh𝜎.act ′ ∪ freed𝜎.act ′

(G7) ∀𝑎 ∈ 𝐴. 𝑎 ∈ retired𝜏 .act ⟺ 𝑎 ∈ retired𝜎.act ′

Because act ′ executes the same command com as act, we get (G1) from (P1) provided (G0) holds.

We do not comment on (G1) in the following.

⋄ Case 1: com ≡ 𝑥 ∶= 𝑦

Let 𝑏 = 𝑚𝜏(𝑞) and 𝑏 = 𝑚𝜎(𝑞). The update is up = [𝑝 ↦ 𝑏]. We choose up′ = [𝑝 ↦ 𝑏
′].

Then, (G0) holds by the choice of up′ together with (P1).

206 Appendix C Proof of Meta Theory

⋄ Ad (G2) for 𝑞 ∈ valid𝜏 . By (P2) and Lemma B.37 we have 𝑞 ∈ valid𝜎 . Furthermore, (P2)

yields 𝑏 = 𝑏
′. We get

𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜏[𝑝 ↦ 𝑏]∣valid𝜏∪{𝑝 } = (𝑚𝜏 ∣valid𝜏)[𝑝 ↦ 𝑏] .

The second equality holds by𝑚𝜏(𝑞) = 𝑏. That is, we preserve 𝑏.data in𝑚𝜏 ∣valid𝜏 and only
need to update the mapping of 𝑝 . Similarly, we get𝑚𝜎.act ′∣valid𝜎.act′

= (𝑚𝜎 ∣valid𝜎)[𝑝 ↦ 𝑏
′].

Then, we conclude by𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎 from (P2) together with 𝑏 = 𝑏
′.

⋄ Ad (G2) for 𝑞 ∉ valid𝜏 . By (P2) together with Lemma B.37 we have 𝑞 ∉ valid𝜎 . We get

𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜏[𝑝 ↦ 𝑏]∣valid𝜏\{𝑝 } =𝑚𝜏 ∣valid𝜏\{𝑝 } .

The last equality holds because the update does not survive the restriction to a set which

is guaranteed not to contain 𝑝 . Similarly, we get 𝑚𝜎.act ′∣valid𝜎.act′
= 𝑚𝜎 ∣valid𝜎\{𝑝 }. We

conclude by:

𝑚𝜏 ∣valid𝜏\{𝑝 } = (𝑚𝜏 ∣valid𝜏)∣valid𝜏\{𝑝 } = (𝑚𝜎 ∣valid𝜎)∣valid𝜏\{𝑝 }

= (𝑚𝜎 ∣valid𝜎)∣valid𝜎\{𝑝 } =𝑚𝜎 ∣valid𝜎\{𝑝 } .

The rst equality is by denition of restrictions, the second equality is due to (P2), the

third one is by (P2) together with Lemma B.37, and the last is again by denition.

⋄ Ad (G3). By (P3) together with the fact that act and act ′ do not emit an event, it is

sucient to show adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏). This follows from Lemma B.47.

⋄ Ad (G4). Let 𝑎 ∈ 𝐴. Only the valuation of 𝑝 is changed by both act and act ′. So by (P4) it

suces to show that𝑚𝜏 .act(𝑝) = 𝑎 ⟺𝑚𝜎.act ′(𝑝) = 𝑎 holds. We conclude by:

𝑚𝜏 .act(𝑝) = 𝑎 ⟺ 𝑚𝜏(𝑞) = 𝑎 ⟺ 𝑚𝜎(𝑞) = 𝑎 ⟺ 𝑚𝜎.act ′(𝑝) = 𝑎

where the rst equivalence holds due to the update up, the second equivalence holds due

to (P4), and the last equivalence holds by up′.

⋄ Ad (G5). Let 𝑎 ∈ 𝐴. Let 𝑐 ∈ 𝑚𝜏 .act(valid𝜏 .act). By Lemma B.47, 𝑐 ∈ 𝑚𝜏(valid𝜏). We

conclude:

𝑚𝜏 .act(𝑐.next) = 𝑎 ⟺ 𝑚𝜏(𝑐.next) = 𝑎 ⟺𝑚𝜎(𝑐.next) = 𝑎

⟺𝑚𝜎.act ′(𝑐.next) = 𝑎

where the rst/last equivalence hold because act/act ′ does not update any pointer selector

and the second equivalence holds by 𝑐 ∈𝑚𝜏(valid𝜏) together with (P5).

⋄ Ad (G6) and (G7). By denition, we have fresh𝜏 = fresh𝜏 .act and freed𝜏 = freed𝜏 .act as

well as retired𝜏 = retired𝜏 .act . Similarly, for 𝜎 . Then, we conclude by (P6) and (P7).

Section C.3 Reductions 207

⋄ Case 2: com ≡ 𝑥 ∶= 𝑞.sel

By assumption, we have 𝑞 ∈ valid𝜏 . Let 𝑏 =𝑚𝜏(𝑞). By the semantics, we get 𝑏 ≠ seg. Hence,

we obtain𝑚𝜎(𝑞) = 𝑏 from (P2). Let 𝑐 =𝑚𝜏(𝑏.next) and let 𝑐 ′ =𝑚𝜎(𝑏.next). The update up
is of the form up = [𝑝 ↦ 𝑐]. We choose up′ = [𝑝 ↦ 𝑐

′]. Then, (G0) holds by the choice of

up′ and (P1).

⋄ Ad (G2) for 𝑏.next ∈ valid𝜏 . By (P2) and Lemma B.37, 𝑏.next ∈ valid𝜎 . So, 𝑐 = 𝑐
′. We

get

𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜏[𝑝 ↦ 𝑐]∣valid𝜏∪{𝑝 } = (𝑚𝜏 ∣valid𝜏)[𝑝 ↦ 𝑐] .

The second equality holds by𝑚𝜏(𝑏.next) = 𝑐 . That is, we preserve 𝑐.data in𝑚𝜏 ∣valid𝜏
and only need to update 𝑝 . Similarly,𝑚𝜎.act ′∣valid𝜎.act′

= (𝑚𝜎 ∣valid𝜎)[𝑝 ↦ 𝑐
′]. Then, we

conclude by𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎 from (P2) together with 𝑐 = 𝑐
′.

⋄ Ad (G2). By (P2) together with Lemma B.37, we have 𝑏.next ∉ valid𝜎 . We get

𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜏[𝑝 ↦ 𝑐]∣valid𝜏\{𝑝 } =𝑚𝜏 ∣valid𝜏\{𝑝 } .

The last equality holds because the update does not survive the restriction to a set which

is guaranteed not to contain 𝑝 . Similarly, we get 𝑚𝜎.act ′∣valid𝜎.act′
= 𝑚𝜎 ∣valid𝜎\{𝑝 }. We

conclude by:

𝑚𝜏 ∣valid𝜏\{𝑝 } = (𝑚𝜏 ∣valid𝜏)∣valid𝜏\{𝑝 } = (𝑚𝜎 ∣valid𝜎)∣valid𝜏\{𝑝 }

= (𝑚𝜎 ∣valid𝜎)∣valid𝜎\{𝑝 } =𝑚𝜎 ∣valid𝜎\{𝑝 } .

The rst equality is by denition of restrictions, the second equality is due to (P2), the

third one is by (P2) together with Lemma B.37, and the last is again by denition.

⋄ Ad (G3). By (P3) together with the fact that act and act ′ do not emit an event, it is

sucient to show adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏). This follows from Lemma B.47.

⋄ Ad (G4). Let 𝑎 ∈ 𝐴. Only the valuation of 𝑝 is changed by both act and act ′. So by (P4) it

suces to show that𝑚𝜏 .act(𝑝) = 𝑎 ⟺𝑚𝜎.act ′(𝑝) = 𝑎 holds. We conclude by:

𝑚𝜏 .act(𝑝) = 𝑎 ⟺ 𝑚𝜏(𝑏.next) = 𝑎 ⟺ 𝑚𝜎(𝑏.next) = 𝑎 ⟺ 𝑚𝜎.act ′(𝑝) = 𝑎

where the rst/last equivalence holds due to the update up/up′. The second equivalence

is due to (P5) because 𝑞 ∈ valid𝜏 from above yields 𝑏 =𝑚𝜏(𝑞) ∈𝑚𝜏(valid𝜏).

208 Appendix C Proof of Meta Theory

⋄ Ad (G5). Let 𝑎 ∈ 𝐴. Let 𝑎 ∈𝑚𝜏 .act(valid𝜏 .act). By Lemma B.47, 𝑎 ∈𝑚𝜏(valid𝜏). We then

conclude by:

𝑚𝜏 .act(𝑎.next) = 𝑎 ⟺ 𝑚𝜏(𝑎.next) = 𝑎 ⟺𝑚𝜎(𝑎.next) = 𝑎

⟺𝑚𝜎.act ′(𝑎.next) = 𝑎

where the rst/last equivalence hold because act/act ′ does not update any pointer selector

and the second equivalence holds by 𝑎 ∈𝑚𝜏(valid𝜏) together with (P5).

⋄ Ad (G6) and (G7). By denition, we have fresh𝜏 = fresh𝜏 .act and freed𝜏 = freed𝜏 .act as

well as retired𝜏 = retired𝜏 .act . Similarly, for 𝜎 . Then, we conclude by (P6) and (P7).

⋄ Case 3: com ≡ 𝑝.sel ∶= 𝑦

By assumption, we have 𝑝 ∈ valid𝜏 and thus 𝑝 ∈ valid𝜎 by (P2) together with Lemma B.37.

Then, the claim follows analogously to the previous case.

⋄ Case 4: com ≡ 𝑢 ∶= op(𝑢1, . . . , 𝑢𝑛)
Let 𝑑𝑖 =𝑚𝜏(𝑢𝑖). Then, up = [𝑢 ↦ 𝑑] with 𝑑 = op(𝑑1, . . . , 𝑑𝑛). We have 𝑢𝑖 ∈ dom(𝑚𝜏 ∣valid𝜏)
by denition. So (P2) yields𝑚𝜎(𝑢𝑖) = 𝑑𝑖 . We choose up′ = [𝑢 ↦ 𝑑]. Then, (G0) holds by the

choice of up′ together with (P1). The remaining (G1) to (G7) follow from (P1) to (P7).

⋄ Case 5: com ≡ 𝑢 ∶= 𝑞.data

By assumption, 𝑞 ∈ valid𝜏 . Let 𝑏 =𝑚𝜏(𝑞). By denition, 𝑏 ≠ seg. Let 𝑑 =𝑚𝜏(𝑏.data). The
update is up = [𝑢 ↦ 𝑑]. By denition, 𝑏.data ∈ dom(𝑚𝜏 ∣valid𝜏). So (P2) and Lemma B.37

together with (P2) yields𝑚𝜎(𝑞) = 𝑏 and𝑚𝜎(𝑏.data) = 𝑑 . We choose up′ = up. Then, (G0)

holds by the choice of up′ together with (P1). The remaining (G1) to (G7) follow immediately

from (P1) to (P7).

⋄ Case 6: com ≡ 𝑝.data ∶= 𝑢
′

By assumption, we have 𝑝 ∈ valid𝜏 and thus 𝑝 ∈ valid𝜎 by (P2) together with Lemma B.37.

Then, the claim follows analogously to the previous case.

The above case distinction concludes the claim. �

Proof C.48 (Lemma B.68). Let 𝜏 .act ∈ O⟦P⟧AdrAdr and 𝜎.act ∈ O⟦P⟧𝐴Adr with 𝜏 ∼ 𝜎 , 𝜏 ≼𝐴 𝜎 ,

and 𝜏 ⋖𝐴 𝜎 . Let act = ⟨𝑡, com, up⟩. Unrolling the premise gives:

(P0) 𝜎.act ∈ O⟦P⟧𝐴Adr
(P1) ctrl(𝜏) = ctrl(𝜎)
(P2) 𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎
(P3) ∀𝑏 ∈ adr(𝑚𝜏 ∣valid𝜏) ∪𝐴. FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏)
(P4) ∀𝑎 ∈ 𝐴 ∀𝑝 ∈ PVar . 𝑚𝜏(𝑝) = 𝑎 ⟺ 𝑚𝜎(𝑝) = 𝑎

(P5) ∀𝑎 ∈ 𝐴 ∀𝑏 ∈𝑚𝜏(valid𝜏). 𝑚𝜏(𝑏.next) = 𝑎 ⟺ 𝑚𝜎(𝑏.next) = 𝑎

Section C.3 Reductions 209

(P6) ∀𝑎 ∈ 𝐴. 𝑎 ∈ fresh𝜏 ∪ freed𝜏 ⟺ 𝑎 ∈ fresh𝜎 ∪ freed𝜎
(P7) ∀𝑎 ∈ 𝐴. 𝑎 ∈ retired𝜏 ⟺ 𝑎 ∈ retired𝜎

We show the following:

(G1) ctrl(𝜏 .act) = ctrl(𝜎.act)
(G2) 𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜎.act∣valid𝜎.act

(G3) ∀𝑏 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act) ∪𝐴. FO(𝜏 .act, 𝑏) ⊆ FO(𝜎.act, 𝑏)
(G4) ∀𝑎 ∈ 𝐴 ∀𝑝 ∈ PVar . 𝑚𝜏 .act(𝑝) = 𝑎 ⟺ 𝑚𝜎.act(𝑝) = 𝑎

(G5) ∀𝑎 ∈ 𝐴 ∀𝑏 ∈𝑚𝜏 .act(valid𝜏 .act). 𝑚𝜏 .act(𝑏.next) = 𝑎 ⟺ 𝑚𝜎.act(𝑏.next) = 𝑎

(G6) ∀𝑎 ∈ 𝐴. 𝑎 ∈ fresh𝜏 .act ∪ freed𝜏 .act ⟺ 𝑎 ∈ fresh𝜎.act ∪ freed𝜎.act
(G7) ∀𝑎 ∈ 𝐴. 𝑎 ∈ retired𝜏 .act ⟺ 𝑎 ∈ retired𝜎.act

Because act executes the same command com as act, we get (G1) from (P0) and (P1) holds. We

do not comment on (G1) in the following.

⋄ Case 1: com ≡ in∶func(𝑟1, . . . , 𝑟𝑛)
The update is up = ∅. We choose up′ = up. Then, (G2) follows from (P2), and (G4) to (G7)

follow from (P4) to (P7). It remains to establish (G3). To that end, let 𝑣𝑖 = 𝑚𝜏(𝑟𝑖). By

assumption,𝑚𝜎(𝑟𝑖) = 𝑣𝑖 . That is, act emits evt = in∶func(𝑡, 𝑣1, . . . , 𝑣𝑛) after both 𝜏 and 𝜎 .

This means that we have H(𝜏 .act) = H(𝜏).evt as well as H(𝜎.act) = H(𝜎).evt. Thus, (G3)
follows from (P3) together with Lemma B.41.

⋄ Case 2: com ≡ re∶func

Analogous to the previous case.

⋄ Case 3: com ≡ assume 𝑝 = 𝑞

The update is up = ∅. That is, we get𝑚𝜏 .act =𝑚𝜏 as well as𝑚𝜎.act =𝑚𝜎 . By the semantics,

we have𝑚𝜏(𝑝) =𝑚𝜏(𝑞) and𝑚𝜎(𝑝) =𝑚𝜎(𝑞). Then, (G4), (G6) and (G7) follow immediately

from (P4), (P6) and (P7).

⋄ Ad (G2). If {𝑝, 𝑞 } ∩ valid𝜏 = ∅ we get valid𝜏 = valid𝜏 .act and valid𝜎 = valid𝜎.act as

before so that we conclude by (P2):

𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜏 ∣valid𝜏 =𝑚𝜎 ∣valid𝜎 =𝑚𝜎.act∣valid𝜎.act .

Consider now the case {𝑝, 𝑞 }∩valid𝜏 ≠ ∅. Then,we have valid𝜏 .act = valid𝜏 ∪{𝑝, 𝑞 } by
denition. So we get valid𝜎.act = valid𝜎∪{𝑝, 𝑞 } by (P2) together with Lemma B.37. From

210 Appendix C Proof of Meta Theory

Lemma B.47 we get𝑚𝜏 .act(valid𝜏 .act) = 𝑚𝜏(valid𝜏) and𝑚𝜏 .act(valid𝜏 .act) = 𝑚𝜏(valid𝜏).
Combined with (P2), we obtain:

dom(𝑚𝜏 .act∣valid𝜏 .act) = valid𝜏 .act ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏 .act(valid𝜏 .act) }

= valid𝜏 ∪ { 𝑝, 𝑞 } ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏(valid𝜏) }

= dom(𝑚𝜏 ∣valid𝜏) ∪ {𝑝, 𝑞 } = dom(𝑚𝜎 ∣valid𝜎) ∪ {𝑝, 𝑞 }

= valid𝜎 ∪ { 𝑝, 𝑞 } ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜎(valid𝜎) }

= valid𝜎.act ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜎.act(valid𝜎.act) }

= dom(𝑚𝜎.act∣valid𝜎.act)

Let exp ∈ dom(𝑚𝜏 .act∣valid𝜏 .act). It remains to show 𝑚𝜏 .act(exp) = 𝑚𝜎.act(exp). By the

above, we have exp ∈ dom(𝑚𝜏 ∣valid𝜏) ∪ {𝑝, 𝑞 }. So by (P2) together with𝑚𝜏 .act = 𝑚𝜏

and𝑚𝜎.act =𝑚𝜎 it remains to establish𝑚𝜏 .act(𝑝) =𝑚𝜎.act(𝑝) and𝑚𝜏 .act(𝑞) =𝑚𝜎.act(𝑞).
Wlog. 𝑝 ∈ valid𝜏 . Then, we have𝑚𝜏(𝑝) = 𝑚𝜎(𝑝). Hence,𝑚𝜏 .act(𝑝) = 𝑚𝜎.act(𝑝). And
the assumption in com requires 𝑝 and 𝑞 to have the same valuation,𝑚𝜏 .act(𝑞) =𝑚𝜎.act(𝑞).
This concludes the claim.

⋄ Ad (G3). We have FO(𝜏 .act, 𝑐) = FO(𝜏, 𝑐) as well as FO(𝜎.act, 𝑐) = FO(𝜎, 𝑐) for
all 𝑐 ∈ Adr since act does not emit an event. Thus, adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏),
by Lemma B.47 Then, we conclude by (P3).

⋄ Ad (G5). Follows from𝑚𝜏 .act =𝑚𝜏 and𝑚𝜎.act =𝑚𝜎 together with (P5) and Lemma B.47.

⋄ Case 4: com ≡ assume 𝑝 ≠ 𝑞

Since act has no eect on 𝜏 and 𝜎 , (G1) to (G7) follow immediately from (P1) to (P7).

⋄ Case 5: com ≡ assume pred(𝑢)
Since act has no eect on 𝜏 and 𝜎 , (G1) to (G7) follow immediately from (P1) to (P7).

⋄ Case 6: com ≡ 𝑝 ∶= malloc

Let 𝑏 = 𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑏,𝑏.next ↦ seg, 𝑏.data ↦ 𝑑] for some 𝑑 . By

denition, we have 𝑏 ∈ fresh𝜏 ∪ freed𝜏 . By (P0) we have 𝑏 ∈ fresh𝜎 ∪ freed𝜎 . Note that the

following holds by assumption:

𝑏 ∉ 𝐴 ⟹ FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏) (16)

Before we establish the remaining properties, we show two auxiliary statements:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏(valid𝜏 \ { 𝑝, 𝑏.next }) ∪ {𝑏 } (17)

𝑚𝜎.act(valid𝜎.act) =𝑚𝜎(valid𝜎 \ { 𝑝,𝑏.next }) ∪ {𝑏 } (18)

Section C.3 Reductions 211

⋄ Ad (17). Note that act changes only the valuation of 𝑝 and𝑏.next. Moreover, by denition,

we have valid𝜏 .act = valid𝜏 ∪ { 𝑝, 𝑏.next }. So we conclude as follows:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏 .act(valid𝜏 ∪ {𝑝, 𝑏.next })

=𝑚𝜏 .act(valid𝜏 \ { 𝑝, 𝑏.next }) ∪𝑚𝜏 .act({𝑝, 𝑏.next })

=𝑚𝜏(valid𝜏 \ { 𝑝, 𝑏.next }) ∪ {𝑏 } .

⋄ Ad (18). Follows analogously to (17).

⋄ Ad (G2). Using (17) and valid𝜏 .act = valid𝜏 ∪ { 𝑝, 𝑏.next }, we get:

dom(𝑚𝜏 .act∣valid𝜏 .act) = valid𝜏 .act ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏 .act(valid𝜏 .act) }

= (valid𝜏 \ { 𝑝, 𝑏.next }) ∪ {𝑝,𝑏.next } ∪ DVar

∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏(valid𝜏 \ { 𝑝,𝑏.next }) } ∪ {𝑏.data }

= dom(𝑚𝜏 ∣valid𝜏\{𝑝,𝑏.next }) ∪ {𝑝, 𝑏.next, 𝑏.data } .

By denition then, we have:

𝑚𝜏 .act∣valid𝜏 .act = (𝑚𝜏 ∣valid𝜏\{𝑝,𝑏.next })[𝑝 ↦ 𝑏, 𝑏.next ↦ seg, 𝑏.data ↦ 𝑑]

= ((𝑚𝜏 ∣valid𝜏)∣valid𝜏\{𝑝,𝑏.next })[𝑝 ↦ 𝑏,𝑏.next ↦ seg, 𝑏.data ↦ 𝑑] .

Along the same lines, using (18), we get:

𝑚𝜎.act∣valid𝜎.act = ((𝑚𝜎 ∣valid𝜎)∣valid𝜎\{𝑝,𝑏.next })[𝑝 ↦ 𝑏, 𝑏.next ↦ seg, 𝑏.data ↦ 𝑑] .

The above equalities now allow us to conclude the claim using (P2) and (P2) together

with Lemma B.37:

(𝑚𝜏 ∣valid𝜏)∣valid𝜏\{𝑝,𝑏.next } = (𝑚𝜎 ∣valid𝜎)∣valid𝜎\{𝑝,𝑏.next } .

⋄ Ad (G3). By Lemma B.47, we have adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏)∪{𝑏 }. Moreover,

we have FO(𝜏 .act, 𝑐) = FO(𝜏, 𝑐) and FO(𝜎.act, 𝑐) = FO(𝜎, 𝑐) for all 𝑐 ∈ Adr since act

does not emit an event. By (P3) it thus remains to show that FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏).
If 𝑏 ∈ 𝐴, then we get the desired inclusion from (P3). Otherwise, we get it from (16).

⋄ Ad (G4). We have𝑚𝜏 .act(𝑝) =𝑚𝜎.act(𝑝). For 𝑞 ∈ PVar\{𝑝 }, we have𝑚𝜏 .act(𝑞) =𝑚𝜏(𝑞)
as well as𝑚𝜎.act(𝑞) =𝑚𝜎(𝑞). Hence, the claim follows from (P4).

⋄ Ad (G5). We have 𝑚𝜏 .act(𝑏.next) = 𝑚𝜎.act(𝑏.next). For 𝑐.next ∈ PSel \ {𝑏.next },
we obtain then 𝑚𝜏 .act(𝑐.next) = 𝑚𝜏(𝑐.next) and 𝑚𝜎.act(𝑐.next) = 𝑚𝜎(𝑐.next). We

conclude by (P5).

212 Appendix C Proof of Meta Theory

⋄ Ad (G6). We have fresh𝜏 .act = fresh𝜏 \ {𝑏 } and freed𝜏 .act = freed𝜏 \ {𝑏 }. Similarly, we

have fresh𝜎.act = fresh𝜎 \ {𝑏 } and freed𝜎.act = freed𝜎 \ {𝑏 }. We conclude by (P6).

⋄ Ad (G7). We have retired𝜏 .act = retired𝜏 and retired𝜎.act = retired𝜎 . Then, the claim

follows from (P7).

⋄ Case 7: com ≡ free(𝑏)
The update is up = ∅. By assumption, we have:

∀𝑐 ∈ Adr \ {𝑏 }. FO(𝜏 .act, 𝑐) = FO(𝜏, 𝑐) (19)

∀𝑐 ∈ Adr \ {𝑏 }. FO(𝜎.act, 𝑐) = FO(𝜎, 𝑐) (20)

⋄ Ad (G2). We have valid𝜏 .act = valid𝜎.act . To see this, consider pexp ∈ valid𝜏 .act . By

denition, this means pexp ∈ valid𝜏 and pexp /≡ 𝑏.next and 𝑚𝜏(pexp) ≠ 𝑏. From

Lemma B.37 and (P2) we obtain pexp ∈ valid𝜎 . By (P2), 𝑚𝜎(pexp) = 𝑚𝜏(pexp) ≠ 𝑏.

Hence, pexp ∈ valid𝜎.act holds by denition. This establishes valid𝜏 .act ⊆ valid𝜎.act . The

reverse inclusion follows analogously. Next, observe that 𝑚𝜏 .act∣valid𝜏 .act = 𝑚𝜏 ∣valid𝜏 .act
because of𝑚𝜏 =𝑚𝜏 .act due to up = ∅. Along the same lines,𝑚𝜎.act∣valid𝜎.act =𝑚𝜎 ∣valid𝜎.act .

Now, it is sucient to to show𝑚𝜏 ∣valid𝜏 .act =𝑚𝜎 ∣valid𝜎.act . We conclude by:

𝑚𝜏 ∣valid𝜏 .act = (𝑚𝜏 ∣valid𝜏)∣valid𝜏 .act =(𝑚𝜎 ∣valid𝜎)∣valid𝜏 .act
=(𝑚𝜎 ∣valid𝜎)∣valid𝜎.act =𝑚𝜎 ∣valid𝜎.act

where the rst holds by valid𝜏 .act ⊆ valid𝜏 , the second equality holds by (P2), the third

equality is shown above, and the last equality holds by valid𝜎.act ⊆ valid𝜎 .

⋄ Ad (G3). Let 𝑐 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act)∪𝐴. We have 𝑐 ∈ adr(𝑚𝜏 ∣valid𝜏)∪𝐴 by Lemma B.35

together with the same reasoning as above. Let ℎ ∈ FO(𝜏 .act, 𝑐). We now establish

that ℎ ∈ FO(𝜎.act, 𝑐) holds. First consider the case 𝑏 = 𝑐 . We get free(𝑐).ℎ ∈ FO(𝜏, 𝑐)
from Lemma B.41. So (P3) yields free(𝑐).ℎ ∈ FO(𝜎, 𝑐). Again by Lemma B.41, we obtain

the desired ℎ ∈ FO(𝜎.act, 𝑐). Now, consider 𝑐 ≠ 𝑏. We have ℎ ∈ FO(𝜏, 𝑐) by (19). From

(P3) we obtain free(𝑐).ℎ ∈ FO(𝜎, 𝑐). Then, we get the desired ℎ ∈ FO(𝜎.act, 𝑐) from
(20).

⋄ Ad (G4). The update up does not change the valuation of any pointer variable. Hence,

the claim follows immediately from (P4).

⋄ Ad (G5). Follows immediately from (P5) because we have𝑚𝜏 =𝑚𝜏 .act and𝑚𝜎 =𝑚𝜎.act

as well as valid𝜏 .act ⊆ valid𝜏 and valid𝜎.act ⊆ valid𝜎 .

⋄ Ad (G6). Follows from (P6) because by denition we have fresh𝜏 .act = fresh𝜏 \ {𝑏 } as
well as freed𝜏 .act = freed𝜏 ∪ {𝑏 } and similarly for 𝜎 .

Section C.3 Reductions 213

⋄ Ad (G7). Follows from (P7) because retired𝜏 .act = retired𝜏 \ {𝑏 } and similarly for 𝜎 .

⋄ Case 8: com ≡ env(𝑏)
The update is up = [𝑏.next ↦ seg, 𝑏.data ↦ 𝑑] for some 𝑑 . We have 𝑏 ∈ fresh𝜏 ∪ freed𝜏 by

denition. By (P0), we have 𝑏 ∈ fresh𝜎∪ freed𝜎 . Then, (G4), (G6) and (G7) follow immediately

from (P4), (P6) and (P7). For the remaining properties, we show the auxiliary statements:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏(valid𝜏) \ {𝑏 } (21)

adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝜏 ∣valid𝜏) \ {𝑏 } (22)

⋄ Ad (21). By denition, valid𝜏 .act = valid𝜏 . Lemmas B.43 and B.48 yield 𝑏.next ∉ valid𝜏 .

We get:

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏 .act(valid𝜏) =𝑚𝜏 .act(valid𝜏 \ {𝑏.next })

=𝑚𝜏(valid𝜏 \ {𝑏.next }) =𝑚𝜏(valid𝜏) .

It remains to show that 𝑏 ∉𝑚𝜏(valid𝜏). This follows from Lemmas B.43 and B.48.

⋄ Ad (22). As before, Lemmas B.43 and B.48 yield 𝑏.next ∉ valid𝜏 . So, 𝑏 ∉ valid𝜏 ∩ Adr .

Then, we conclude by Lemma B.35 together with valid𝜏 .act = valid𝜏 and (21) as follows:

adr(𝑚𝜏 .act∣valid𝜏 .act) = (valid𝜏 .act ∩ Adr) ∪𝑚𝜏 .act(valid𝜏 .act)

= (valid𝜏 ∩ Adr) ∪ (𝑚𝜏(valid𝜏) \ {𝑏 })

= ((valid𝜏 ∩ Adr) \ {𝑏 }) ∪ (𝑚𝜏(valid𝜏) \ {𝑏 })

= ((valid𝜏 ∩ Adr) ∪𝑚𝜏(valid𝜏)) \ {𝑏 } = adr(𝑚𝜏 ∣valid𝜏) \ {𝑏 } .

⋄ Ad (G2). As before Lemmas B.43 and B.48 yield 𝑏.next ∉ valid𝜏 . Then, (21) gives:

dom(𝑚𝜏 .act∣valid𝜏 .act) = valid𝜏 .act ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏 .act(valid𝜏 .act) }

= (valid𝜏 \ {𝑏.next }) ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏(valid𝜏) \ {𝑏 } }

= (valid𝜏 ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏(valid𝜏) }) \ {𝑏.next, 𝑏.data }

= dom(𝑚𝜏 ∣valid𝜏) \ {𝑏.next, 𝑏.data } .

Similarly, we obtain dom(𝑚𝜎.act∣valid𝜎.act) = dom(𝑚𝜎 ∣valid𝜎) \ {𝑏.next, 𝑏.data }. By (G2),

we get dom(𝑚𝜏 .act∣valid𝜏 .act) = dom(𝑚𝜎.act∣valid𝜎.act). Consider exp ∈ dom(𝑚𝜏 .act∣valid𝜏 .act).
By the above, exp ∈ dom(𝑚𝜏 ∣valid𝜏) \ {𝑏.next, 𝑏.data }. Hence, 𝑚𝜏(exp) = 𝑚𝜎(exp)
by (G2). Moreover, exp ∈ dom(𝑚𝜎.act∣valid𝜎.act). This gives𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜎.act∣valid𝜎.act ,

as required.

⋄ Ad (G3). Follows from (22) and (P3) together with act not emitting an event.

⋄ Ad (G5). Follows from (21) and (P5) together with up updating only the selectors of 𝑏.

214 Appendix C Proof of Meta Theory

The above case distinction concludes the claim. �

Proof C.49 (Lemma B.69). Let 𝜏1.act .𝜏2 ∈ O⟦P⟧𝑌𝑋 UAF with act = ⟨⊥, env(𝑎), up⟩. The update
is of the form up = [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some 𝑑 . By denition, 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

We proceed by induction over the structure of 𝜏2. In the base case, 𝜏2 = 𝜖 . We get 𝜏1 ∈ O⟦P⟧𝑌𝑋
by denition. Consider exp with𝑚𝜏1 .act(exp) ≠𝑚𝜏1(exp). Because of the update up, we know
that exp ∈ {𝑎.next, 𝑎.data }. This means exp ∩ Adr = {𝑎 }. Then, 𝑎 ∈ fresh𝜏1 ∪ freed𝜏1 . Hence,

we get 𝑎 ∈ fresh𝜏1 .act ∪ freed𝜏1 .act by denition. The remaining properties follow immediately by

denition. That is, 𝜏1 satises the claim. For the induction step, consider 𝜏1.act .𝜏2.act
′
∈ O⟦P⟧𝑌𝑋

UAF and assume we have already shown the desired correspondence between 𝜏 = 𝜏1.act .𝜏2
and 𝜏 ′ = 𝜏1.𝜏2. We now establish the correspondence between 𝜏 .act ′ and 𝜏 ′.act ′. Note that by the

semantics, env(𝑎) does not aect the control location of threads, ctrl(𝜏 .act ′) = ctrl(𝜏 ′.act ′) by
denition; we do not comment on this property hereafter. Let act ′ = ⟨𝑡, com, up′⟩.

⋄ Case 1: com is an assignment

We focus on the case com ≡ 𝑝 ∶= 𝑞.next. The remaining cases of assignments follow

analogously. Let 𝑏 =𝑚𝜏(𝑞). By denition, 𝑏 ≠ seg. Let 𝑐 =𝑚𝜏(𝑞.next). The update is of the
form up′ = [𝑝 ↦ 𝑐]. Note that we have 𝑝 ∩ Adr = ∅. We obtain𝑚𝜏 ′(𝑞) =𝑚𝜏(𝑞) = 𝑏 from

induction. Moreover, 𝑞 ∈ valid𝜏 follows from 𝜏 .act ′ is UAF by assumption. Lemmas B.43

and B.48 yield 𝑏 ∉ fresh𝜏 ∪ freed𝜏 . Hence, we get𝑚𝜏 ′(𝑏.next) = 𝑐 and thus 𝜏 ′.act ′ ∈ O⟦P⟧𝑌𝑋 .
Since act ′ emits no event nor aects the fresh/freed/retired addresses, it remains to show

the desired memory correspondence. Consider some exp with𝑚𝜏(exp) ≠ 𝑚𝜏 ′(exp). Since
we have 𝑚𝜏 .act ′(𝑝) = 𝑚𝜏 ′ .act ′(𝑝) due to the executed update up′, we must have 𝑝 /≡ exp.

By denition, this means 𝑚𝜏 .act ′(exp) = 𝑚𝜏(exp) and 𝑚𝜏 ′ .act ′(exp) = 𝑚𝜏 ′(exp). Then, we
conclude by induction:

(exp ∩ Adr) ∩ (fresh𝜏 .act ′ ∪ freed𝜏 .act ′) = (exp ∩ Adr) ∩ (fresh𝜏 ∪ freed𝜏) ≠ ∅ .

⋄ Case 2: com ≡ 𝑝 ∶= malloc

Let 𝑏 =𝑚𝜏 .act ′(𝑝). By denition, 𝑏 ∈ fresh𝜏 ∪ (freed𝜏 ∩𝑌). So 𝑏 ∈ fresh𝜏 ′ ∪ (freed𝜏 ′ ∩𝑌) by
induction. This means 𝜏 ′.act ′ ∈ O⟦P⟧𝑌𝑋 . By induction and denition, we get:

fresh𝜏 .act ′ = fresh𝜏 \ 𝑏 = fresh𝜏 ′ \ 𝑏 = fresh𝜏 ′

and freed𝜏 .act ′ = freed𝜏 \ 𝑏 = freed𝜏 ′ \ 𝑏 = freed𝜏 ′

and retired𝜏 .act ′ = retired𝜏 \ 𝑏 = retired𝜏 ′ \ 𝑏 = retired𝜏 ′ .

The remaining property, the memory correspondence, follows as in the previous case.

Section C.3 Reductions 215

⋄ Case 3: com ≡ in∶func(𝑟1, . . . , 𝑟𝑛)
We have 𝑟𝑖 ∩ Adr = ∅. Hence,𝑚𝜏(𝑟𝑖) = 𝑣𝑖 =𝑚𝜏 ′(𝑟𝑖). Together with induction, this means:

H(𝜏 .act ′) = H(𝜏).in∶func(𝑡, 𝑣1, . . . , 𝑣𝑛) = H(𝜏 ′).in∶func(𝑡, 𝑣1, . . . , 𝑣𝑛) = H(𝜏 ′.act ′) .

This concludes the claim as the remaining properties follow immediately by induction

together with the fact that neither the memory nor the fresh/freed/retired addresses are

altered.

⋄ Case 4: com ≡ re∶func

Analogous to the previous case.

⋄ Case 5: com ≡ assume cond

As before, we have𝑚𝜏(𝑥) =𝑚𝜏 ′(𝑥) for any variable 𝑥 ∈ PVar ∪ DVar that appears in cond.

Hence, condition cond has the same truth value after 𝜏 and 𝜏 ′. This means 𝜏 ′.act ′ ∈ O⟦P⟧𝑌𝑋 .
This concludes the claim as the remaining properties follow immediately by induction

together with the fact that neither the memory nor the fresh/freed/retired addresses are

altered.

⋄ Case 6: com ≡ free(𝑏)
The update is up = ∅. By denition, we have H(𝜏).free(𝑏) ∈ S(O). Hence, induction
gives H(𝜏 ′).free(𝑏) ∈ S(O). This means 𝜏 ′.act ′ ∈ O⟦P⟧𝑌𝑋 . By induction and denition, we

have:

fresh𝜏 .act ′ = fresh𝜏 \ 𝑏 = fresh𝜏 ′ \ 𝑏 = fresh𝜏 ′

and freed𝜏 .act ′ = freed𝜏 ∪ 𝑏 = freed𝜏 ′ ∪ 𝑏 = freed𝜏 ′

and retired𝜏 .act ′ = retired𝜏 \ 𝑏 = retired𝜏 ′ \ 𝑏 = retired𝜏 ′ .

For the remaining property, consider exp with𝑚𝜏 .act ′(exp) ≠𝑚𝜏 ′ .act ′(exp). Since𝑚𝜏 .act ′ =𝑚𝜏

and𝑚𝜏 ′ .act ′ =𝑚𝜏 ′ , we have𝑚𝜏(exp) ≠𝑚𝜏 ′(exp). By induction, this means that exp is of the

form 𝑐.sel and 𝑐 ∈ fresh𝜏 ∪ freed𝜏 . By the above, 𝑐 ∈ fresh𝜏 .act ′ ∪ freed𝜏 .act ′ . This concludes

the desired memory correspondence.

⋄ Case 7: com ≡ env(𝑏)
We have up′ = [𝑏.next ↦ seg, 𝑏.data ↦ 𝑑] for some 𝑑 . By denition, 𝑏 ∈ fresh𝜏 ∪ freed𝜏 .

This means 𝑏 ∈ fresh𝜏 ′ ∪ freed𝜏 ′ by induction. So 𝜏 ′.act ′ ∈ O⟦P⟧𝑌𝑋 . The remaining properties

follows similarly to the previous case.

⋄ Case 8: com ∈ { skip, beginAtomic, endAtomic, @inv • }
The claim follows immediately by induction since no event is emitted, the memory is not

updated, and the fresh/freed/retired addresses are not altered.

The case distinction is complete and thus concludes the induction. �

216 Appendix C Proof of Meta Theory

Proof C.50 (Lemma B.70). Let 𝜏 ∈ O⟦P⟧𝑌𝑋 UAF and let 𝑎 ∈ retired𝜏 ∩ freed𝜏 . We show that there

is a double retire in O⟦P⟧𝑌𝑋 . To that end, we rst show that 𝜏 is of the following form:

𝜏 =

𝜎1Ì ÒÒÐ ÒÒ Î
𝜏1 . ⟨𝑡1, retire(𝑝1), up1⟩

ÍÒÒÒÑÒÒÒ Ï
act1

. 𝜏2 .

𝜎2Ì ÒÒÐÒÒÒÎ
⟨𝑡2, free(𝑎), up2⟩
ÍÒÒÑÒÒÏ

act2

. 𝜏3 . ⟨𝑡3, retire(𝑝3), up3⟩
ÍÒÒÒÑÒÒÒ Ï

act3

. 𝜏4

with 𝑚𝜏1(𝑝1) = 𝑎 =𝑚𝜎1 .𝜎2(𝑝3) and 𝑎 ∉ frees𝜏2 ∪ frees𝜏3 ∪ frees𝜏4 .

To see this, recall 𝑎 ∈ retired𝜏 ∩ freed𝜏 . By denition, this means that 𝑎 has been freed. That is,

there is a latest free(𝑎) in 𝜏 , say act2. Moreover, 𝑎 has been retired. By denition, the retirement

must have happened after the free of act2 as otherwise we would not arrive at 𝑎 ∈ retired𝜏 .

Let act3 be the rst retirement of 𝑎 after act2. By Lemma B.46, we must have 𝑎 ∈ retired𝜎1 . That

is, there must be a retirement of 𝑎 prior to act2. Let act1 be the latest such retirement. Next,

observe that 𝑎 ∉ frees𝜏2 must hold. If this was not the case, we would get 𝑎 ∉ retired𝜎1 since 𝑎 is

not retired in 𝜏2 by choice of act1. We already showed 𝑎 ∈ retired𝜎1 so that we obtain 𝑎 ∉ frees𝜏2
indeed. Lastly, 𝑎 ∉ frees𝜏3 and 𝑎 ∉ frees𝜏4 follows from the choice of act2 being the last free(𝑎)
in 𝜏 .

Now, consider 𝛾 = 𝜏1.act1.𝜏2.act2.𝜏
′
3 where 𝜏

′
3 corresponds to 𝜏3 with all actions removed that

execute command env(𝑎). By Lemma B.69 we have 𝛾 ∈ O⟦P⟧𝑌𝑋 and𝑚𝛾(𝑝3) =𝑚𝜎1 .𝜎2(𝑝3) = 𝑎.

Note that 𝑎 ∉ frees𝜏 ′3 . Finally, construct computation 𝛾 ′ = 𝜏1.act1.𝜏2.𝜏
′
3 which corresponds to 𝛾

up to the removal of act2. Since act2 does not update the memory, up2 = ∅ by denition, we

have𝑚𝛾 ′(𝑝3) = 𝑎. Moreover, we have 𝑎 ∈ retired𝛾 ′ because 𝑎 ∈ retired𝜏1 .act1 .𝜏2 as shown above

and 𝑎 ∉ frees𝜏 ′3 . So by denition, this means 𝛾 ′ performs a double retire.

It remains to show that 𝛾 ′ ∈ O⟦P⟧𝑌𝑋 holds. First, observe that act2 does not update the memory

nor the control locations of threads. Second, note that by Lemma B.56 the enabledness of free(𝑏)
with 𝑎 ≠ 𝑏 remains unaected whether or not free(𝑎) is executed. Combining these two

properties, we conclude that an action of 𝜏 ′3 may no longer be enabled only if it requires 𝑎 to be

free. Since 𝜏3 does not contain commands env(𝑎) by construction, enabledness is in question

only for actions of 𝑎. Such an allocation would, by denition, render 𝑎 allocated in the original

prex of 𝜏 , that is, 𝑎 ∉ freed𝜎1 .𝜎2 . Because we have 𝑎 ∉ frees𝜏3 ∪ frees𝜏4 , we arrive at 𝑎 ∉ freed𝜏
which contradicts the assumption. Altogether, this means that the enabledness of all actions in

𝜏3 does not rely on act2. Hence, 𝛾
′
∈ ⟦𝑋⟧𝑌 . �

Proof C.51 (Theorem 7.20). Let O support elision and let O⟦P⟧oneAdr be free from pointer races,

double retires, and harmful ABAs. We proceed by induction over the structure of 𝜏 . In the

base case, 𝜏 = 𝜖 . Choose 𝜎 = 𝜏 . This satises the claim. For the induction step, consider

some 𝜏 .act ∈ O⟦P⟧AdrAdr PRF and assume we have already constructed, for all addresses 𝑎 ∈ Adr ,

some 𝜎 ∈ O⟦P⟧{𝑎 }Adr with 𝜏 ∼ 𝜎 , 𝜏 ⋖ 𝜎 , and 𝜏 ≼𝑎 𝜎 . Let 𝑎 ∈ Adr . Let act = ⟨𝑡, com, up⟩. We

Section C.3 Reductions 217

construct some �̂� ∈ O⟦P⟧{𝑎 }Adr such that 𝜏 .act ∼ �̂� , 𝜏 .act ≼𝑎 �̂� , and 𝜏 .act ⋖ �̂� . To that end, we do

a case distinction over com.

⋄ Case 1: com is an assignment

Our goal is to nd some act ′ such that �̂� = 𝜎.act ′ satises the requirements. We obtain act ′

from an invocation of Lemma B.67. That is, it remains to show that Lemma B.67 is enabled.

To that end, we have to show: if com contains 𝑝.sel then 𝑝 ∈ valid𝜏 . So, assume com contains

𝑝.sel as nothing needs to be shown otherwise. We proceed as follows: we show that com is

enabled after 𝜎 and then use pointer race freedom to establish the validity of 𝑝 .

By Lemma B.50we have𝑚𝜎(𝑝) ≠ ⊥. That is,𝑚𝜎(𝑝) ∈ Adr∪{ seg }. Towards a contradiction,
assume𝑚𝜎(𝑝) = seg. By Lemma B.49, we have 𝑝 ∈ valid𝜎 . Then,𝑚𝜏(𝑝) = seg follows from

𝜏 ∼ 𝜎 . This means act is not enabled after 𝜏 . This contradicts 𝜏 .act ∈ O⟦P⟧AdrAdr . Hence, we

must have𝑚𝜎(𝑝) ≠ seg. So, com is enabled after 𝜎 . This means there is an update up′ such

that act ′′ = ⟨𝑡, com, up′⟩ is enabled after 𝜎 , that is, 𝜎.act ′′ ∈ O⟦P⟧{𝑎 }Adr . (Note that act
′′ is not

necessarily the desired act ′.) Because O⟦P⟧{𝑎 }Adr is free from pointer races by assumption, we

must have 𝑝 ∈ valid𝜏 . So, 𝜏 ∈ valid𝜏 by 𝜏 ∼ 𝜎 together with Lemma B.37. Altogether, we can

invoke Lemma B.67 for 𝜏 .act and 𝜎 . We obtain act ′ such that �̂� = 𝜎.act ′ satises the claim.

⋄ Case 2: com ≡ in∶func(𝑟1, . . . , 𝑟𝑛)
If 𝑚𝜏(𝑟𝑖) = 𝑚𝜎(𝑟𝑖) for all 1 ≤ 𝑖 ≤ 𝑛, then we get 𝜎.act ∈ O⟦P⟧{𝑎 }Adr and thus �̂� = 𝜎.act

satises the claim by Lemma B.68. So assume𝑚𝜏(𝑟𝑖) ≠ 𝑚𝜎(𝑟𝑖) for some 𝑖 . We show that

again �̂� ∶= 𝜎.act is an adequate choice. To that end, we rst show that act is enabled after 𝜎

and then show that is has the desired properties. To see enabledness of com, note that

we have𝑚𝜎(𝑟𝑖) ∈ Adr ∪ { seg } by Lemma B.50. To the contrary, assume𝑚𝜎(𝑟𝑖) = seg.

Then, 𝑟𝑖 ∈ valid𝜎 by Lemma B.49 and thus𝑚𝜏(𝑟𝑖) = seg by 𝜏 ∼ 𝜎 . Since this contradicts

enabledness of act after 𝜏 , we must have𝑚𝜎(𝑟𝑖) ≠ seg. So, 𝜎.act ∈ O⟦P⟧{𝑎 }Adr .

Now, we show that �̂� ∶= 𝜎.act satises the claim. Let 𝑟 = 𝑟1, . . . , 𝑟𝑛 . Let 𝑣𝜏 = 𝑚𝜏(𝑟) and
let 𝑣𝜎 =𝑚𝜎(𝑟). Let 𝑣𝜏 = 𝑣𝜏,1, . . . , 𝑣𝜏,𝑛 and 𝑣𝜎 = 𝑣𝜎,1, . . . , 𝑣𝜎,𝑛 . The main task is to show:

∀ 𝑐 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act) ∪ {𝑎 }. FO(𝜏 .act, 𝑐) ⊆ FO(𝜎.act, 𝑐) .

Let 𝑐 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act) ∪ {𝑎 }. Because act does not alter the heap nor the validity of

expressions, we get 𝑐 ∈ adr(𝑚𝜏 ∣valid𝜏)∪ {𝑎 } by Lemma B.35. From 𝜏 ≼𝑎 𝜎 and 𝜏 ⋖ 𝜎 we get

FO(𝜏, 𝑐) ⊆ FO(𝜎, 𝑐). This implies:

FO(H(𝜏).in∶func(𝑡, 𝑣𝜏), 𝑐) ⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜏), 𝑐) . (23)

To see this, let ℎ ∈ FO(H(𝜏).in∶func(𝑡, 𝑣𝜏), 𝑐). So, in∶func(𝑡, 𝑣𝜏).ℎ ∈ FO(H(𝜏), 𝑐) by

Lemma B.41. Using 𝜏 ≼𝑎 𝜎 and 𝜏 ⋖ 𝜎 we then obtain in∶func(𝑡, 𝑣𝜏).ℎ ∈ FO(H(𝜎), 𝑐). Again

218 Appendix C Proof of Meta Theory

by Lemma B.41, we conclude ℎ ∈ FO(H(𝜎).in∶func(𝑡, 𝑣𝜏), 𝑐). Next, recall that 𝜎.act is PRF.
That is, act is not racy. From this we get:

FO(H(𝜎).in∶func(𝑡, 𝑣𝜏), 𝑐) ⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜎), 𝑐) . (24)

To see this, we have to show that the following holds for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛:

(𝑣𝜎,𝑖 = 𝑐 ∨ 𝑟𝑖 ∈ valid𝜎 ∨ 𝑟𝑖 ∈ DExp) ⟹ 𝑣𝜏,𝑖 = 𝑣𝜎,𝑖

If 𝑟𝑖 ∈ valid𝜎 , then 𝑣𝜎,𝑖 = 𝑚𝜎(𝑟𝑖) = 𝑚𝜏(𝑟𝑖) = 𝑣𝜏,𝑖 by 𝜏 ∼ 𝜎 . Along the same lines, we

get 𝑣𝜎,𝑖 = 𝑣𝜏,𝑖 if 𝑟𝑖 ∈ DExp because this means 𝑟𝑖 ∈ DVar and DVar ⊆ dom(𝑚𝜎 ∣valid𝜎) by
denition. So consider the case where 𝑣𝜎,𝑖 = 𝑐 and 𝑟𝑖 ∉ valid𝜎 ∪ DExp. To the contrary,

assume 𝑐 ≠ 𝑎. By the choice of 𝑐 , we get 𝑐 ∈ adr(𝑚𝜎 ∣valid𝜎). Moreover, 𝑐 ∈𝑚𝜎(PVar\valid𝜎)
follows from𝑚𝜎(𝑟) = 𝑣𝜎,𝑖 = 𝑐 and 𝑟𝑖 ∉ valid𝜎 . Then, Lemma B.53 yields 𝑐 ∈ {𝑎 }. Since
this contradicts the assumption, we must have 𝑐 = 𝑎. Hence,𝑚𝜎(𝑟𝑖) = 𝑐 implies𝑚𝜏(𝑟𝑖) = 𝑐

by 𝜏 ≼𝑎 𝜎 and 𝑟𝑖 ∈ PVar . That is, 𝑏1,𝑖 = 𝑏2,𝑖 as desired. Altogether, this proves the desired

implication and establishes (24).

Combining (23) and (24), we obtain:

FO(𝜏 .act, 𝑐) = FO(H(𝜏).in∶func(𝑡, 𝑣𝜏), 𝑐) ⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜏), 𝑐)

⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜎), 𝑐) = FO(𝜎.act, 𝑐) .

Lastly, note that we have 𝑚𝜏(𝑟𝑖) = 𝑎 i 𝑚𝜎(𝑟𝑖) = 𝑎 because 𝜏 ≼𝑎 𝜎 . By induction, this

means 𝑎 ∈ retired𝜏 .act i 𝑎 ∈ retired𝜎.act because act retires 𝑎 after 𝜏 i it does so after 𝜎 .

Altogether, we obtain the desired 𝜏 .act ∼ 𝜎.act, 𝜏 .act ≼𝑎 𝜎.act, and 𝜏 .act ⋖ 𝜎.act from the

above together with the fact that action act does not change the memory nor the validity

nor the fresh/freed addresses.

⋄ Case 3: com ≡ re∶func

We choose �̂� = 𝜎.act. By 𝜏 ∼ 𝜎 , we know that act is enabled after 𝜎 , that is, 𝜎.act ∈ O⟦P⟧{𝑎 }Adr .

By denition, act emits the same event re∶func(𝑡) after both 𝜏 and 𝜎 . Then, the claim follows

similarly to the previous case.

⋄ Case 4: com ≡ 𝑝 ∶= malloc

Let 𝑏 = 𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑏,𝑏.next ↦ seg, 𝑏.data ↦ 𝑑] for some 𝑑 . By

denition, we have 𝑏 ∈ fresh𝜏 ∪ freed𝜏 . If 𝑎 = 𝑏, then 𝑏 ∈ fresh𝜎 ∪ freed𝜎 holds by 𝜏 ≼𝑎 𝜎 .

Hence, act is enabled after 𝜎 , i.e., 𝜎.act ∈ O⟦P⟧{𝑎 }Adr . We choose �̂� = 𝜎.act. Then, �̂� satises

the claim by Lemma B.68. So consider the remaining case of 𝑎 ≠ 𝑏 hereafter.

First, we show that 𝑏 ∉ adr(𝑚𝜎 ∣valid𝜎) holds. To that end, we invoke the induction for 𝜏

and 𝑏. We obtain 𝛿 ∈ O⟦P⟧{𝑏 }Adr with 𝜏 ∼ 𝛿 and 𝜏 ≼𝑏 𝛿 . The latter gives 𝑏 ∈ fresh𝛿 ∪ freed𝛿 .

Lemmas B.43 and B.48 yield 𝑏 ∉ 𝑚𝛿(valid𝛿) and 𝑏.next ∉ valid𝛿 . (Note that we cannot

Section C.3 Reductions 219

conclude this directly for 𝜏 since we do not know whether or not 𝜏 is free from pointer races.)

We combine this with Lemma B.35 to obtain 𝑏 ∉ adr(𝑚𝛿 ∣valid𝛿). Now, Lemma B.38 for 𝜏

and 𝛿 yields 𝑏 ∉ adr(𝑚𝜏 ∣valid𝜏). Lemma B.38 for 𝜏 and 𝜎 then yields 𝑏 ∉ adr(𝑚𝜎 ∣valid𝜎) as
required.

With 𝑏 ∉ adr(𝑚𝜎 ∣valid𝜎) ∪ {𝑎 } we invoke Lemma B.66 for 𝜎 . This gives 𝛾 ∈ O⟦P⟧{𝑎 }Adr such

that 𝜎 ∼ 𝛾 , 𝜎 ≼𝑎 𝛾 , 𝜎 ⋖ 𝛾 , and 𝑏 ∈ fresh𝛾 . We have 𝜏 ∼ 𝜎 ∼ 𝛾 , 𝜏 ≼𝑎 𝜎 ≼𝑎 𝛾 , and 𝜏 ⋖ 𝜎 ⋖ 𝛾 . By

denition and Lemma B.38,𝑚𝜏(valid𝜏) ⊆𝑚𝜎(valid𝜎) and adr(𝑚𝜏 ∣valid𝜏) = adr(𝑚𝜎 ∣valid𝜎).
Then, Lemmas B.32 to B.34 yield 𝜏 ∼ 𝛾 , 𝜏 ≼𝑎 𝛾 , and 𝜏 ⋖ 𝛾 . Moreover, 𝑏 ∈ fresh𝛾 means

that act is enabled after 𝛾 . That is, 𝛾 .act ∈ O⟦P⟧{𝑎 }Adr . We choose �̂� = 𝛾 .act. That 𝛾 .act

satises the claim is established by Lemma B.68. For Lemma B.68 to apply, we have to show

that FO(𝜏, 𝑏) ⊆ FO(𝛾, 𝑏) holds. This, in turn, follows from Lemma B.57. We show that

Lemma B.57 is enabled. We already have 𝑏 ∈ fresh𝛾 and FO(𝜏, 𝑎) ⊆ FO(𝛾, 𝑎) where the
latter holds by 𝜏 ≼𝑎 𝛾 . So, it remains to establish 𝑏 ∉ retired𝜏 .

Towards a contradiction, assume 𝑏 ∈ retired𝜏 . By 𝜏 ≼𝑏 𝛿 then, 𝑏 ∈ retired𝛿 . That is, 𝛿 is of the

form 𝛿 = 𝛿2.act1.𝛿1 with act1 performing in∶retire(𝑞) and𝑚𝛿2(𝑞) = 𝑏 and𝑏 ∉ frees𝛿1 . (This

decomposition chooses the latest retirement of 𝑏 for act—such a decomposition must exist.)

From the fact that𝑚𝛿2(𝑞) = 𝑏 holds we get 𝑏 ∉ fresh𝛿2 by Lemma B.42. By monotonicity,

𝑏 ∉ fresh𝛿 . Recall that 𝑏 ∈ fresh𝜏 ∪ freed𝜏 . By 𝜏 ≼𝑏 𝛿 this gives 𝑏 ∈ fresh𝛿 ∪ freed𝛿 . Hence,

we must have 𝑏 ∈ freed𝛿 altogether. Then, Lemma B.70 yields a double retire in O⟦P⟧{𝑏 }Adr .

This contradicts the assumption of O⟦P⟧oneAdr being free from double retires. Altogether, this

means we obtain 𝑏 ∉ retired𝜏 so that Lemma B.57 is applicable. This concludes the claim.

⋄ Case 5: com ≡ free(𝑏)
The update is up = ∅. By denition, H(𝜏).free(𝑏) ∈ S(O). That is, free(𝑏) ∈ FO(𝜏, 𝑏).
If we have free(𝑏) ∈ FO(𝜎, 𝑏), we get 𝜎.act ∈ O⟦P⟧{𝑎 }Adr and H(𝜎).free(𝑏) ∈ S(O) by
denition. Then, Lemma B.56 discharges the side condition of Lemma B.68 which yields

that �̂� = 𝜎.act satises the claim. So consider the remaining case of free(𝑏) ∉ FO(𝜎, 𝑏)
hereafter. This implies 𝑎 ≠ 𝑏 because otherwise 𝜏 ≼𝑎 𝜎 gives FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏) and thus

free(𝑏) ∈ FO(𝜎, 𝑏).

By 𝜏 ⋖ 𝜎 we conclude that 𝑏 ∉ adr(𝑚𝜏 ∣valid𝜏) must hold as otherwise free(𝑏) ∈ FO(𝜎, 𝑏).
By 𝜏 ∼ 𝜎 this means 𝑏 ∉𝑚𝜎(valid𝜎). We now show that �̂� = 𝜎 is an adequate choice, that is,

that we do not need to mimic act at all.

⋄ Ad 𝜏 .act ∼ 𝜎 . By denition, ctrl(𝜏) = ctrl(𝜏 .act). So, ctrl(𝜏 .act) = ctrl(𝜎) by 𝜏 ∼ 𝜎 . To

show𝑚𝜏 .act∣valid𝜏 .act =𝑚𝜎 ∣valid𝜎 it suces to show𝑚𝜏 ∣valid𝜏 =𝑚𝜏 .act∣valid𝜏 .act by 𝜏 ∼ 𝜎 . To

arrive at this equality, we rst show valid𝜏 = valid𝜏 .act . The inclusion valid𝜏 .act ⊆ valid𝜏
holds by denition. To see valid𝜏 ⊆ valid𝜏 .act , consider pexp ∈ valid𝜏 . Then, we must

have pexp /≡ 𝑏.next as otherwise we had 𝑏 ∈ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35 which does

220 Appendix C Proof of Meta Theory

not hold as shown before. Moreover, we must have𝑚𝜏(pexp) ≠ 𝑏 as otherwise we would

again get 𝑏 ∈ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35. Hence, by the denition of validity, we

have pexp ∈ valid𝜏 .act . Altogether, this means we have valid𝜏 = valid𝜏 .act indeed. Then,

the desired𝑚𝜏 ∣valid𝜏 = 𝑚𝜏 .act∣valid𝜏 .act follows immediately because𝑚𝜏 = 𝑚𝜏 .act due to

up = ∅.

⋄ Ad 𝜏 .act ⋖ 𝜎 . Let 𝑐 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act). We get 𝑐 ∈ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.47.

This means 𝑏 ≠ 𝑐 holds due to the above. Moreover, we have FO(𝜏, 𝑐) ⊆ FO(𝜎, 𝑐)
by 𝜏 ⋖ 𝜎 . So it suces to show FO(𝜏, 𝑐) = FO(𝜏 .act, 𝑐). This follows from Lemma B.56.

⋄ Ad 𝜏 .act ≼𝑎 𝜎 . First, recall 𝑏 ≠ 𝑎. So 𝜏 ≼𝑎 𝜎 gives:

𝑎 ∈ retired𝜏 .act ⟺ 𝑎 ∈ retired𝜏 ⟺ 𝑎 ∈ retired𝜎

and 𝑎 ∈ fresh𝜏 .act ∪ freed𝜏 .act ⟺ 𝑎 ∈ fresh𝜏 ∪ freed𝜏

⟺ 𝑎 ∈ fresh𝜎 ∪ freed𝜎 .

Similarly to 𝜏 .act ⋖ 𝜎 , we use Lemma B.56 and 𝜏 ≼𝑎 𝜎 together with 𝑏 ≠ 𝑎 holds to

obtainFO(𝜏 .act, 𝑎) = FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎). Since act does not modify the memory, the

remaining properties follow from 𝜏 ≼𝑎 𝜎 together with𝑚𝜏 ∣valid𝜏 =𝑚𝜏 .act∣valid𝜏 .act which
we have established for 𝜏 .act ∼ 𝜎 above.

⋄ Case 6: com ≡ env(𝑏)
The update is up = [𝑏.next ↦ seg, 𝑏.data ↦ 𝑑] for some𝑑 . By denition, 𝑏 ∈ fresh𝜏∪freed𝜏 .

If 𝑎 = 𝑏, then we have𝑏 ∈ fresh𝜎∪freed𝜎 by 𝜏 ≼𝑎 𝜎 . This means 𝜎.act ∈ O⟦P⟧{𝑎 }Adr . Moreover,

Lemma B.68 yields that �̂� = 𝜎.act satises the claim. So, assume 𝑎 ≠ 𝑏 hereafter. We rst

establish that 𝑏 ∉ adr(𝑚𝜏 ∣valid𝜏) holds. To that end, we invoke the induction hypothesis for 𝑏.

This gives 𝛾 ∈ O⟦P⟧{𝑏 }Adr with 𝜏 ∼ 𝛾 , 𝜏 ≼𝑏 𝛾 , and 𝜏 ⋖ 𝛾 . We get 𝑏 ∈ fresh𝜏 ∪ freed𝜏 because

of 𝜏 ≼𝑏 𝛾 . Then, Lemmas B.35, B.43 and B.48 yield 𝑏 ∉ adr(𝑚𝛾 ∣valid𝛾). Hence, Lemma B.38

together with 𝜏 ∼ 𝜎 yields the desired 𝑏 ∉ adr(𝑚𝜏 ∣valid𝜏).

Now, choose �̂� = 𝜎 and conclude as in the previous case. To see𝑚𝜏 ∣valid𝜏 = 𝑚𝜏 .act∣valid𝜏 .act ,
note that we have:

dom(𝑚𝜏 .act∣valid𝜏 .act) = valid𝜏 .act ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏 .act(valid𝜏 .act) }

= valid𝜏 ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏 .act(valid𝜏) }

= valid𝜏 ∪ DVar ∪ { 𝑐.data ∣ 𝑐 ∈𝑚𝜏(valid𝜏) } = dom(𝑚𝜏 ∣valid𝜏)

where the rst and last equality is by denition, the second equality by valid𝜏 .act = valid𝜏 ,

and the third equality by 𝑏.next ∉ valid𝜏 by 𝑏 ∉ adr(𝑚𝜏 ∣valid𝜏) together with Lemma B.35.

Similarly, 𝑏.data ∉ valid𝜏 because 𝑏 ∉ 𝑚𝜏(valid𝜏) by 𝑏 ∉ adr(𝑚𝜏 ∣valid𝜏) together with

Lemma B.35. Altogether, this gives𝑚𝜏 ∣valid𝜏 =𝑚𝜏 .act∣valid𝜏 .act .

Section C.3 Reductions 221

⋄ Case 7: com ≡ assume cond

By denition, up = ∅. If 𝜎.act ∈ O⟦P⟧{𝑎 }Adr , then �̂� = 𝜎.act satises the claim by Lemma B.68.

So assume 𝜎.act ∉ O⟦P⟧{𝑎 }Adr . Since we have𝑚𝜏(𝑢) =𝑚𝜎(𝑢) for all data variables 𝑢 ∈ DVar

by 𝜏 ∼ 𝜎 , we must have cond ≡ 𝑝 ≜ 𝑞 with 𝑝, 𝑞 ∈ PVar and ≜∈ {=,≠ }.

Let𝑚𝜏(𝑝) = 𝑏. By induction, there is 𝛿 ∈ O⟦P⟧{𝑏 }Adr with 𝜏 ∼ 𝛿 , 𝜏 ≼𝑏 𝛿 , and 𝜏 ⋖ 𝛿 . By 𝜏 ≼𝑏 𝛿 ,

the truth value of cond is the same after 𝜏 and 𝛿 . So,𝑚𝜏(𝑝) =𝑚𝛿(𝑝). Moreover,𝑚𝛿(𝑞) = 𝑏

if𝑚𝜏(𝑞) = 𝑏 and otherwise𝑚𝜏(𝑞) ≠ 𝑏 ≠ 𝑚𝛿(𝑞). Altogether, this means 𝛿.act ∈ O⟦P⟧{𝑏 }Adr .

From Lemma B.68 we get 𝜏 .act ∼ 𝛿.act, 𝜏 .act ≼𝑏 𝛿.act, and 𝜏 .act ⋖ 𝛿.act.

Observe that we have 𝛿 ∼ 𝜎 by Lemma B.32. Then, the absence of harmful ABAs for 𝛿.act

and 𝜎 yields a computation 𝛾 ∈ O⟦P⟧{𝑎 }Adr with 𝛿.act ∼ 𝛾 , 𝜎 ≼𝑎 𝛾 , and 𝛿.act ⋖ 𝛾 . We show

that �̂� = 𝛾 satises the claim. To do so, we show an auxiliary property rst.

𝑚𝜏 .act(valid𝜏 .act) =𝑚𝜏(valid𝜏) (25)

⋄ Ad (25). By denition,𝑚𝜏 =𝑚𝜏 .act . It remains to show𝑚𝜏(valid𝜏 .act) =𝑚𝜏(valid𝜏). In
the case valid𝜏 .act = valid𝜏 holds, nothing needs to be shown. Assume valid𝜏 .act ≠ valid𝜏 .

This means cond ≡ 𝑝 = 𝑞 such that wlog. 𝑝 ∈ valid𝜏 and 𝑞 ∉ valid𝜏 . So,𝑚𝜏(𝑝) =𝑚𝜏(𝑞)
must hold. This means 𝑚𝜏(𝑞) ∈ 𝑚𝜏(valid𝜏). Further, valid𝜏 .act = valid𝜏 ∪ {𝑞 }. We

conclude by:𝑚𝜏(valid𝜏 .act) =𝑚𝜏(valid𝜏) ∪ {𝑚𝜏(𝑞) } =𝑚𝜏(valid𝜏).

⋄ Ad 𝜏 .act ∼ 𝛾 . Follows from Lemma B.32 together with 𝜏 .act ∼ 𝛿.act and 𝛿.act ∼ 𝛾 .

⋄ Ad 𝜏 .act ⋖ 𝛾 . We have 𝜏 .act ⋖ 𝛿.act ⋖ 𝛾 and adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝛿.act∣valid𝛿.act)
The latter follows from 𝜏 .act ∼ 𝛿.act together with Lemma B.38. Then, Lemma B.34 gives

𝜏 .act ⋖ 𝛾 .

⋄ Ad 𝜏 .act ≼𝑎 𝛾 . We have 𝜏 ≼𝑎 𝜎 ≼𝑎 𝛾 . By 𝜏 ∼ 𝜎 , we have 𝑚𝜏(valid𝜏) ⊆ 𝑚𝜎(valid𝜎).
Lemma B.33 yields 𝜏 ≼𝑎 𝛾 . Assume for the moment we have 𝜏 .act ≼𝑎 𝜏 . Then, (25)

together with Lemma B.33 yields the desired 𝜏 .act ≼𝑎 𝛾 . It remains to show 𝜏 .act ≼𝑎 𝜏 .

This follows from H(𝜏 .act) = H(𝜏),𝑚𝜏 = 𝑚𝜏 .act , freed𝜏 .act = freed𝜏 , fresh𝜏 .act = fresh𝜏 ,

and retired𝜏 .act = retired𝜏 together with (25).

⋄ Case 8: com ∈ { skip, beginAtomic, endAtomic, @inv • }
We immediately obtain that �̂� = 𝜎.act satises the claim.

The above case distinction is complete and thus concludes the induction. �

Proof C.52 (Theorem 7.21). If good(O⟦P⟧AdrAdr) then, good(O⟦P⟧oneAdr) by O⟦P⟧oneAdr ⊆ O⟦P⟧AdrAdr .

For the reverse direction, assume good(O⟦P⟧oneAdr) holds. To the contrary, assume good(O⟦P⟧AdrAdr)
does not hold. So there is 𝜏 ∈ O⟦P⟧AdrAdr such that good(𝜏) is not satised. By denition, this

means we have ctrl(𝜏) ∩ Fault ≠ ∅ where Fault are the bad control locations. Theorem 7.20

222 Appendix C Proof of Meta Theory

yields 𝜎 ∈ O⟦P⟧oneAdr with 𝜏 ∼ 𝜎 . The latter gives ctrl(𝜎) ∩ Fault ≠ ∅. Hence, good(O⟦P⟧oneAdr)
does not hold. Since this contradicts the assumption, good(O⟦P⟧AdrAdr) must hold. �

Proof C.53 (Theorem 7.22). Towards a contradiction, assume that there is a shortest computa-

tion 𝜏 .act ∈ O⟦P⟧AdrAdr that performs a double retire. That is, we have act = ⟨𝑡, retire(𝑝), up⟩
with𝑚𝜏(𝑝) = 𝑎 ∈ retired𝜏 . Theorem 7.20 yields 𝜎 ∈ O⟦P⟧{𝑎 }Adr with 𝜏 ∼ 𝜎 and 𝜏 ≼𝑎 𝜎 . The latter

gives𝑚𝜎(𝑝) = 𝑎 and 𝑎 ∈ retired𝜎 . By Lemma B.68 and 𝜏 ∼ 𝜎 , we have 𝜎.act ∈ O⟦P⟧{𝑎 }Adr . That

is, O⟦P⟧oneAdr is not free from double retires. Since this contradicts the assumption, O⟦P⟧AdrAdr must

be free from double retires. �

Proof C.54 (Proposition 7.15). In the following, we rely on the following properties of OSMR:

(i) there is at most one variable 𝑧𝑎 tracking addresses, (ii) accepting locations 𝑙 are reached only

via transitions of the form •−−−−−−−−−→
free(𝑟), 𝑟=𝑧𝑎

𝑙 , and (iii) all transitions of the form 𝑙−−−−−−−−−→
free(𝑟), 𝑟=𝑧𝑎

𝑙
′

satisfy: 𝑙 = 𝑙
′ or 𝑙 ′ is accepting. These properties are satised by OEBR, O

0
HP ×O1

HP , and O
0,1
HP . Let

location 𝑙init uniformly refer to the initial location in the aforementioned SMR automata.

⋄ Ad Denition 7.14i. Let 𝑎 ≠ 𝑐 ≠ 𝑏. We show FOSMR(ℎ, 𝑐) = FOSMR(ℎ[𝑎/𝑏], 𝑐). By

Lemma B.64 we have FOSMR(ℎ, 𝑐)[𝑎/𝑏] = FOSMR(ℎ[𝑎/𝑏], 𝑐). So, it is sucient to show

that FOSMR(ℎ, 𝑐) = FOSMR(ℎ, 𝑐)[𝑎/𝑏] holds. Let ℎ′ ∈ FOSMR(ℎ, 𝑐). By denition, this

means ℎ.ℎ′ ∈ S(OSMR) and freesℎ′ ⊆ { 𝑐 }. Because OSMR never leaves accepting loca-

tions, we have ℎ ∈ S(OSMR). To the contrary, assume ℎ.ℎ′ ∉ FOSMR(ℎ, 𝑐)[𝑎/𝑏]. This means

ℎ.ℎ
′[𝑎/𝑏] ∉ FOSMR(ℎ, 𝑐). Consequently, we have ℎ.ℎ

′[𝑎/𝑏] ∉ S(OSMR). By denition, there

are steps (𝑙init, 𝜑)−→ℎ (𝑙1, 𝜑)−−−−−→
ℎ
′[𝑎/𝑏] (𝑙2, 𝜑)with 𝑙2 accepting. By ℎ ∈ S(OSMR), we know that 𝑙1

is not accepting. By freesℎ′[𝑎/𝑏] = freesℎ′ ⊆ { 𝑐 } andOSMR reaching accepting locations only

via transitions labeled with free(𝑟), 𝑟 = 𝑧𝑎 , we must have 𝜑(𝑧𝑎 = 𝑐) in order to arrive at an

accepting location. By 𝑎 ≠ 𝑐 ≠ 𝑏 together with OSMR having only one variable 𝑧𝑎 tracking

addresses, we know that OSMR cannot distinguish 𝑎 and 𝑏 so that we obtain (𝑙1, 𝜑)−→ℎ
′

(𝑙2, 𝜑).
Since this contradicts ℎ.ℎ′ ∈ S(OSMR), we must have the required ℎ.ℎ′ ∉ FOSMR(ℎ, 𝑐)[𝑎/𝑏].
The reverse inclusion follows analogously.

⋄ Ad Denition 7.14iii. Let 𝑎 ≠ 𝑏 and ℎ.free(𝑎) ∈ S(O). Consider some 𝜑 and some program

step (𝑙init, 𝜑)−→ℎ (𝑙1, 𝜑)−−−−−→
free(𝑎) (𝑙2, 𝜑). Because ℎ.free(𝑎) ∈ S(O), we know 𝑙1 is not accept-

ing. So, the properties of OSMR yield 𝑙2 = 𝑙1. Hence, FOSMR(ℎ, 𝑏) = FOSMR(ℎ.free(𝑎), 𝑏) as
required.

⋄ Ad Denition 7.14ii. Assume FO(ℎ, 𝑎) ⊆ FO(ℎ′, 𝑎) and 𝑏 ∈ freshℎ′ . We establish the

following: FOSMR(ℎ, 𝑏) ⊆ FOSMR(ℎ
′
, 𝑏). As before, it suces to consider 𝜑 with 𝜑(𝑧𝑎) = 𝑏.

ForO𝑘
HP andO

0,1
HP , note that 𝑏 ∈ freshℎ′ immediately gives (𝑙init, 𝜑)−→ℎ

′

(𝑙init, 𝜑) as 𝑙init can only

be left with events where the parameter is 𝑏. Moreover, 𝑙init is simulation relation maximal in

Section C.3 Reductions 223

the corresponding SMR automaton. Then, the desired inclusion follows from Proposition 5.3

together with Lemmas B.29 and B.30.

We turn to OEBR. From 𝑏 ∈ freshℎ′ we get (𝑙init, 𝜑)−→ℎ
′

(𝑙, 𝜑) with 𝑙 ∈ {𝐿4, 𝐿5 }. Assume for

a moment that 𝑙 = 𝐿5 implies (𝑙init, 𝜑)−→ℎ (𝑙 ′, 𝜑) with 𝑙 ′ ≠ 𝐿4. Then, we conclude the desired

inclusion by Proposition 5.3 together with Lemma B.28 Now, assume 𝑙 = 𝐿5. It remains to

show that (𝑙init, 𝜑)−→ℎ (𝑙 ′, 𝜑) with 𝑙
′
≠ 𝐿4 holds. If ℎ ∉ S(OEBR), then nothing needs to be

shown as the desired inclusion is trivially true. So, assume ℎ ∈ S(OEBR). To the contrary,

assume (𝑙init, 𝜑)−→ℎ (𝑙init, 𝜑). We construct a history ℎ.ℎ1.ℎ2.ℎ3 as follows:

• Let ℎ1 be a history that contains for every thread 𝑡 , 𝑡 ≠ 𝜑(𝑧𝑡) an event in∶enterQ(𝑡). By
denition and ℎ ∈ S(OEBR), we get ℎ.ℎ1 ∈ S(OEBR). Moreover, ℎ.ℎ1 ∈ S(O) because
OBase does not react on ℎ1 and because ℎ ∈ S(OBase). Observe that we have the step
(𝑙init, 𝜑 ′)−−−→ℎ.ℎ1 (𝑙init, 𝜑 ′) for all valuations 𝜑 ′.

• By ℎ.ℎ1 ∈ S(OBase) and the denition of OBase, there must be ℎ2 ∈ { 𝜖, free(𝑎) } such
that ℎ.ℎ1.ℎ2 ∈ S(OBase). Since OEBR reaches 𝑙init after ℎ.ℎ1 for all 𝜑

′ as noted above, we

have ℎ.ℎ1.ℎ2 ∈ S(O). Observe (𝐿2, 𝜑 ′)−−−−→ℎ.ℎ1 .ℎ2 (𝐿2, 𝜑 ′) for 𝜑 ′(𝑧𝑎) = 𝑎.

• Let ℎ3 = retire(𝜑(𝑧𝑡), 𝑎).free(𝑎). By construction, we obtain ℎ.ℎ1.ℎ2.ℎ3 ∈ S(O).

By ℎ.ℎ1.ℎ2.ℎ3 ∈ S(O) together with freesℎ1 .ℎ2 .ℎ3
⊆ {𝑎 }, we have ℎ1.ℎ2.ℎ3 ∈ FO(ℎ, 𝑎).

Hence, we get ℎ1.ℎ2.ℎ3 ∈ FO(ℎ′, 𝑎) by the premise. This means ℎ′.ℎ1.ℎ2.ℎ3 ∈ S(O). How-
ever, there are the following steps for 𝜑 ′ = { 𝑧𝑡 ↦ 𝜑(𝑧𝑡), 𝑧𝑎 ↦ 𝑎 } on ℎ′.ℎ1.ℎ2.ℎ3:

(𝑙init, 𝜑 ′)−→ℎ
′

(𝑙1, 𝜑 ′)−→ℎ1 (𝑙2, 𝜑 ′)−→ℎ2 (𝑙3, 𝜑 ′)−→
ℎ3 (𝑙4, 𝜑 ′)

where (i) 𝑙1 ≠ 𝑙init because of 𝑙 = 𝐿5 and 𝜑(𝑧𝑡) = 𝜑
′(𝑧𝑡) and in∶leaveQ() taking no pa-

rameters, (ii) 𝑙1 = 𝑙2 since OEBR ignores in∶enterQ(•) events of threads other that 𝜑 ′(𝑧𝑡),
(iii) 𝑙3 = 𝑙2, and (iv) 𝑙3 = 𝐿7. Altogether, this means ℎ′.ℎ1.ℎ2.ℎ3 ∉ S(O) because 𝐿7 is

accepting. Since this contradicts the assumption, we must have 𝑙 ′ ≠ 𝐿4 as required.

�

Proof C.55 (Proposition 7.23). The claim follows forOBase×OEBR since enterQ and leaveQ do not

take parameters. We turn toO = OBase×O
0
HP×O

1
HP . Again, unprotect𝑘 does not take parameters

and thus never races. Consider some computation 𝜏 .act with act = ⟨𝑡, in∶protect𝑘(𝑝), up⟩ and
𝑚𝜏(𝑝) = 𝑐 and H(𝜏) = ℎ. Assume act is a racy call. Then, there are 𝑎, 𝑏, 𝑐 ∈ Adr with 𝑎 ≠ 𝑐

such that FO(ℎ.in∶protect𝑘(𝑏), 𝑎) /⊆ FO(ℎ.in∶protect𝑘(𝑐), 𝑎). This means there is ℎ′ ∈

FO(ℎ.in∶protect𝑘(𝑏), 𝑎) with ℎ′ ∉ FO(ℎ.in∶protect𝑘(𝑐), 𝑎). We have ℎ ∈ S(O) because of
the membership of ℎ′. There are steps (𝑙init, 𝜑)−−→ℎ.ℎ

′

(𝑙, 𝜑) with 𝑙 accepting. By denition, we have
freesℎ′ ⊆ {𝑎 }. Hence, for ℎ′ to reach an accepting location, we must have 𝜑(𝑧𝑎) = 𝑎 due to the

denition ofO. Consequently, in∶protect𝑘(𝑏) and in∶protect𝑘(𝑐) are indistinguishable forO.

224 Appendix C Proof of Meta Theory

Under 𝜑 , all transitions taken by the former event can be taken by the latter event as well, and

vice versa. Hence, protect𝑘 does not race. The argument is analogous in OBase ×O0,1
HP . �

Proof C.56 (Theorem B.71). Let O support elision and let O⟦P⟧∅Adr be MPRF and DRF. Note

that this means O⟦P⟧∅Adr is PRF. We proceed by induction over the structure of 𝜏 . In the base

case, we have 𝜏 = 𝜖 . Choosing 𝜎 = 𝜖 satises the claim. For the induction step, consider

some 𝜏 .act ∈ O⟦P⟧AdrAdr and assume that we have already constructed 𝜎 ∈ O⟦P⟧∅Adr and estab-

lished the following properties:

(P1) 𝜏 ∼ 𝜎

(P2) 𝜏 ⋖ 𝜎

(P3) ∀𝑎 ∈ fresh𝜎 . FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎)
(P4) ∀ pexp, qexp ∈ VExp(𝜏). 𝑚𝜏(pexp) ≠𝑚𝜏(qexp) ⟹ 𝑚𝜎(pexp) ≠𝑚𝜎(qexp)
(P5) retired𝜏 ⊆ retired𝜎
(P6) freed𝜏 ∩ adr(𝑚𝜏 ∣valid𝜏) = ∅
(P7) freed𝜏 ∩ retired𝜏 = ∅

(P8) 𝜏 is UAF

We construct �̂� and show the following:

(G0) �̂� ∈ O⟦P⟧∅Adr
(G1) 𝜏 .act ∼ �̂�

(G2) 𝜏 .act ⋖ �̂�

(G3) ∀𝑎 ∈ fresh�̂� . FO(𝜏 .act, 𝑎) ⊆ FO(�̂�, 𝑎)

(G4) ∀ pexp, qexp ∈ VExp(𝜏 .act).
⎛
⎜⎜
⎝

𝑚𝜏 .act(pexp) ≠𝑚𝜏 .act(qexp)

⟹𝑚�̂�(pexp) ≠𝑚�̂�(qexp)

⎞
⎟⎟
⎠

(G5) retired𝜏 .act ⊆ retired�̂�
(G6) freed𝜏 .act ∩ adr(𝑚𝜏 .act∣valid𝜏 .act) = ∅
(G7) freed𝜏 .act ∩ retired𝜏 .act = ∅

(G8) 𝜏 .act is UAF

Let act = ⟨𝑡, com, up⟩. We do a case distinction over com.

⋄ Case 1: com is an assignment

Our goal is to nd some act ′ such that �̂� = 𝜎.act ′ satises the requirements. We obtain act ′

from an invocation of Lemma B.67. That is, it remains to show that Lemma B.67 is enabled.

To that end, we have to show: if com contains 𝑝.sel then 𝑝 ∈ valid𝜏 . So, assume com contains

𝑝.sel as nothing needs to be shown otherwise. We proceed as follows: we show that com is

enabled after 𝜎 and then use pointer race freedom to establish the validity of 𝑝 .

⋄ Ad (G0) to (G2). By Lemma B.50 we have𝑚𝜎(𝑝) ≠ ⊥. That is,𝑚𝜎(𝑝) ∈ Adr ∪ { seg }.
Towards a contradiction, assume𝑚𝜎(𝑝) = seg. By Lemma B.49, we have 𝑝 ∈ valid𝜎 .

Then, 𝑚𝜏(𝑝) = seg follows from 𝜏 ∼ 𝜎 . This means act is not enabled after 𝜏 . This

Section C.3 Reductions 225

contradicts 𝜏 .act ∈ O⟦P⟧AdrAdr . Hence,𝑚𝜎(𝑝) ≠ seg must hold. So, com is enabled after 𝜎 .

This means there is an update up′ such that act ′′ = ⟨𝑡, com, up′⟩ is enabled after 𝜎 , that

is, 𝜎.act ′′ ∈ O⟦P⟧∅Adr . Since O⟦P⟧∅Adr is free from pointer races by assumption, we must

have 𝑝 ∈ valid𝜏 . We get 𝜏 ∈ valid𝜏 from 𝜏 ∼ 𝜎 together with Lemma B.37. Altogether,

Lemma B.67 is enabled. An invocation for 𝜏 .act and 𝜎 yields act ′ such that �̂� = 𝜎.act ′

satises �̂� ∈ O⟦P⟧∅Adr as well as 𝜏 .act ∼ �̂� and 𝜏 .act ⋖ �̂� .

⋄ Ad (G3). Let 𝑎 ∈ fresh𝜎.act ′ . By denition, 𝑎 ∈ fresh𝜎 . We obtain FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎)
from (P3). Then, the desired FO(𝜏 .act, 𝑎) ⊆ FO(𝜎.act ′, 𝑎) follows from act/act ′ not

emitting an event, thus FO(𝜏 .act, 𝑎) = FO(𝜏, 𝑎) and FO(𝜎.act ′, 𝑎) = FO(𝜎, 𝑎) by

denition.

⋄ Ad (G4). Consider pexp, qexp ∈ VExp(𝜏 .act)with𝑚𝜏 .act(pexp) ≠𝑚𝜏 .act(qexp). We focus

on the case com ≡ 𝑝 ∶= 𝑞.next; the other cases follow analogously. Let 𝑎 = 𝑚𝜏(𝑞) By
the semantics, 𝑎 ≠ seg. Let 𝑏 = 𝑚𝜏(𝑎.next). Then, up = [𝑝 ↦ 𝑏]. Because 𝜎.act ′ is
PRF, we have 𝑞 ∈ valid𝜎 . Hence, 𝑚𝜎(𝑞) = 𝑎 by (P1). Let 𝑐 = 𝑚𝜎(𝑎.next). Then, we
have up′ = [𝑝 ↦ 𝑐]. If pexp /≡ 𝑝 /≡ qexp, then we obtain𝑚𝜏 .act(pexp) = 𝑚𝜏(pexp) as
well𝑚𝜎.act ′(pexp) =𝑚𝜎(pexp) as well as pexp ∈ VExp(𝜏), and similarly for qexp, so that

we conclude by (P4). So assume now wlog. pexp ≡ 𝑝 . This means, qexp /≡ 𝑞. We arrive

at𝑚𝜏(𝑎.next) =𝑚𝜏 .act(𝑝) ≠𝑚𝜏 .act(qexp) =𝑚𝜏(qexp). Furthermore, 𝑞 ∈ VExp(𝜏) holds
by denition and qexp ∈ VExp(𝜏) holds by adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) from
Lemma B.47. Then, (P4) yields𝑚𝜎(𝑎.next) ≠ 𝑚𝜎(qexp). From the update up′ we get

𝑚𝜎.act ′(𝑝) = 𝑚𝜎(𝑎.next) and 𝑚𝜎(qexp) = 𝑚𝜎.act ′(qexp). This concludes the desired

inequality𝑚𝜎.act ′(𝑝) ≠𝑚𝜎.act ′(qexp).

⋄ Ad (G5). We conclude by (P5), retired𝜏 = retired𝜏 .act , and retired𝜎 = retired𝜎.act ′ .

⋄ Ad (G6). We have adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.47. Then, we obtain

the desired freed𝜏 .act ∩ adr(𝑚𝜏 .act∣valid𝜏 .act) = ∅ by (P6) together with freed𝜏 = freed𝜏 .act .

⋄ Ad (G7). We conclude by (P7) as well as freed𝜏 .act = freed𝜏 and retired𝜏 .act = retired𝜏 .

⋄ Ad (G8). We have already shown that if com contains 𝑝.sel then 𝑝 ∈ valid𝜏 . This means

that 𝜏 .act does not perform an unsafe access. So 𝜏 .act is UAF by (P8).

⋄ Case 2: com ≡ in∶func(𝑟1, . . . , 𝑟𝑛)
The update is up = ∅. We show that �̂� = 𝜎.act is an adequate choice.

⋄ Ad (G0). We show that act is enabled after 𝜎 . By Lemma B.50,𝑚𝜎(𝑟𝑖) ∈ Adr∪{ seg }. To
the contrary, assume𝑚𝜎(𝑟𝑖) = seg for some 𝑖 . Then, 𝑟𝑖 ∈ valid𝜎 by Lemma B.49. So, we

get𝑚𝜏(𝑟𝑖) = seg by 𝜏 ∼ 𝜎 . As this contradicts enabledness of act after 𝜏 ,𝑚𝜎(𝑟𝑖) ≠ seg

must hold. Altogether, this means 𝜎.act ∈ O⟦P⟧∅Adr .

226 Appendix C Proof of Meta Theory

⋄ Ad (G2) and (G3). Let the parameters to the call be 𝑟 = 𝑟1, . . . , 𝑟𝑛 . Moreover, let the actual

arguments to the call be𝑚𝜏(𝑟) = 𝑣𝜏 = 𝑣𝜏,1, . . . , 𝑣𝜏,𝑛 and𝑚𝜎(𝑟) = 𝑣𝜎 = 𝑣𝜎,1, . . . , 𝑣𝜎,𝑛 . We

show:

∀𝑏 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act) ∪ fresh𝜎.act . FO(𝜏 .act, 𝑏) ⊆ FO(𝜎.act, 𝑏) .

Consider some 𝑏 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act)∪ fresh𝜎.act . We obtain 𝑏 ∈ adr(𝑚𝜏 ∣valid𝜏)∪ fresh𝜎
as before. Now, (P2) and (P3) give FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏). Then, Lemma B.41 yields:

FO(H(𝜏).in∶func(𝑡, 𝑣𝜏), 𝑏) ⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜏), 𝑏) . (26)

Next, we use the fact that 𝜎.act is PRF by assumption and (G0). That is, act is not racy:

FO(H(𝜎).in∶func(𝑡, 𝑣𝜏), 𝑏) ⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜎), 𝑏) . (27)

To see this, we have to show that the following holds for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛:

(𝑣𝜎,𝑖 = 𝑏 ∨ 𝑟𝑖 ∈ valid𝜎 ∨ 𝑟𝑖 ∈ DExp) ⟹ 𝑣𝜏,𝑖 = 𝑣𝜎,𝑖 .

If 𝑟𝑖 ∈ valid𝜎 , then 𝑣𝜎,𝑖 =𝑚𝜎(𝑟𝑖) =𝑚𝜏(𝑟𝑖) = 𝑣𝜏,𝑖 because of 𝜏 ∼ 𝜎 . Similarly, 𝑣𝜎,𝑖 = 𝑣𝜏,𝑖

if 𝑟𝑖 ∈ DExp since this means 𝑟𝑖 ∈ DVar ⊆ dom(𝑚𝜎 ∣valid𝜎). Consider now 𝑣𝜎,𝑖 = 𝑏

and 𝑟𝑖 ∉ valid𝜎 ∪ DExp. There are two cases: 𝑏 ∈ adr(𝑚𝜏 ∣valid𝜏) or 𝑏 ∈ fresh𝜎 . In the

former case, we have 𝑏 ∈ adr(𝑚𝜎 ∣valid𝜎) by (P1). Moreover, 𝑏 ∈ 𝑚𝜎(PVar \ valid𝜎)
follows from 𝑟𝑖 ∉ valid𝜎 and𝑚𝜎(𝑟𝑖) = 𝑣𝜎,𝑖 = 𝑏. Then, Lemma B.53 yields 𝑏 ∈ ∅. Hence,

the case cannot apply. Consider the latter case, 𝑏 ∈ fresh𝜎 . This means𝑚𝜎(𝑟𝑖) ∈ fresh𝜎 .

Since this contradicts Lemma B.42, the case cannot apply either. Altogether, this proves

the desired implication and establishes (27). Combining (26) and (27), we conclude by:

FO(𝜏 .act, 𝑏) = FO(H(𝜏).in∶func(𝑡, 𝑣𝜏), 𝑏) ⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜏), 𝑏)

⊆ FO(H(𝜎).in∶func(𝑡, 𝑣𝜎), 𝑏) = FO(𝜎.act, 𝑏) .

⋄ Ad (G1). We have𝑚𝜏 =𝑚𝜏 .act and valid𝜏 = valid𝜏 .act by denition, and similarly for 𝜎 .

Hence, the desired 𝜏 .act ≼∅ 𝜎.act follows from (P1).

⋄ Ad (G4). Follows by (P4) and𝑚𝜏 =𝑚𝜏 .act ,𝑚𝜎 =𝑚𝜎.act , and VExp(𝜏) = VExp(𝜏 .act).

⋄ Ad (G5). If com /≡ in∶retire(𝑝), we conclude by (P5) as well as retired𝜏 = retired𝜏 .act
and retired𝜎 = retired𝜎.act . So consider com ≡ in∶retire(𝑝). Towards a contradiction,
assume 𝑝 ∉ valid𝜎 . By Lemma B.51, this means 𝑚𝜎(𝑝) ∈ frees𝜎 ⊆ freed𝜎 where the

inclusion holds because no addresses are reallocated in 𝜎 . Then,𝑚𝜎.act(𝑝) ∈ freed𝜎.act
and 𝑚𝜎.act(𝑝) ∈ retired𝜎.act . Lemma B.70 now states that O⟦P⟧∅Adr contains a double

Section C.3 Reductions 227

retire. Since this contradicts the assumption, we must have 𝑝 ∈ valid𝜎 . Hence, obtain

that𝑚𝜏(𝑝) =𝑚𝜎(𝑝) = 𝑎 for some 𝑎. We conclude by (P5):

retired𝜏 .act = retired𝜏 ∪ {𝑎 } ⊆ retired𝜎 ∪ {𝑎 } = retired𝜎.act .

⋄ Ad (G6). We have adr(𝑚𝜏 ∣valid𝜏) = adr(𝑚𝜏 .act∣valid𝜏 .act) since act does not aect the

memory nor the validity, as noted before. Combined with freed𝜏 = freed𝜏 .act and (P6)

implies (G6).

⋄ Ad (G7). If com /≡ retire(𝑝), nothing needs to be shown and we conclude by (P7). So

consider now the case com ≡ retire(𝑝). We rst show 𝑝 ∈ valid𝜎 . To the contrary,

assume 𝑝 ∉ valid𝜎 . Let𝑚𝜎(𝑝) = 𝑎. From Lemma B.52 we obtain 𝑎 ∈ freed𝜎 and thus

get 𝑎 ∈ freed𝜎.act by denition. Moreover, we obtain 𝑎 ∈ retired𝜎.act . Then, Lemma B.70,

which is enabled by (G0), states that O⟦P⟧∅Adr contains a double retire. This contradicts
the assumption. Hence, 𝑝 ∈ valid𝜎 must hold. By (G1), this means 𝑝 ∈ valid𝜏 as well

as𝑚𝜏(𝑝) = 𝑎. That is, 𝑎 ∈𝑚𝜏(valid𝜏) ⊆ adr(𝑚𝜏 ∣valid𝜏) where the inclusion follows from

Lemma B.35. Now, (P6) yields 𝑎 ∉ freed𝜏 . Altogether, this gives the desired 𝑎 ∉ freed𝜏 .act
by denition.

⋄ Ad (G8). Follows from (P8) together with act not raising unsafe accesses.

⋄ Case 3: com ≡ re∶func

We choose �̂� = 𝜎.act. By 𝜏 ∼ 𝜎 , we know that act is enabled after 𝜎 , that is, 𝜎.act ∈ O⟦P⟧∅Adr .
By denition, act emits the same event re∶func(𝑡) after both 𝜏 and 𝜎 . Then, the claim follows

similarly to the previous case.

⋄ Case 4: com ≡ 𝑝 ∶= malloc and𝑚𝜏 .act(𝑝) ∈ fresh𝜎
Let 𝑎 = 𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some 𝑑 . By

denition, we have 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . By assumption, we have 𝑎 ∈ fresh𝜎 . We now show

that �̂� = 𝜎.act is an adequate choice.

⋄ Ad (G0) to (G2). From 𝑎 ∈ fresh𝜎 we immediately get 𝜎.act ∈ O⟦P⟧∅Adr . Then, (G0)
to (G2) follow from (P1) and (P2) together with Lemma B.68. Note that Lemma B.68 is

applicable because we get FO(𝜏, 𝑎) ⊆ FO(𝜎, 𝑎) from 𝑎 ∈ fresh𝜎 together with (P3).

⋄ Ad (G3). Follows from fresh𝜎.act ⊆ fresh𝜎 together with the fact that act does not emit

an event, i.e.,H(𝜏 .act) = H(𝜏) and H(𝜎.act) = H(𝜎).

⋄ Ad (G4). Consider pexp, qexp ∈ VExp(𝜏 .act) with 𝑚𝜏 .act(pexp) ≠ 𝑚𝜏 .act(qexp). By

denition, we have VExp(𝜏 .act) = VExp(𝜏) ∪ {𝑎.next }.

228 Appendix C Proof of Meta Theory

⋄ Case 4.1: pexp, pexp ∉ {𝑝, 𝑎.next }
We get𝑚𝜏 .act(pexp) =𝑚𝜏(pexp) and𝑚𝜎.act ′(pexp) =𝑚𝜎(pexp) and pexp ∈ VExp(𝜏),
and similarly for qexp, so that we conclude by (P4).

⋄ Case 4.2: pexp ≡ 𝑝

Then, qexp /≡ 𝑝 . Because 𝑎 ∈ fresh𝜎 ,Lemma B.42 yields𝑚𝜎.act(pexp) ≠ 𝑚𝜎(qexp).
Furthermore,𝑚𝜎.act(pexp) ≠ seg. Hence, we arrive at𝑚𝜎.act(pexp) ≠ 𝑚𝜎.act(qexp)
because we have𝑚𝜎.act(qexp) ∈ { seg,𝑚𝜎(qexp) } by denition.

⋄ Case 4.3: pexp ≡ 𝑎.next and pexp ≡ 𝑝

By denition,𝑚𝜎.act(pexp) ≠𝑚𝜎.act(qexp).

⋄ Case 4.4: pexp ≡ 𝑎.next and pexp /≡ 𝑝

We have 𝑚𝜏 .act(pexp) = 𝑚𝜎.act(pexp) = seg. Towards a contradiction, assume

that 𝑚𝜎.act(qexp) = seg holds. By qexp ∈ VExp(𝜏 .act), we have qexp ∈ PVar

or qexp ≡ 𝑏.next ∧ 𝑏 ∈ 𝑚𝜏 .act(valid𝜏 .act). By (P1) this means that we have ei-

ther qexp ∈ PVar or qexp ≡ 𝑏.next ∧ 𝑏 ∈ 𝑚𝜎.act(valid𝜎.act). From Lemma B.49 we

get qexp ∈ valid𝜎.act . So,𝑚𝜏 .act(qexp) = seg by (P1). Since this contradicts the choice

of𝑚𝜏 .act(pexp) ≠𝑚𝜏 .act(qexp), we must have𝑚𝜎.act(qexp) ≠ seg as required.

⋄ Ad (G5). We conclude by (P5), retired𝜏 = retired𝜏 .act , and retired𝜎 = retired𝜎.act .

⋄ Ad (G6). By denition, we have valid𝜏 .act = valid𝜏 ∪ { 𝑝, 𝑎.next }. Consequently, we
get valid𝜏 .act ∩Adr = (valid𝜏 ∩Adr)∪ {𝑎 }. From an invocation of Lemma B.47 we then

get adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏)∪{𝑎 }. Combined with freed𝜏 .act = freed𝜏 \{𝑎 },
we conclude by (P6).

⋄ Ad (G7). We have freed𝜏 .act ⊆ freed𝜏 and retired𝜏 .act = retired𝜏 . We conclude by (P7).

⋄ Ad (G8). Follows from (P8) together with act not raising unsafe accesses.

⋄ Case 5: com ≡ 𝑝 ∶= malloc and𝑚𝜏 .act(𝑝) ∉ fresh𝜎
Let 𝑎 =𝑚𝜏 .act(𝑝). The update is up = [𝑝 ↦ 𝑎, 𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some datum 𝑑 .

By denition, we have 𝑎 ∈ fresh𝜏 ∪ freed𝜏 . If 𝑎 ∈ freed𝜏 , then 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏) by induction.
Otherwise, 𝑎 ∈ fresh𝜏 and we get 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏) by Lemmas B.35 and B.43. Then, 𝜏 ∼ 𝜎

together with Lemma B.38 yields 𝑎 ∉ adr(𝑚𝜎 ∣valid𝜎). Now, we invoke Lemma B.66 for 𝜎

and 𝑎. This gives 𝛾 ∈ O⟦P⟧∅Adr with 𝜎 ∼ 𝛾 , 𝜎 ⋖ 𝛾 , 𝑎 ∈ fresh𝛾 , and retired𝜎 ⊆ retired𝛾 ∪ {𝑎 }.
Furthermore, the lemma results in𝑚𝜎(pexp) ≠ 𝑚𝜎(pexp) ⟹𝑚𝛾(pexp) ≠ 𝑚𝛾(pexp), for
all pexp, qexp ∈ VExp(𝜎). Since 𝑎 ∉ fresh𝜎 by assumption, we get FO(𝜎, 𝑏) = FO(𝛾, 𝑏) for
all 𝑏 ∈ fresh𝛾 \ {𝑎 }.

Section C.3 Reductions 229

⋄ Ad 𝜏 ∼ 𝛾 and 𝜏 ⋖ 𝛾 . From the above, we have 𝜏 ∼ 𝜎 ∼ 𝛾 and 𝜏 ⋖ 𝜎 ⋖ 𝛾 . By denition

and Lemma B.38, we get𝑚𝜏(valid𝜏) ⊆𝑚𝜎(valid𝜎) and adr(𝑚𝜏 ∣valid𝜏) = adr(𝑚𝜎 ∣valid𝜎).
Lemmas B.32 to B.34 yield 𝜏 ∼ 𝛾 and 𝜏 ⋖ 𝛾 .

⋄ Ad FO(𝜏, 𝑏) ⊆ FO(𝛾, 𝑏) for all 𝑏 ∈ fresh𝛾 . Let 𝑏 ∈ fresh𝛾 . If 𝑏 ≠ 𝑎 holds,

we immediately get FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏) = FO(𝛾, 𝑏) where the inclusion is due

to (P3) and the equality due to the correlation between 𝜎 and 𝛾 from above. Other-

wise, 𝑏 = 𝑎. Then, the desired inclusion follows from Lemma B.57 for 𝜏 and 𝛾 . We

need to show that Lemma B.57 is enabled. We already have 𝑎 ∈ fresh𝛾 . Moreover, we

have FO(𝜏, 𝑐) ⊆ FO(𝜎, 𝑐) = FO(𝛾, 𝑐) for any 𝑐 ∈ fresh𝜎 ∩ fresh𝛾 due to (P3) and the

correlation of 𝜎 and 𝛾 . Lastly, we observe that 𝑎 ∉ retired𝜏 . This follows from (P7)

if 𝑎 ∈ freed𝜏 and from Lemma B.42 if 𝑎 ∈ fresh𝜏 . Hence, FO(𝜏, 𝑏) ⊆ FO(𝛾, 𝑏).

⋄ Ad 𝑚𝜏(pexp) ≠𝑚𝜏(qexp) ⟹𝑚𝛾(pexp) ≠𝑚𝛾(qexp) for all pexp, qexp ∈ VExp(𝜏). Let

some pexp, qexp ∈ VExp(𝜏) with𝑚𝜏(pexp) ≠𝑚𝜏(qexp). By (P4),𝑚𝜎(pexp) ≠𝑚𝜎(qexp).
So, pexp, qexp ∈ VExp(𝜎) by (P1). Then, the properties of 𝛾 give𝑚𝛾(pexp) ≠𝑚𝛾(qexp).

⋄ Ad retired𝜏 ⊆ retired𝛾 . We have retired𝜏 ⊆ retired𝜎 ⊆ retired𝛾 ∪ {𝑎 } where the rst

inclusion is due to (P5) and the second inclusion holds by the properties of 𝛾 . It remains

to show that 𝑎 ∉ retired𝜏 holds. As before, this follows from (P7) together with 𝑎 ∈ fresh𝜏
and Lemma B.42.

With the above properties in place, observe that the induction hypothesis could have given

us 𝛾 instead of 𝜎 because 𝛾 satises the necessary properties (P1) to (P8). Further, 𝑎 ∈ fresh𝜎 .

Hence, we conclude as in the previous case.

⋄ Case 6: com ≡ free(𝑎) and H(𝜎).free(𝑎) ∈ S(O)
The update is up = ∅. By denition, H(𝜏).free(𝑎) ∈ S(O). That is, free(𝑎) ∈ FO(𝜏, 𝑎).
By assumption, H(𝜎).free(𝑎) ∈ S(O). That is, free(𝑎) ∈ FO(𝜎, 𝑎). We choose �̂� = 𝜎.act.

⋄ Ad (G0) to (G2). By H(𝜎).free(𝑎) ∈ S(O), we have 𝜎.act ∈ O⟦P⟧∅Adr . Then, we

conclude by Lemma B.68, which is enabled according to Lemma B.56.

⋄ Ad (G3). Let 𝑏 ∈ fresh𝜎.act . By denition, 𝑏 ∈ fresh𝜎 \ {𝑎 }. That is, 𝑎 ≠ 𝑏. Lemma B.56

yields FO(𝜏 .act, 𝑏) = FO(𝜏, 𝑏) and FO(𝜎.act, 𝑏) = FO(𝜎, 𝑏). We conclude by (P3).

⋄ Ad (G4). Let pexp, qexp ∈ VExp(𝜏 .act). By denition, valid𝜏 .act ⊆ valid𝜏 and𝑚𝜏 .act =𝑚𝜏 .

Hence, we have pexp, qexp ∈ VExp(𝜏). Moreover,𝑚𝜎.act =𝑚𝜎 . We conclude by (G4).

⋄ Ad (G5). By (P5) we get retired𝜏 .act = retired𝜏 \ {𝑎 } = retired𝜎 \ {𝑎 } = retired𝜎 .

230 Appendix C Proof of Meta Theory

⋄ Ad (G6). We have freed𝜏 .act = freed𝜏 ∪ {𝑎 }. Moreover, valid𝜏 .act ⊆ valid𝜏 by denition.

By Lemma B.47, adr(𝑚𝜏 .act∣valid𝜏 .act) ⊆ adr(𝑚𝜏 ∣valid𝜏). In order to conclude by (P6), it

remains to show 𝑎 ∉ adr(𝑚𝜏 .act∣valid𝜏 .act). Since 𝜎.act PRF and 𝑎 ∈ freed𝜎.act , Lemmas B.35

and B.48 yield 𝑎 ∉ adr(𝑚𝜎.act∣valid𝜎.act). Then, the desired 𝑎 ∉ adr(𝑚𝜏 .act∣valid𝜏 .act) follows
from (G1) together with Lemma B.38.

⋄ Ad (G7). By denition, freed𝜏 .act = freed𝜏 ∪ {𝑎 } and retired𝜏 .act = retired𝜏 \ {𝑎 }. Then,
we conclude by by (P7).

⋄ Ad (G8). Follows from (P8) together with act not raising unsafe accesses.

⋄ Case 7: com ≡ free(𝑎) andH(𝜎).free(𝑎) ∉ S(O)
The update is up = ∅. By denition, H(𝜏).free(𝑎) ∈ S(O). That is, free(𝑎) ∈ FO(𝜏, 𝑎).
By assumption, we have free(𝑎) ∉ FO(𝜎, 𝑎). By 𝜏 ⋖ 𝜎 from (G2) we get 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏)
as otherwise we had free(𝑎) ∈ FO(𝜎, 𝑎). By (G1), this means 𝑎 ∉ 𝑚𝜎(valid𝜎). We now

show that �̂� = 𝜎 is an adequate choice.

⋄ Ad (G0). By induction hypothesis, 𝜎 ∈ O⟦P⟧∅Adr .

⋄ Ad (G1). By denition, ctrl(𝜏) = ctrl(𝜏 .act). So, ctrl(𝜏 .act) = ctrl(𝜎) follows from (P1).

To show𝑚𝜏 .act∣valid𝜏 .act = 𝑚𝜎 ∣valid𝜎 it suces to show𝑚𝜏 ∣valid𝜏 = 𝑚𝜏 .act∣valid𝜏 .act by (P1).

To arrive there, we rst show valid𝜏 = valid𝜏 .act . The inclusion valid𝜏 .act ⊆ valid𝜏 holds

by denition. To see valid𝜏 ⊆ valid𝜏 .act , consider pexp ∈ valid𝜏 . Then, pexp /≡ 𝑎.next

must hold as for otherwise we had 𝑎 ∈ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35 which does not

hold as shown before. Moreover, we must have𝑚𝜏(pexp) ≠ 𝑎 as otherwise we would

again get 𝑎 ∈ adr(𝑚𝜏 ∣valid𝜏) by Lemma B.35. Hence, by the denition of validity, we

have pexp ∈ valid𝜏 .act . Altogether, this means we have valid𝜏 = valid𝜏 .act indeed. Then,

the desired𝑚𝜏 ∣valid𝜏 =𝑚𝜏 .act∣valid𝜏 .act follows because𝑚𝜏 =𝑚𝜏 .act due to up = ∅.

⋄ Ad (G2). Let 𝑏 ∈ adr(𝑚𝜏 .act∣valid𝜏 .act). We get 𝑏 ∈ adr(𝑚𝜏 ∣valid𝜏) along the same lines as

in (G1). This means that 𝑎 ≠ 𝑏. Moreover, by 𝜏 ⋖ 𝜎 we have FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏). So it

suces to show FO(𝜏, 𝑏) = FO(𝜏 .act, 𝑏). This follows from Lemma B.56.

⋄ Ad (G3). Let 𝑏 ∈ fresh𝜎 . If 𝑎 ≠ 𝑏, we get FO(𝜏 .act, 𝑏) ⊆ FO(𝜏, 𝑏) from Lemma B.56

and then conclude by (P3). Now, consider 𝑎 = 𝑏. As argued above, free(𝑎) ∈ FO(𝜏, 𝑎).
Moreover, (P3) gives FO(𝜏, 𝑏) ⊆ FO(𝜎, 𝑏). That is, we have free(𝑎) ∈ FO(𝜎, 𝑎). Since
this contradicts free(𝑎) ∉ FO(𝜎, 𝑎) from above, the case cannot apply.

⋄ Ad (G4). Let pexp, qexp ∈ VExp(𝜏 .act). By denition, valid𝜏 .act ⊆ valid𝜏 and𝑚𝜏 .act =𝑚𝜏 .

Hence, we have pexp, qexp ∈ VExp(𝜏). Moreover,𝑚𝜎.act =𝑚𝜎 . We conclude by (G4).

⋄ Ad (G5). We conclude by (P5) and retired𝜏 .act = retired𝜏 \ {𝑎 }.

Section C.3 Reductions 231

⋄ Ad (G6). For (G1) we already showed valid𝜏 = valid𝜏 .act . Together with𝑚𝜏 .act =𝑚𝜏 , we

obtain adr(𝑚𝜏 ∣valid𝜏) = adr(𝑚𝜏 .act∣valid𝜏 .act) by Lemma B.35. We know 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏)
from above. Moreover, freed𝜏 .act = freed𝜏 ∪ {𝑎 }. Hence, we conclude by (G6).

⋄ Ad (G7). By denition, freed𝜏 .act = freed𝜏 ∪ {𝑎 } and retired𝜏 .act = retired𝜏 \ {𝑎 }. Then,
we conclude by by (P7).

⋄ Ad (G8). Follows from (P8) together with act not raising unsafe accesses.

⋄ Case 8: com ≡ env(𝑎)
The update is up = [𝑎.next ↦ seg, 𝑎.data ↦ 𝑑] for some𝑑 . By denition, 𝑎 ∈ fresh𝜏∪freed𝜏 .

This implies 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏): if 𝑎 ∈ freed𝜏 if follows from (P6) and otherwise from

Lemmas B.35 and B.43. We show that �̂� = 𝜎 is an adequate choice. We have:

dom(𝑚𝜏 .act∣valid𝜏 .act) = valid𝜏 .act ∪ DVar ∪ { 𝑏.data ∣ 𝑏 ∈𝑚𝜏 .act(valid𝜏 .act) }

= valid𝜏 ∪ DVar ∪ { 𝑏.data ∣ 𝑏 ∈𝑚𝜏 .act(valid𝜏) }

= valid𝜏 ∪ DVar ∪ { 𝑏.data ∣ 𝑏 ∈𝑚𝜏(valid𝜏) } = dom(𝑚𝜏 ∣valid𝜏)

where the rst and last equality is by denition, the second equality by valid𝜏 .act = valid𝜏 ,

and the third equality because 𝑎.next ∉ valid𝜏 by 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏) together with

Lemma B.35. Similarly, 𝑎.data ∉ valid𝜏 because 𝑎 ∉ 𝑚𝜏(valid𝜏) by 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏)
and Lemma B.35. Altogether,𝑚𝜏 ∣valid𝜏 = 𝑚𝜏 .act∣valid𝜏 .act and𝑚𝜏(valid𝜏) = 𝑚𝜏 .act(valid𝜏 .act)
and adr(𝑚𝜏 ∣valid𝜏) = adr(𝑚𝜏 .act∣valid𝜏 .act). Furthermore, we have ctrl(𝜏) = ctrl(𝜏 .act)
and valid𝜏 = valid𝜏 .act as well as fresh𝜏 = fresh𝜏 .act and freed𝜏 = freed𝜏 .act . Hence, (G1)

to (G3) and (G5) to (G7) follow immediately from (P1) to (P3) and (P5) to (P7). Next, we estab-

lish (G4). To that end, consider pexp, qexp ∈ VExp(𝜏 .act) with𝑚𝜏 .act(pexp) ≠𝑚𝜏 .act(pexp).
We have pexp, qexp ∈ VExp(𝜏) by denition. Note that we must have pexp /≡ 𝑎.next /≡ qexp

because of 𝑎 ∉ adr(𝑚𝜏 ∣valid𝜏). Hence, we obtain𝑚𝜏 .act(pexp) = 𝑚𝜏(pexp). Then, (G4) fol-
lows from (P4). Finally, the remaining (G8) follow from (P8) since act does not raise unsafe

accesses.

⋄ Case 9: com ≡ assume cond and 𝜎.act ∈ O⟦P⟧∅Adr
The update is up = ∅. We show that �̂� = 𝜎.act is an adequate choice. To that end, observe

that we have 𝑚𝜏(valid𝜏) = 𝑚𝜏 .act(valid𝜏 .act) and adr(𝑚𝜏 .act∣valid𝜏 .act) = adr(𝑚𝜏 ∣valid𝜏) by

Lemma B.47.

⋄ Ad (G0). Holds by assumption.

⋄ Ad (G1) and (G2). Follow from Lemma B.68 together with (P1) and (P2).

⋄ Ad (G3). Follows from (P3) together with fresh𝜎 = fresh𝜎.act as well asH(𝜏) = H(𝜏 .act)
and H(𝜎) = H(𝜎.act).

232 Appendix C Proof of Meta Theory

⋄ Ad (G4). Follows by (G0) since𝑚𝜏 =𝑚𝜏 .act and𝑚𝜎 =𝑚𝜎.act and VExp(𝜏 .act) = VExp(𝜏)
by the above𝑚𝜏(valid𝜏) =𝑚𝜏 .act(valid𝜏 .act).

⋄ Ad (G5). Follows from (G5), retired𝜏 .act = retired𝜏 , and retired𝜎.act = retired𝜎 .

⋄ Ad (G6). By denition, freed𝜏 = freed𝜏 .act and adr(𝑚𝜏 ∣valid𝜏) = adr(𝑚𝜏 .act∣valid𝜏 .act).
Then, we conclude by (G6).

⋄ Ad (G7). We conclude by (G7), freed𝜏 = freed𝜏 .act , and retired𝜏 = retired𝜏 .act

⋄ Ad (G8). Follows from (P8) together with act not raising unsafe accesses.

⋄ Case 10: com ≡ assume cond and 𝜎.act ∉ O⟦P⟧∅Adr
The update is up = ∅. We have 𝑚𝜏(𝑢) = 𝑚𝜎(𝑢) for all 𝑢 ∈ DVar by (P1). Furthermore

by (P4),𝑚𝜏(𝑝) ≠ 𝑚𝜏(𝑞) implies𝑚𝜎(𝑝) ≠ 𝑚𝜎(𝑞). Hence, for act to be not enabled after 𝜎 ,

the condition must be of the form cond ≡ 𝑝 = 𝑞. By the semantics, we have𝑚𝜏(𝑝) =𝑚𝜏(𝑞).
By assumption,𝑚𝜎(𝑝) ≠ 𝑚𝜎(𝑞). Note that {𝑝, 𝑞 } /⊆ valid𝜏 must hold because (P1) would

otherwise yield𝑚𝜎(𝑝) = 𝑚𝜏(𝑝) = 𝑚𝜏(𝑞) = 𝑚𝜎(𝑞) which contradicts the assumption. So

we have 𝑝 ∉ valid𝜏 or 𝑞 ∉ valid𝜏 . Wlog. assume 𝑝 ∉ valid𝜏 , the other case is symmetric.

Then, Lemma B.51 together with (P8) yields 𝑚𝜏(𝑝) ∈ frees𝜏 . Furthermore, 𝑝 ∉ valid𝜎
by (P1) and thus 𝑝 ∉ CVar by Lemma B.54. By Lemmas B.39 and B.40 together with (P1),

we have com ∈ next-com(𝜎). Since 𝜎 is MPRF as noted above, we must have 𝑞 ∈ CVar . By

Assumption A.9,𝑚𝜏(𝑞) ∉ frees𝜏 . So,𝑚𝜏(𝑝) = 𝑚𝜏(𝑞) results in𝑚𝜏(𝑝) ∉ frees𝜏 . Since this

contradicts the previous𝑚𝜏(𝑝) ∈ frees𝜏 , Case 10 cannot apply.

⋄ Case 11: com ∈ { skip, beginAtomic, endAtomic, @inv • }
We immediately obtain that �̂� = 𝜎.act satises the claim.

The above case distinction is complete and thus concludes the induction. �

Proof C.57 (Theorem B.72). We proceed by induction over the structure of 𝜏 . In the base case, we

have 𝜏 = 𝜖 and the claim follows immediately. For the induction step, consider 𝜏 .act ∈ O⟦P⟧∅Adr
UAF and assume that we have already constructed 𝜎 with the following properties:

(P1) 𝜎 ∈ ⟦P⟧∅∅
(P2) ctrl(𝜏) = ctrl(𝜎)
(P3) (exp ∩ Adr) ∩ (fresh𝜏 ∪ freed𝜏) = ∅ ⟹ 𝑚𝜏(exp) =𝑚𝜎(exp)
(P4) fresh𝜏 = fresh𝜎
(P5) freed𝜏 ∪ retired𝜏 = retired𝜎
(P6) inv(𝜏) ≡ inv(𝜎)

We now construct �̂� such that:

(G1) �̂� ∈ ⟦P⟧∅∅
(G2) ctrl(𝜏 .act) = ctrl(�̂�)

Section C.3 Reductions 233

(G3) (exp ∩ Adr) ∩ (fresh𝜏 .act ∪ freed𝜏 .act) = ∅ ⟹ 𝑚𝜏 .act(exp) =𝑚�̂�(exp)
(G4) fresh𝜏 .act = fresh�̂�
(G5) freed𝜏 .act ∪ retired𝜏 .act = retired�̂�
(G6) inv(𝜏 .act) ≡ inv(�̂�)

Let act = ⟨𝑡, com, up⟩.

⋄ Case 1: com ≡ 𝑝 ∶= 𝑞.next

Let 𝑎 =𝑚𝜏(𝑞) and 𝑏 =𝑚𝜏(𝑎.next). By denition, we have 𝑎 ≠ seg and up = [𝑝 ↦ 𝑏]. We

choose �̂� = 𝜎.act.

⋄ Ad (G1). Since 𝜏 .act is UAF, we have 𝑞 ∈ valid𝜏 . By denition, 𝑞 ∩ Adr = ∅. Moreover,

the contrapositive of Lemmas B.43 and B.48 gives 𝑎 ∉ fresh𝜏 ∪ freed𝜏 . Then, (P3) gives

us𝑚𝜎(𝑝) = 𝑎 and𝑚𝜎(𝑎.next) = 𝑏. Hence, 𝜎.act ∈ O⟦P⟧∅Adr as required.

⋄ Ad (G2). Follows by (P2) together with executing the same action act after both 𝜏 and 𝜎 .

⋄ Ad (G3). Consider exp such that (exp ∩ Adr) ∩ (fresh𝜏 .act ∪ freed𝜏 .act) = ∅. If exp ≡ 𝑝 ,

then 𝑚𝜏 .act(exp) = 𝑏 = 𝑚𝜎.act(exp) due to the form of the update up. Otherwise, we

have𝑚𝜏 .act(exp) = 𝑚𝜏(exp) and𝑚𝜎.act(exp) = 𝑚𝜎(exp). Because of fresh𝜏 .act = fresh𝜏
and freed𝜏 .act = freed𝜏 , (G3) yields 𝑚𝜏(exp) = 𝑚𝜎(exp). Altogether, we arrive at the

desired𝑚𝜏 .act(exp) =𝑚𝜎.act(exp).

⋄ Ad (G4) to (G6). The remaining properties follow immediately from (P4) to (P6) together

with action act not aecting the fresh/freed/retired addresses nor the invariants.

⋄ Case 2: com ∈ {𝑝 ∶= 𝑞, 𝑝.next ∶= 𝑞, 𝑢 ∶= op(𝑢), 𝑢 ∶= 𝑞.data, 𝑝 .data ∶= 𝑢 }
Analogous to previous case.

⋄ Case 3: com ∈ { in∶func(𝑣), re∶func skip }
We choose �̂� = 𝜎.act. By denition and (P2), 𝜎.act ∈ ⟦P⟧∅∅ satisfying (G1). The remain-

ing (G2) to (G6) follow from (P1) to (P6) together with the fact that act does not aect the

memory nor the fresh/freed/retired addresses nor the invariants.

⋄ Case 4: assume cond

We choose �̂� = 𝜎.act. Let 𝑥 ∈ PVar ∪ DVar . From 𝑥 ∩ Adr = ∅ and (P3), we obtain

that 𝑚𝜏(𝑥) = 𝑚𝜎(𝑥). Consequently, cond has the same truth value in 𝜏 and 𝜎 since it

contains only variables 𝑥 . By (P2), we obtain 𝜎.act ∈ ⟦P⟧∅∅ which concludes (G1). The

remaining (G2) to (G6) follow from (P1) to (P6) together with act not aecting the memory

nor the fresh/freed/retired addresses nor the invariants.

⋄ Case 5: 𝑝 ∶= malloc

We choose �̂� = 𝜎.act. Let 𝑎 =𝑚𝜏 .act(𝑝). By 𝜏 .act ∈ O⟦P⟧∅Adr , we have 𝑎 ∈ fresh𝜏 .

234 Appendix C Proof of Meta Theory

⋄ Ad (G1). We get 𝑎 ∈ fresh𝜎 from (P4). This means 𝜎.act ∈ ⟦P⟧∅∅.

⋄ Ad (G3). Consider expwith (exp∩Adr)∩(fresh𝜏 .act∪freed𝜏 .act). If exp ∈ {𝑝, 𝑎.next }, we
have𝑚𝜏 .act(exp) = 𝑚𝜎.act(exp) by up updating exp. Otherwise,𝑚𝜏 .act(exp) = 𝑚𝜏(exp)
and𝑚𝜎.act(exp) =𝑚𝜎(exp). Moreover, fresh𝜏 .act ∪ fresh𝜏 .act ⊆ fresh𝜏 ∪ freed𝜏 . Hence, we

conclude by (P3).

⋄ Ad (G4). We conclude by (P4): fresh𝜏 .act = fresh𝜏 \ {𝑎 } = fresh𝜎 \ {𝑎 } = fresh𝜎.act .

⋄ Ad (G5). By denition, we have:

freed𝜏 .act ∪ retired𝜏 .act = (freed𝜏 \ {𝑎 }) ∪ retired𝜏 = freed𝜏 ∪ retired𝜏

where the last equality holds by 𝑎 ∉ freed𝜏 , which follows from 𝑎 ∈ fresh𝜏 and

Lemma B.44. By denition, retired𝜎.act = retired𝜎 . Moreover, freed𝜏 ∪ retired𝜏 = retired𝜎
by (G5). Hence, we conclude the desired freed𝜏 .act ∪ retired𝜏 .act = retired𝜎.act .

⋄ Ad (G2) and (G6). Follows by (P2) and (P6) together with act not aecting the invariants.

⋄ Case 6: free(𝑎)
We choose �̂� = 𝜎 .

⋄ Ad (G1). Follows from (P1)

⋄ Ad (G2). Follows from (G2) together with ctrl(𝜏) = ctrl(𝜏 .act) by denition.

⋄ Ad (G3). Follows from (G3) together with𝑚𝜏 .act =𝑚𝜏 and𝑚𝜎.act =𝑚𝜎 .

⋄ Ad (G4). By denition, we have fresh𝜏 .act = fresh𝜏 \ {𝑎 }. By Lemma B.46, 𝑎 ∈ retired𝜏 .

By Lemma B.44, 𝑎 ∉ fresh𝜏 . Hence, fresh𝜏 .act = fresh𝜏 = fresh𝜎 where the last equality

holds by (P4).

⋄ Ad (G5). By denition, we have:

freed𝜏 .act ∪ retired𝜏 .act = (freed𝜏 ∪ {𝑎 }) ∪ (retired𝜏 \ {𝑎 })

= freed𝜏 ∪ retired𝜏 ∪ {𝑎 } = freed𝜏 ∪ retired𝜏

where the last equality holds by 𝑎 ∈ retired𝜏 due to Lemma B.46. Finally, (G5) establishes

the desired freed𝜏 .act ∪ retired𝜏 .act = retired𝜎 .

⋄ Ad (G6). Follows from (P6) together with inv(𝜏 .act) = inv(𝜏).

⋄ Case 7: env(𝑎)
We choose �̂� = 𝜎 . By denition, 𝑎 ∈ fresh𝜏 ∪ freed𝜏 .

⋄ Ad (G1). Follows from (P1).

Section C.3 Reductions 235

⋄ Ad (G2). Follows from (G2) together with ctrl(𝜏) = ctrl(𝜏 .act) by denition.

⋄ Ad (G3). Consider some exp with (exp∩Adr)∩ (fresh𝜏 .act ∪ freed𝜏 .act) = ∅. This means

we have exp ∉ {𝑎.next, 𝑎.data }. So𝑚𝜏 .act(exp) =𝑚𝜏(exp). Then, fresh𝜏 .act = fresh𝜏 as

well as freed𝜏 .act = freed𝜏 together with (G3) yield𝑚𝜏 .act(exp) =𝑚𝜏(exp) =𝑚𝜎(exp).

⋄ Ad (G4) to (G6). The remaining properties follow immediately from (P4) to (P6) together

with action act not aecting the fresh/freed/retired addresses nor the invariants.

⋄ Case 8: com ∈ { skip, beginAtomic, endAtomic }
We immediately obtain that �̂� = 𝜎.act satises the claim.

⋄ Case 9: com ≡ @inv •

We choose �̂� = 𝜎.act. By denition and (P2), we have 𝜎.act ∈ ⟦P⟧∅∅, satisfying (G1). Be-

cause act does not aect the memory nor the fresh/freed/retired addresses, (G2) to (G5)

follow from (P2) to (P5). It remains to establish (G6). To that end, it is sucient to estab-

lish inv𝜏(act) ≡ inv𝜎(act) according to the denition of invariants together with (P6)..

⋄ Case 9.1: com ≡ @inv angel 𝑟

By denition, we immediately obtain inv𝜏(act) ≡ ∃𝑟 .true ≡ inv𝜎(act).

⋄ Case 9.2: com ≡ @inv 𝑝 = 𝑞

Let 𝑎 = 𝑚𝜏(𝑝) and 𝑏 = 𝑚𝜏(𝑞). By denition, {𝑝, 𝑞 } ∩ Adr = ∅. Consequently, (G3)

yields 𝑚𝜎(𝑝) = 𝑎 and 𝑚𝜎(𝑞) = 𝑏. Hence, inv𝜏(act) ≡ 𝑎 = 𝑏 ∧ true ≡ inv𝜎(act) as
required.

⋄ Case 9.3: com ≡ @inv 𝑝 in 𝑟

As before,𝑚𝜏(𝑝) = 𝑎 =𝑚𝜎(𝑝) by (G3). Then, inv𝜏(act) ≡ 𝑎 ∈ 𝑟 ∧ true ≡ inv𝜎(act).

⋄ Case 9.4: com ≡ @inv active(𝑝)
As before,𝑚𝜏(𝑝) = 𝑎 = 𝑚𝜎(𝑝) by (G3). By (G3), we have active(𝜏) = 𝑀 = active(𝜎)
for some set of addresses 𝑀 ⊆ Adr . Then, inv𝜏(act) ≡ 𝑎 ∈ 𝑀 ∧ true ≡ inv𝜎(act) as
required.

⋄ Case 9.5: com ≡ @inv active(𝑟)
As before,𝑚𝜏(𝑝) = 𝑎 = 𝑚𝜎(𝑝) by (G3) and active(𝜏) = 𝑀 = active(𝜎) by (G3). Then,

we arrive at the required inv𝜏(act) ≡ 𝑟 ⊆ 𝑀 ∧ true ≡ inv𝜎(act).

The above case distinction is complete and thus concludes the induction. �

Proof C.58 (Theorem A.10). If good(O⟦P⟧AdrAdr) then, good(⟦P⟧∅∅) follows by ⟦P⟧∅∅ ⊆ O⟦P⟧AdrAdr .

For the reverse direction, assume good(⟦P⟧∅∅) holds. To the contrary, assume good(O⟦P⟧AdrAdr)
does not hold. There is 𝜏 ∈ O⟦P⟧AdrAdr so that good(𝜏) is not satised. Hence, ctrl(𝜏) ∩ Fault ≠ ∅

where Fault are the bad control locations. Theorem B.71 yields 𝜎 ∈ O⟦P⟧∅Adr with 𝜏 ∼ 𝜎 . Note

236 Appendix C Proof of Meta Theory

that 𝜎 is MPRF by assumption. Then, Theorem B.72 yields 𝛾 ∈ ⟦P⟧∅∅ with ctrl(𝜎) = ctrl(𝛾).
Altogether, we arrive at ctrl(𝜏) = ctrl(𝛾) and thus ctrl(𝛾)∩ Fault ≠ ∅. Hence, good(⟦P⟧∅∅) does
not hold. Since this contradicts the assumption, we obtain the desired good(O⟦P⟧AdrAdr).

Now, we show that O⟦P⟧AdrAdr is free from double retires. To the contrary, assume there is a short-

est computation 𝜏 .act ∈ O⟦P⟧AdrAdr with act = ⟨𝑡, in∶retire(𝑝), up⟩ and 𝑚𝜏(𝑝) ∈ retire(𝜏).
Theorem B.71 yields 𝜎 ∈ O⟦P⟧∅Adr with 𝜏 ∼ 𝜎 and retired𝜏 ⊆ retired𝜎 . By assumption, 𝜎 is MPRF.

If 𝑝 ∉ valid𝜎 , then𝑚𝜎(𝑝) ∈ freed𝜎 by Lemma B.52. So,𝑚𝜎.act(𝑝) ∈ freed𝜎.act∪retired𝜎.act . Then,

Lemma B.70 yields a double retire in O⟦P⟧∅Adr . Since this contradicts the assumption, we must

have 𝑝 ∈ valid𝜎 . Hence,𝑚𝜎(𝑝) = 𝑚𝜏(𝑝) ∈ retired𝜏 ⊆ retired𝜎 . This means 𝜎.act is a double

retire in O⟦P⟧∅Adr . This contradicts the assumption. So, O⟦P⟧AdrAdr is free from double retires. �

Proof C.59 (Theorem 8.5). Set CVar = ∅ so that O⟦P⟧AdrAdr satises Assumption A.9. Note that

SPRF implies MPRF. Then, the claim follows from Theorem B.71. �

Proof C.60 (Theorem 8.6). Set CVar = ∅ so that O⟦P⟧AdrAdr satises Assumption A.9. Note that

SPRF implies MPRF. Then, the claim follows from Theorem B.72. �

Proof C.61 (Theorem 8.7). Set CVar = ∅ so that O⟦P⟧AdrAdr satises Assumption A.9. Note that

SPRF implies MPRF. Then, the claim follows from Theorem A.10. �

C.4 Type System

Proof C.62 (Lemma B.73). By denition. �

Proof C.63 (Lemma B.74). Consider ⊢ { Γ1 } stmt { Γ2 } and let stmt −−⇁com stmt ′. We do an

induction over the derivation of⊢ { Γ1 } stmt { Γ2 }. In the base case, the derivation is due to a

single rule application. By denition, the derivation is not due Rule (infer), (seq), (choice),

or (loop). For the remaining applicable rules we get stmt ≡ com and stmt ′ ≡ skip. That is, we

have ⊢ { Γ1 } com { Γ2 }. By denition, we have ⊢ { Γ2 } skip { Γ2 }. We choose Γ = Γ2. For the

induction step, consider a composed derivation⊢ { Γ1 } stmt { Γ2 } and let stmt −−⇁com stmt ′. We

do a case distinction on the rst rule.

⋄ Case 1: Rule (seq), part 1

We have stmt ≡ stmt1; stmt2. There is Γ with ⊢ { Γ1 } stmt1 { Γ } and ⊢ { Γ } stmt2 { Γ2 }
due to the rule denition.

⋄ Case 1.1: stmt1 ≡ skip

By denition, com ≡ skip and stmt ′ ≡ stmt2. We immediately obtain⊢ { Γ1 } com { Γ }
and ⊢ { Γ } stmt ′ { Γ2 }

Section C.4 Type System 237

⋄ Case 1.2: stmt1 /≡ skip

By denition, we have stmt ′ ≡ stmt ′1; stmt2 and stmt1 −−⇁
com stmt ′1. We invoke the induc-

tion hypothesis for ⊢ { Γ1 } stmt1 { Γ } and stmt1 −−⇁
com stmt ′1. This yields some Γ′ such

that ⊢ { Γ1 } com { Γ′ } and ⊢ { Γ′ } stmt ′1 { Γ }. By Rule (seq) then, ⊢ { Γ′ } stmt ′ { Γ2 }.

⋄ Case 2: Rule (choice)

We have stmt ≡ stmt1 ⊕ stmt2. By denition, we have stmt −−⇁com stmt𝑖 ≡ stmt ′ for 𝑖 ∈ { 1, 2 }
and com ≡ skip. The type rules gives⊢ { Γ1 } stmt ′ { Γ2 }. Moreover,⊢ { Γ2 } com { Γ2 }.

⋄ Case 3: Rule (loop)

We have stmt ≡ stmt∗1 and Γ1 = Γ2. By denition, we have stmt ′ ∈ { skip, stmt1; stmt }
and com ≡ skip. We immediately get ⊢ { Γ1 } com { Γ1 }. Moreover, ⊢ { Γ1 } stmt ′ { Γ2 }
follows from Rule (skip) in case of stmt ′ ≡ skip and from Rule (seq) otherwise.

⋄ Case 4: Rule (infer)

There are type environments Γ3 and Γ4 such that Γ1 ↝ Γ3 and⊢{ Γ3 } stmt { Γ4 }, and Γ4 ↝ Γ2.

By induction for⊢{ Γ3 } stmt { Γ4 }, there is Γ with⊢{ Γ3 } com { Γ } and⊢{ Γ } stmt ′ { Γ4 }.
Applying Rule (infer) we get ⊢ { Γ1 } com { Γ } and ⊢ { Γ } stmt ′ { Γ2 } as desired.

The above case distinction concludes the induction. �

Proof C.64 (Lemma B.75). Let ⊢ { Γinit } P { Γ }. We proceed by induction over the SOS tran-

sitions. In the base case, (pcinit, 𝜖) ⇢
0 (pc, 𝜏). That is, pc = pcinit and 𝜏 = 𝜖 . Let 𝑡 be a thread.

By denition, stmt(𝜏, 𝑡) = skip and pc(𝑡) = P[𝑡]. The former gives⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ[𝑡]init }.
The latter gives⊢ { Γ[𝑡]init } pc(𝑡) { Γ } due to the premise. So we choose Γ1 = Γ

[𝑡]
init and Γ2 = Γ.

For the induction step, consider (pcinit, 𝜖) ⇢
𝑛 (pc, 𝜏) ⇢𝑡 ′ (pc′, 𝜏 .act). Let 𝑡 ≠ ⊥ be some

arbitrary thread. By induction, there are Γ′1, Γ2 with:

⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ′1 } and ⊢ { Γ′1 } pc(𝑡) { Γ2 } .

First, assume 𝑡 ≠ 𝑡
′. Then, stmt(𝜏 .act, 𝑡) = stmt(𝜏, 𝑡) and pc′(𝑡) = pc(𝑡). Thus, the claim follows

by induction for Γ1 = Γ
′
1. So consider 𝑡 = 𝑡

′ now. Then, stmt(𝜏 .act, 𝑡) = stmt(𝜏, 𝑡); com. By

denition, we have pc(𝑡) −−⇁com pc′(𝑡) and act ∈ Act(𝜏, 𝑡, com). Lemma B.74 yields Γ1 with:

⊢ { Γ′1 } com { Γ1 } and ⊢ { Γ1 } pc′(𝑡) { Γ2 } .

Altogether, we get⊢ { Γ[𝑡]init } stmt(𝜏 .act, 𝑡) { Γ1 } and ⊢ { Γ1 } pc′(𝑡) { Γ2 } as required. �

Proof C.65 (Lemma B.76). Let 𝜏 .act ∈ O⟦P⟧∅Adr . Let 𝑡, 𝑡 ′ be threads with 𝑡 ≠ 𝑡
′
= thrd(act). By

denition of the semantics, there is a step (pc, 𝜏) ⇢𝑡 ′ (pc′, 𝜏 .act) for some pc ∈ ctrl(𝜏). If we
have stmt(𝜏, 𝑡) = skip, nothing needs to be shown. So assume stmt(𝜏, 𝑡) ≠ skip. That is, 𝑡 has

contributed actions to 𝜏 . By Assumption 8.11, 𝑡 must have entered an atomic block to do so. As 𝑡 ≠

238 Appendix C Proof of Meta Theory

𝑡
′, we have ¬locked(pc(𝑡)) according to Rule (sos-par). That is, 𝑡 must have left the atomic

block. By denition of Rule (sos-atomic3), this results in an action performing endAtomic.

Applying the same argument inductively on 𝜏 , we obtain that the last primitive command of

𝑡 must have been followed by an endAtomic. Hence, stmt(𝜏, 𝑡) = stmt; endAtomic for some

sequence of statements stmt, as required. �

Proof C.66 (Lemma B.77). Let 𝜏 .act ∈ O⟦P⟧∅Adr . Let 𝑡, 𝑡 ′ be threads with 𝑡 ≠ 𝑡
′
= thrd(act).

Moreover, let 𝑥 ∈ PVar ∪ AVar . Assume⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ }. There are two cases.

⋄ Case 1: stmt(𝜏, 𝑡) = skip

By the type rules there is Γ′ with:

Γ
[𝑡]
init ↝ Γ

′ and ⊢ { Γ′ } skip { Γ′ } and Γ
′
↝ Γ .

By denition, we have Γ
[𝑡]
init(𝑥) = ∅. We obtain ¬isValid(Γ[𝑡]init(𝑥)). Hence, ¬isValid(Γ′(𝑥))

and ¬isValid(Γ(𝑥)) follow by type inference. We conclude Γ(𝑥) ∩ {A,L, S } = ∅.

⋄ Case 2: stmt(𝜏, 𝑡) = stmt; endAtomic

By the typing rules there are Γ1, Γ2, Γ3 with:

⊢ { Γ[𝑡]init } stmt { Γ1 } and Γ1 ↝ Γ2 and ⊢ { Γ2 } endAtomic { Γ3 } and Γ3 ↝ Γ

where the derivation ⊢ { Γ2 } endAtomic { Γ3 } is due to Rule (end). This means, that we

have Γ3 = rm(Γ2). By denition, A ∉ Γ3(𝑥). Hence, type inference provides A ∉ Γ(𝑥) as
desired. Consider 𝑥 ∉ local𝑡 now. There are two cases. First, assume 𝑥 ∈ shared. Then, we

get Γ3(𝑥) = ∅ by denition of Rule (end). Second, assume 𝑥 ∉ shared. That is, 𝑥 is local

to another thread 𝑡
′′
≠ 𝑡 , i.e., 𝑥 ∈ local𝑡 ′′ . Then, the claim follows because the initial type

binding does not contain local pointers of other threads and the type rules never add type

bindings (type bindings are only updated by the type rules).

The above case distinction is complete according to Lemma B.76 and thus concludes the claim. �

Proof C.67 (Lemma B.78). Let 𝜏 .act ∈ O⟦P⟧∅Adr . Let 𝑡, 𝑡 ′ be threads with 𝑡 ≠ 𝑡
′
= thrd(act) ≠ ⊥.

Consider 𝑝 ∈ PVar ∩ local𝑡 . By denition, local𝑡 ∩ local𝑡 ′ = ∅. Due to the semantics, 𝑝 does not

occur in com(act). Hence, 𝑝 ∈ valid𝜏 ⟺ 𝑝 ∈ valid𝜏 .act . Further,𝑚𝜏(𝑝) =𝑚𝜏 .act(𝑝). So every

valid alias created by act requires a valid alias in 𝜏 . This is not possible since noalias𝜏(𝑝). �

Proof C.68 (Lemma B.79). Let 𝜏 .act ∈ O⟦P⟧∅Adr UAF with act = ⟨𝑡, @inv 𝑝 = 𝑞,∅⟩ and

inv(𝜏 .act). The latter gives 𝑚𝜏(𝑝) = 𝑚𝜏(𝑞). Then, Lemma B.53 gives 𝑝, 𝑞 ∈ valid𝜏 as re-

quired. �

Proof C.69 (Lemma B.80). Let 𝜏 .act ∈ O⟦P⟧∅Adr UAF such that act = ⟨𝑡, @inv active(𝑝), up⟩
and inv(𝜏 .act). By denition, this means𝑚𝜏(𝑝) ∈ active(𝜏). So,𝑚𝜏(𝑝) ∉ freed𝜏 . Lemma B.52

Section C.4 Type System 239

yields 𝑝 ∈ valid𝜏 . We get 𝑝 ∈ valid𝜏 .act by denition. Moreover,𝑚𝜏 .act(𝑝) ∈ active(𝜏 .act). That
is,𝑚𝜏 .act(𝑝) ∉ retired𝜏 .act . Hence, the remaining property follows from Lemma B.45. �

Proof C.70 (Lemma B.81). Let 𝜏 .act ∈ O⟦P⟧∅Adr such that act = ⟨𝑡, @inv active(𝑟), up⟩
and inv(𝜏 .act). By denition, we have repr𝜏(𝑟) ⊆ active(𝜏). Hence, repr𝜏(𝑟) ∩ freed𝜏 .act = ∅

holds. Moreover, we also have repr𝜏 .act(𝑟) ⊆ active(𝜏 .act) by denition. Let 𝑎 ∈ repr𝜏 .act(𝑟). This
means 𝑎 ∈ active(𝜏 .act). That is, we ahve 𝑎 ∉ retired𝜏 .act . Then, the remaining property follows

from Lemma B.45. �

Proof C.71 (Lemma B.82). Let 𝜏 ∈ O⟦P⟧∅Adr . Let Γ, Γ′ be two type environments with Γ ↝ Γ
′.

Let 𝑝 ∈ PVar be a pointer with 𝑎 =𝑚𝜏(𝑝) and let 𝑟 ∈ AVar be a ghost variable and 𝑏 ∈ repr𝜏(𝑟).

• Assume isValid(Γ(𝑝)) ⟹ 𝑝 ∈ valid𝜏 . By Γ ↝ Γ
′, we have isValid(Γ′(𝑝)) ⟹ isValid(Γ(𝑝))

Hence, we obtain the desired isValid(Γ′(𝑝)) ⟹ 𝑝 ∈ valid𝜏 .

• Assume isValid(Γ(𝑟)) ⟹ 𝑏 ∉ freed𝜏 . By Γ ↝ Γ
′, we have isValid(Γ′(𝑟)) ⟹ isValid(Γ(𝑟)).

Hence, we obtain the desired isValid(Γ′(𝑟)) ⟹ 𝑏 ∉ freed𝜏 .

• Assume L ∈ Γ(𝑝) ⟹ noalias𝜏(𝑝). By Γ ↝ Γ
′, we have L ∈ Γ

′(𝑝) ⟹ L ∈ Γ(𝑝). Hence,
we obtain the desired L ∈ Γ

′(𝑝) ⟹ noalias𝜏(𝑝).
• Assume reachO𝑡,𝑎(H(𝜏)) ⊆ Loc(Γ(𝑝)). By Γ ↝ Γ

′, we have Loc(Γ(𝑝)) ⊆ Loc(Γ′(𝑝)).
Hence, we obtain the desired reachO𝑡,𝑎(H(𝜏)) ⊆ Loc(Γ′(𝑝)).

• Assume reachO𝑡,𝑏(H(𝜏)) ⊆ Loc(Γ(𝑟)). By Γ ↝ Γ
′, we have Loc(Γ(𝑟)) ⊆ Loc(Γ′(𝑟)). Hence,

we obtain the desired reachO𝑡,𝑏(H(𝜏)) ⊆ Loc(Γ′(𝑟)).

This concludes the claim. �

Proof C.72 (Theorem B.83). Let 𝜏 ∈ O⟦P⟧∅Adr . We proceed by induction over the structure of 𝜏

in order to show the following:

freed𝜏 ∩ retired𝜏 = ∅

and ∀𝑡 ∀Γ. ⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ }

⟹ ∀𝑝, 𝑟 .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

reachO
𝑡,𝑚𝜏 (𝑝)(H(𝜏)) ⊆ Loc(Γ(𝑝))

∧ isValid(Γ(𝑝)) ⟹ 𝑝 ∈ valid𝜏

∧ L ∈ Γ(𝑝) ⟹ noalias𝜏(𝑝)

∧ ∀𝑎 ∈ repr𝜏(𝑟). reach
O
𝑡,𝑎(H(𝜏)) ⊆ Loc(Γ(𝑟))

∧ isValid(Γ(𝑟)) ⟹ repr𝜏(𝑟) ∩ freed𝜏 = ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

240 Appendix C Proof of Meta Theory

Base Case. We have 𝜏 = 𝜖 . Let 𝑡, Γ with⊢{ Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ }. By denition, stmt(𝜏, 𝑡) = skip

as well as freed𝜏 ∩ retired𝜏 = ∅. Let 𝑝 ∈ PVar and 𝑟 ∈ AVar . By denition, 𝑝 ∈ valid𝜏 . This

gives the desired implication isValid(Γ(𝑝)) ⟹ 𝑝 ∈ valid𝜏 . By the type rules we have:

Γ
[𝑡]
init ↝ Γ1 and ⊢ { Γ1 } skip { Γ1 } and Γ1 ↝ Γ .

Since L ∉ Γ
[𝑡]
init(𝑝), we get L ∉ Γ(𝑝) by the denition of type inference. So, we satisfy the

implication L ∈ Γ(𝑝) ⟹ noalias𝜏(𝑝). Moreover, freed𝜏 = ∅. So, isValid(Γ(𝑟)) ⟹ 𝑎 ∉ freed𝜏
holds for all 𝑎 ∈ Adr . From Lemma B.73, we get Γ

[𝑡]
init ↝ Γ. That is Loc(Γ[𝑡]init(𝑝)) ⊆ Loc(Γ(𝑝)).

By denition, Γ
[𝑡]
init(𝑝) = ∅. That is, reachO

𝑡,𝑚𝜏 (𝑝)(H(𝜏)) ⊆ Loc(O) = Loc(∅) = Loc(Γ[𝑡]init(𝑝)).
Similarly for 𝑟 . Altogether, this concludes the base case.

Induction Step. Consider 𝜏 .act UAF1 with act = ⟨𝑡 ′, com, up⟩ and inv(𝜏 .act). Let 𝑡 be some

arbitrary thread. We establish the claim for 𝑡 . To that end, we do a case distinction over thread 𝑡 ′

executing act.

⋄ Case 1: 𝑡 = 𝑡
′ and 𝑡 ′ ≠ ⊥

By denition, we have stmt(𝜏 .act, 𝑡) = stmt(𝜏, 𝑡); com and freed𝜏 .act ⊆ freed𝜏 . First, we

establish that freed𝜏 .act∩retired𝜏 .act = ∅ holds. If retired𝜏 .act ⊆ retired𝜏 , then the claim follows

by induction. Otherwise, we have retired𝜏 .act = retired𝜏 ∪ {𝑎 } and com ≡ in∶retire(𝑞)
with𝑚𝜏(𝑞) = 𝑎. Since⊢ { Γ1 } com { Γ2 } holds, we know 𝑞 ∈ valid𝜏 . By the contrapositive

of Lemma B.52, we get 𝑎 ∉ freed𝜏 . So by induction, freed𝜏 .act ∩ retired𝜏 .act = ∅.

Now, Assume that 𝜏 .act can be typed for 𝑡 as nothing needs to be shown otherwise. That is,

assume there is Γ3 such that:

⊢ { Γ[𝑡]init } stmt(𝜏 .act, 𝑡) { Γ3 } .

Due to the type rules and the above equality, we know that there are Γ1, Γ2 with:

⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ0 } and Γ0 ↝ Γ1 and ⊢ { Γ1 } com { Γ2 } and Γ2 ↝ Γ3

where ⊢ { Γ1 } com { Γ2 } is derived by neither (seq), (choice), (loop), nor (infer).

Induction yields the claim for Γ0. So by Lemma B.82 the claim also holds for Γ1. If the claim

holds for Γ2, then the claim follow for Γ3 from Lemma B.82 again. It remains to show that the

claim holds for Γ2 relying on Γ1. Let 𝑝 ∈ PVar and 𝑟 ∈ AVar be arbitrary. Let𝑚𝜏 .act(𝑝) = 𝑐𝑝

and let 𝑐𝑟 ∈ repr𝜏 .act(𝑟). We show

(G1) reachO𝑡,𝑐𝑝 (H(𝜏 .act)) ⊆ Loc(Γ2(𝑝))
(G2) reachO𝑡,𝑐𝑟 (H(𝜏 .act)) ⊆ Loc(Γ2(𝑟))
(G3) isValid(Γ2(𝑝)) ⟹ 𝑝 ∈ valid𝜏 .act
(G4) L ∈ Γ2(𝑝) ⟹ noalias𝜏 .act(𝑝)

1 We use the UAF assumption implicitly when invoking previous results.

Section C.4 Type System 241

(G5) isValid(Γ2(𝑟)) ⟹ 𝑐𝑟 ∉ freed𝜏 .act

We do a case distinction over the type rule applied to derive⊢ { Γ1 } com { Γ2 }.

⋄ Case 1.1: Rule (end)

The type rules gives Γ2 = rm(Γ1). By denition, Γ2(𝑝) ⊆ Γ1(𝑝) and Γ2(𝑟) ⊆ Γ1(𝑟).
This means Loc(Γ1(𝑝)) ⊆ Loc(Γ2(𝑝)) and Loc(Γ1(𝑟)) ⊆ Loc(Γ2(𝑟)). We obtain (G1)

and (G2) by H(𝜏) = H(𝜏 .act). Now, assume isValid(Γ2(𝑝)). By Γ2(𝑝) ⊆ Γ1(𝑝), we
have isValid(Γ1(𝑝)). Induction yields 𝑝 ∈ valid𝜏 . Since valid𝜏 = valid𝜏 .act , we get (G3).

Next, assume isValid(Γ2(𝑟)). By Γ2(𝑟) ⊆ Γ1(𝑟), we get isValid(Γ1(𝑟)). Induction together

with repr𝜏 = repr𝜏 .act gives 𝑐𝑟 ∉ freed𝜏 . Due to freed𝜏 = freed𝜏 .act , we arrive at (G5).

If L ∈ Γ2(𝑝), then L ∈ Γ1(𝑝) and thus noalias𝜏(𝑝) by induction. Since𝑚𝜏 = 𝑚𝜏 .act by

denition, we arrive at (G4).

⋄ Case 1.2: Rule (begin) or Rule (skip)

The type rule gives Γ2 = Γ1. By denition, we have𝑚𝜏 = 𝑚𝜏 .act and valid𝜏 = valid𝜏 .act .

Moreover, we have freed𝜏 = freed𝜏 .act and repr𝜏 = repr𝜏 .act as well as H(𝜏) = H(𝜏 .act).
Hence, (G1) to (G5) follow by induction.

⋄ Case 1.3: Rule (assign1)

We have freed𝜏 = freed𝜏 .act and repr𝜏 ≡ repr𝜏 .act . Hence, (G5) holds by induction because

of Γ2(𝑟) = Γ1(𝑟). If L ∈ Γ2(𝑝), then 𝑝 cannot appear in com since Rule (assign1)

would have removed L. Hence, no alias of 𝑝 is created by com, (G4) continues to hold by

induction. Assume now isValid(Γ2(𝑝)). There are two cases. First, com ≡ 𝑝 ∶= 𝑞. Then,

we have Γ2(𝑝) = Γ1(𝑞) \ {L }. So, induction gives 𝑞 ∈ valid𝜏 . We conclude 𝑝 ∈ valid𝜏 .act
as required. Second, 𝑝 is not assigned to by com. Then, Γ2(𝑝) ⊆ Γ1(𝑝). Hence, 𝑝 ∈ valid𝜏
by induction and thus 𝑝 ∈ valid𝜏 .act . This concludes (G3). Note that H(𝜏 .act) = H(𝜏).
Then, (G2) continues to hold by induction since 𝑟 is not aected by com. It remains

to establish (G1). If 𝑝 does not occur in com, nothing needs to be show. So assume 𝑝

occurs in com. In the rst case, 𝑝 occurs on the right-hand side of the assignment in com.

Then, we get Γ2(𝑝) = Γ1(𝑝) \ {L }. That is, Loc(Γ1(𝑝)) ⊆ Loc(Γ2(𝑝)). So, we get (G1)
by induction. Otherwise, com takes the form com ≡ 𝑝 ∶= 𝑞 with some 𝑞. Then, the type

rules give Γ2(𝑝) = Γ1(𝑞) \ {L }. Furthermore,𝑚𝜏 .act(𝑝) =𝑚𝜏(𝑞) = 𝑐𝑝 . By induction, we

have reachO𝑡,𝑐𝑝 (H(𝜏)) ⊆ Loc(Γ1(𝑞)). Hence, reachO𝑡,𝑐𝑝 (H(𝜏)) ⊆ Loc(Γ1(𝑞) \ {L }). We

get the desired reachO𝑡,𝑐𝑝 (H(𝜏 .act)) ⊆ Loc(Γ2(𝑞)) by denition. This concludes (G1).

⋄ Case 1.4: Rule (assign2) or Rule (assign3)

Analogous to the previous case for (assign1).

⋄ Case 1.5: Rule (assign4), Rule (assign5), Rule (assign6), or Rule (assume2)

We have Γ2 = Γ1 as well as repr𝜏 = repr𝜏 .act , valid𝜏 = valid𝜏 .act , and freed𝜏 = freed𝜏 .act

242 Appendix C Proof of Meta Theory

as well as H(𝜏) = H(𝜏 .act). Moreover,𝑚𝜏(𝑝) = 𝑚𝜏 .act(𝑝). So (G1) to (G5) follow by

induction.

⋄ Case 1.6: Rule (assume1-constant)

Wlog. com ≡ assume C = 𝑞 with C ∈ CVar . By the semantics, we have𝑚𝜏(C) =𝑚𝜏(𝑞).
Lemma B.54 yields 𝑞 ∈ valid𝜏 . Lemma B.51 and Assumption A.9 gives C ∈ valid𝜏 . Hence,

we get valid𝜏 = valid𝜏 .act . Moreover, we have freed𝜏 = freed𝜏 .act and repr𝜏 ≡ repr𝜏 .act . We

show the required properties. By denition, we have Γ2(𝑟) = Γ1(𝑟). Hence, (G5) follows
by induction. If L ∈ Γ2(𝑝), then L ∈ Γ1(𝑝) due to the type rule. This means noalias𝜏(𝑝)
by induction. Note that𝑚𝜏 =𝑚𝜏 .act . So we get noalias𝜏 .act(𝑝) by denition together with

the above valid𝜏 = valid𝜏 .act . This establishes (G4). If isValid(Γ2(𝑝)), then there are two

cases. First, isValid(Γ1(𝑝)) holds. This means we have 𝑝 ∈ valid𝜏 by induction. As stated

above, this results in 𝑝 ∈ valid𝜏 .act . Second, ¬isValid(Γ1(𝑝)) holds. Then, 𝑝 is validated

by com. For this to happen, 𝑝 must appear in com, i.e., 𝑝 ∈ {C, 𝑞 }. So, 𝑝 ∈ valid𝜏 as

before. This gives (G3). Since H(𝜏 .act) = H(𝜏) and repr𝜏 = repr𝜏 .act , (G2) continues to

hold by induction since 𝑟 is not aected. It remains to establish (G1). If 𝑝 does not occur

in com nothing needs to be show. So assume 𝑝 appears in com. By the the type rule, we

have Γ2(𝑝) = (Γ1(C) ∧ Γ1(𝑞)) \ {L }. By the semantics, we get:

𝑚𝜏 .act(C) =𝑚𝜏(C) =𝑚𝜏(𝑞) =𝑚𝜏 .act(𝑞) and 𝑚𝜏(𝑝) = 𝑐𝑝 =𝑚𝜏 .act(𝑝) .

We conclude (G1) by induction as follows:

reachO𝑡,𝑐𝑝 (H(𝜏)) ⊆ Loc(Γ1(𝑝)) ∩ Loc(Γ1(𝑞)) = Loc(Γ1(𝑝) ∧ Γ2(𝑝)) = Loc(Γ2(𝑝)) .

⋄ Case 1.7: Rule (assume1)

Analogous to the previous case.

⋄ Case 1.8: Rule (equal)

If isValid(Γ2(𝑝)), then there are two cases. First, isValid(Γ1(𝑝)) holds. By induction, this

means 𝑝 ∈ valid𝜏 . Then, we get 𝑝 ∈ valid𝜏 .act because valid𝜏 = valid𝜏 .act by denition.

Second, ¬isValid(Γ1(𝑝)) holds. Then, 𝑝 is validated by com. For this to happen, com

must be of the form com ≡ @inv 𝑝 = 𝑞 with isValid(𝑞). By induction, we have 𝑞 ∈ valid𝜏 .

Then, B.79 gives 𝑝 ∈ valid𝜏 . As before, we get 𝑝 ∈ valid𝜏 .act . This concludes (G3).

The remaining properties follow analogously to the previous case for Rule (assume1).

For (G1) note that inv(𝜏 .act) gives𝑚𝜏(𝑝) =𝑚𝜏(𝑞) and thus inv(𝜏) ⟺ inv(𝜏 .act). That
is, repr𝜏 = repr𝜏 .act .

⋄ Case 1.9: Rule (active) for pointers

If isValid(Γ2(𝑝)), then there are two cases. First, isValid(Γ1(𝑝)) holds. By induction, this

means 𝑝 ∈ valid𝜏 . Then, we get 𝑝 ∈ valid𝜏 .act because valid𝜏 = valid𝜏 .act by denition.

Section C.4 Type System 243

Second, ¬isValid(Γ1(𝑝)) holds. That is, 𝑝 is validated by com. Hence, com must be of

the form com ≡ @inv active(𝑝). Since the invariants hold by assumption, inv(𝜏 .act),
we can invoke Lemma B.80. It gives 𝑝 ∈ valid𝜏 .act . Altogether, this concludes (G3).

If we have L ∈ Γ2(𝑝), then L ∈ Γ1(𝑝) due to the type rule. Hence, the induction

hypothesis together with𝑚𝜏 =𝑚𝜏 .act and valid𝜏 = valid𝜏 .act gives (G4). For (G5) observe

that we have Γ2(𝑟) = Γ1(𝑟) and repr𝜏(𝑟) = repr𝜏 .act(𝑟) because inv(𝜏 .act). So (G5)

follows by induction. By denition, H(𝜏 .act) = H(𝜏). Since 𝑟 is not aected, (G2)

follows by induction. We show (G1). If com does not contain 𝑝 , nothing needs to be

show. Otherwise, com is of the form com ≡ @inv active(𝑝). From Lemma B.80 we

get reachO𝑡,𝑐𝑝 (H(𝜏 .act)) ⊆ Loc(A). Induction yields reachO𝑡,𝑐𝑝 (H(𝜏 .act)) ⊆ Loc(Γ1(𝑝)).
Hence, we conclude (G1) by denition as follows:

reachO𝑡,𝑐𝑝 (H(𝜏 .act)) ⊆ Loc(Γ1(𝑝)) ∩ Loc(A) ⊆ Loc(Γ1(𝑝) ∧ A) = Loc(Γ2(𝑝)) .

⋄ Case 1.10: Rule (active) for angels

Using Lemma B.81, this case is analogous to the previous case for pointer variables.

⋄ Case 1.11: Rule (malloc)

Recall that 𝜏 .act ∈ O⟦P⟧∅Adr . So act allocates a fresh address. Hence, freed𝜏 = freed𝜏 .act .

Moreover, repr𝜏 ≡ repr𝜏 .act . Then, (G5) holds by induction. (G2) continues to hold by

induction since 𝑟 is not aected. Consider (G1). If 𝑝 does not appear in com, nothing

needs to be shown. Otherwise, com ≡ 𝑝 ∶= malloc. By Lemma B.44, 𝑐𝑝 ∉ retired𝜏 and

thus 𝑐𝑝 ∉ retired𝜏 .act . Then, reach
O
𝑡,𝑐𝑝

(H(𝜏 .act)) ⊆ {𝐿2 }× Loc(OSMR) = Loc(L) follows
by Lemma B.45. By denition, Γ2(𝑝) = {L }. This concludes (G1).

For the remaining properties, let com be com ≡ 𝑞 ∶= malloc. First, consider 𝑝 ≠ 𝑞.

Then, Γ2(𝑝) = Γ1(𝑝) and 𝑝 ∈ valid𝜏 .act ⟺ 𝑝 ∈ valid𝜏 . Then, (G3) follows by induction.

Now, assume L ∈ Γ2(𝑝). By induction, we have noalias𝜏(𝑝). This means𝑚𝜏(𝑝) ≠ seg

and 𝑚𝜏(𝑝) ∉ 𝑚𝜏(valid𝜏 \ {𝑝 }). Lemma B.47 yields 𝑚𝜏 .act(valid𝜏 .act) ⊆ 𝑚𝜏(valid𝜏).
Hence, we arrive at𝑚𝜏 .act(𝑝) ∉ 𝑚𝜏 .act(valid𝜏 .act \ {𝑝 }). Moreover,𝑚𝜏(𝑝) = 𝑚𝜏 .act(𝑝).
Altogether, this means noalias𝜏 .act(𝑝). This establishes (G4).

Second, consider the case 𝑝 = 𝑞. Then, Γ2(𝑝) = {L }. By Lemma B.42, 𝑎 ∉𝑚𝜏(valid𝜏).
Hence, we get 𝑎 ∉𝑚𝜏 .act(valid𝜏 .act \{ 𝑝 }). This means noalias𝜏 .act(𝑝) holds by denition.
This establishes (G4). Moreover, 𝑝 ∈ valid𝜏 .act by denition. So (G3) holds as well.

⋄ Case 1.12: Rule (enter)

By denition,𝑚𝜏 =𝑚𝜏 .act and repr𝜏 = repr𝜏 .act . We have reachO𝑡,𝑐𝑝 (H(𝜏)) ⊆ Loc(Γ1(𝑝))
by induction. Type inference Γ1, com ↝ Γ2 results in post𝑝,com(Loc(Γ1(𝑝))) ⊆ Loc(Γ2(𝑝)).
Hence, we get the desired reachO𝑡,𝑐𝑝 (H(𝜏 .act)) ⊆ Loc(Γ2(𝑝)). This concludes (G1). We

conclude (G2) along the same lines. Now, assume isValid(Γ2(𝑝)). Then, isValid(Γ1(𝑝))

244 Appendix C Proof of Meta Theory

by the denition of type inference. So, (G3) follows by induction and valid𝜏 = valid𝜏 .act .

Similarly, isValid(Γ2(𝑟)) implies isValid(Γ1(𝑟)). Then, (G5) follows by induction together

with freed𝜏 = freed𝜏 .act and repr𝜏 = repr𝜏 .act . Lastly, assume L ∈ Γ2(𝑝) Then L ∈ Γ1(𝑝)
by denition. We obtain the required noalias𝜏 .act(𝑝) by induction and𝑚𝜏 =𝑚𝜏 .act . This

concludes (G4).

⋄ Case 1.13: Rule (exit)

Analogously to the previous case for Rule (enter).

⋄ Case 1.14: Rule (angel)

By denition,𝑚𝜏 =𝑚𝜏 .act , valid𝜏 = valid𝜏 .act , and freed𝜏 = freed𝜏 .act . Moreover, the type

rule gives Γ2(𝑝) = Γ1(𝑝). So (G3) and (G4) follow by induction. If isValid(Γ2(𝑟)), then 𝑟

does not appear in com. So by the type rule we have Γ2(𝑟) = Γ1(𝑟). Hence, (G5) follows by
induction. Since 𝑝 is not aected, we get (G1) by induction. It remains to show (G2). If 𝑟

does not appear in com, nothing needs to be show because repr𝜏 .act(𝑟) = repr𝜏(𝑟) holds
due to the fact that annotations cannot correlate dierent angels. Otherwise, Γ2(𝑟) = ∅.
This concludes (G2).

⋄ Case 1.15: Rule (member)

By denition,𝑚𝜏 = 𝑚𝜏 .act and valid𝜏 = valid𝜏 .act . If isValid(Γ2(𝑟)), then isValid(Γ1(𝑟))
holds since Γ2(𝑟) = Γ1(𝑟). Moreover, we have inv(𝜏 .act) ⟹ inv(𝜏) by construction

of inv(•). This means repr𝜏 .act(𝑟) ⊆ repr𝜏(𝑟). So, we get 𝑐𝑟 ∉ freed𝜏 by induction. This

concludes (G5) because of freed𝜏 = freed𝜏 .act . If L ∈ Γ2(𝑝), then L ∈ Γ1(𝑝) since angels
cannot acquire guarantee L due to the type rules. Hence, (G4) follows by induction.

Now, assume we have isValid(Γ2(𝑝)). There are two cases. First, consider isValid(Γ1(𝑝)).
Then, 𝑝 ∈ valid𝜏 by induction and thus 𝑝 ∈ valid𝜏 .act . Second, consider ¬isValid(Γ1(𝑝)).
Then, com validates 𝑝 . We must have com ≡ @inv 𝑝 in 𝑟 ′ with isValid(Γ1(𝑟 ′)). Then, we
get𝑚𝜏(𝑝) ∈ repr𝜏 .act(𝑟

′) from inv(𝜏 .act). Further, isValid(Γ1(𝑟 ′)) gives isValid(Γ2(𝑟 ′)).
Hence,𝑚𝜏(𝑝) ∉ freed𝜏 .act follows from the already established (G5). The contrapositive

of Lemma B.52 yields 𝑝 ∈ valid𝜏 .act . This establishes (G3). By denition, we have

H(𝜏 .act) = H(𝜏) and Γ2(𝑟) = Γ1(𝑟). Hence, (G2) follows by induction. It remains

to show (G1). If 𝑝 does not occur in com, nothing needs to be shown. Otherwise,

we have com ≡ @inv 𝑝 in 𝑟 ′. As above, we get 𝑐𝑝 ∈ repr𝜏(𝑟
′). Induction gives:

reachO𝑡,𝑐𝑝 (H(𝜏)) ⊆ Loc(Γ1(𝑝)) ∩ Loc(Γ1(𝑟 ′)) = Loc(Γ1(𝑝) ∧ Γ1(𝑟 ′)) = Loc(Γ2(𝑝)) .

This concludes (G1) becauseH(𝜏 .act) = H(𝜏).

Section C.4 Type System 245

⋄ Case 2: 𝑡 ≠ 𝑡
′ and 𝑡 ′ ≠ ⊥

We conclude freed𝜏 .act ∩ retired𝜏 .act = ∅ as in the previous case. Consider now some 𝑡, Γ4

such that⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ4 }. By denition, we have:

stmt(𝜏 .act, 𝑡) = stmt(𝜏, 𝑡) and ⊢ { Γ[𝑡]init } stmt(𝜏 .act, 𝑡) { Γ4 } .

The induction hypothesis applies to ⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ4 }. We have to show that the

desired properties are stable under interference.

Consider 𝑝 ∈ PVar . If L ∈ Γ4(𝑝), then 𝑝 ∈ local𝑡 by the contrapositive of Lemma B.77. By

induction, we have noalias𝜏(𝑝). Then, Lemma B.78 gives noalias𝜏 .act(𝑝). If isValid(Γ4(𝑝)),
then 𝑝 ∈ local𝑡 by the contrapositive of Lemma B.77 and 𝑝 ∈ valid𝜏 by induction. Lemma B.78

gives 𝑝 ∈ valid𝜏 .act .

Consider 𝑟 ∈ AVar . If isValid(Γ4(𝑟)), then 𝑟 ∈ local𝑡 by the contrapositive of Lemma B.77.

By induction, we get repr𝜏(𝑟) ∩ freed𝜏 = ∅. By 𝑡 ≠ 𝑡
′, we know that 𝑟 cannot occur in com.

Consequently, we have repr𝜏 .act(𝑟) = repr𝜏(𝑟). Observe that we have freed𝜏 .act ⊆ freed𝜏 due

to 𝑡 ′ ≠ ⊥. Hence, we obtain repr𝜏 .act(𝑟) ∩ freed𝜏 .act = ∅ as required.

Let 𝑥 ∈ dom(Γ4). If 𝑥 ∈ shared, Lemma B.76 yields Γ4(𝑥) = ∅. So, Loc(Γ4(𝑥)) = Loc(O)
entails the remaining properties. Assume 𝑥 ∉ shared hereafter. This means 𝑥 ∈ local𝑡 .

Consider 𝑎 ∈𝑚𝜏 .act(𝑥); to be precise, we mean 𝑎 =𝑚𝜏 .act(𝑥) if 𝑥 ∈ PVar and 𝑎 ∈ repr𝜏 .act(𝑥)
if 𝑥 ∈ AVar . Because 𝑥 is local to 𝑡 , it cannot appear in com due to the semantics. Hence,

we have 𝑎 ∈𝑚𝜏(𝑥). By induction, we have reachO𝑡,𝑎(H(𝜏)) ⊆ Loc(Γ4(𝑥)). We establish the

required reachO𝑡,𝑎(H(𝜏 .act)) ⊆ Loc(Γ4(𝑥)). If H(𝜏 .act) = H(𝜏), then the claim follows by

induction. Otherwise, H(𝜏 .act) is of the form H(𝜏 .act) = ℎ.evt with H(𝜏) = ℎ. Since 𝑡 ≠ 𝑡
′,

we know that evt is not an event of 𝑡 , that is, evt↓𝑡 = 𝜖 . By the denition of closedness under

interference, we have for S and all E𝐿 :

reachO𝑡,𝑎(ℎ) ⊆ Loc(S) ⟹ reachO𝑡,𝑎(ℎ.evt) ⊆ Loc(S)

and reachO𝑡,𝑎(ℎ) ⊆ Loc(E𝐿) ⟹ reachO𝑡,𝑎(ℎ.evt) ⊆ Loc(E𝐿) .

By induction, this means that G ∈ Γ4(𝑥) implies reachO𝑡,𝑎(ℎ.evt) ⊆ Loc(G) for all guar-

antees G ∈ { S,E𝐿1, . . . ,E𝐿𝑘 }. By Lemma B.77, we have A ∉ Γ4(𝑥). It remains to

show: L ∈ Γ4(𝑥) implies reachO𝑡,𝑎(ℎ.evt) ⊆ Loc(L). So assume L ∈ Γ4(𝑥). Then we

have 𝑥 ∈ PVar since the type rules do not allow angels to carry L. By induction, we

have reachO𝑡,𝑎(ℎ) ⊆ Loc(L). Towards a contradiction, assume reachO𝑡,𝑎(ℎ.evt) /⊆ Loc(L). By
denition, this means that evt makes OBase leave its initial location. To do that, evt must be

of the form evt = in∶retire(𝑡 ′, 𝑎). That is, com ≡ in∶retire(𝑞) with𝑚𝜏(𝑞) = 𝑎. From the

already established freed𝜏 .act ∩ retired𝜏 .act = ∅, we conclude that 𝑎 ∉ freed𝜏 .act . Hence, we

get 𝑎 ∉ freed𝜏 . The contrapositive of Lemma B.52 gives 𝑞 ∈ valid𝜏 . We get ¬noalias𝜏(𝑥)

246 Appendix C Proof of Meta Theory

because of 𝑥 /≡ 𝑞. However, induction together with L ∈ Γ4(𝑥) gives noalias𝜏(𝑥). Since this
resembles a contradiction, we must have reachO𝑡,𝑎(ℎ.evt) ⊆ Loc(L) as required.

Combining the above results for individual guarantees yields: reachO𝑡,𝑎(H(𝜏)) ⊆ Loc(Γ4(𝑥))
implies reachO𝑡,𝑎(H(𝜏 .act)) ⊆ Loc(Γ4(𝑥)). Hence, we get reachO𝑡,𝑎(H(𝜏 .act)) ⊆ Loc(Γ4(𝑥))
by induction, as required.

⋄ Case 3: 𝑡 ′ = ⊥

We have com ≡ free(𝑎) or com ≡ env(𝑎). In the latter case, we get 𝑚𝜏(𝑝) = 𝑚𝜏 .act(𝑝)
for all pointers 𝑝 ∈ PVar , valid𝜏 = valid𝜏 .act , H(𝜏) = H(𝜏 .act), freed𝜏 = freed𝜏 .act ,

and repr𝜏 = repr𝜏 .act . Moreover, 𝑚𝜏(valid𝜏) ⊆ 𝑚𝜏 .act(valid𝜏 .act) by Lemma B.47 results

in noalias𝜏(𝑝) ⟹ noalias𝜏 .act(𝑝) for all pointers 𝑝 ∈ PVar . Hence, the claim follows by

induction.

Consider now com ≡ free(𝑎). The update is up = ∅. We have freed𝜏 .act = freed𝜏 ∪ {𝑎 } as
well as retired𝜏 .act = retired𝜏 \ {𝑎 }. Hence, we obtain freed𝜏 .act ∩ retired𝜏 .act = ∅ as required.

Let 𝑡, Γ with ⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ }. By denition, we have stmt(𝜏 .act, 𝑡) = stmt(𝜏, 𝑡).
That is,⊢ { Γ[𝑡]init } stmt(𝜏 .act, 𝑡) { Γ }. We show that Γ satises the claim. LetH(𝜏) = ℎ. This

meansH(𝜏 .act) = ℎ.free(𝑎). By the semantics, we have ℎ.free(𝑎) ∈ S(O).

Consider 𝑝 ∈ PVar . If L ∈ Γ(𝑝), then noalias𝜏(𝑝). Since𝑚𝜏 =𝑚𝜏 .act and valid𝜏 .act ⊆ valid𝜏 ,

we obtain noalias𝜏 .act(𝑝). If isValid(Γ(𝑝)), then {A,L, S } ∩ Γ(𝑝) ≠ ∅. By induction, we

have 𝑝 ∈ valid𝜏 and reachO
𝑡,𝑚𝜏 (𝑝)(ℎ) ⊆ Loc(Γ(𝑝)). Consider A ∈ Γ(𝑝) or L ∈ Γ(𝑝). By

denition of the meaning of types, reachO
𝑡,𝑚𝜏 (𝑝)(ℎ) ⊆ {𝐿2 } × Loc(OSMR). Hence, 𝑚𝜏(𝑝)

cannot be freed according toOBase as otherwise it would reach its accepting location and thus

contradict ℎ.free(𝑎) ∈ S(O). We get 𝑝 ∈ valid𝜏 .act . Consider now S ∈ Γ(𝑝). By denition,

reachO
𝑡,𝑚𝜏 (𝑝)(ℎ) ⊆ SafeLoc(O). As before, this means𝑚𝜏(𝑝) cannot be freed. Altogether, we

get 𝑝 ∈ valid𝜏 .act as required.

Consider 𝑟 ∈ AVar . If isValid(Γ(𝑟)), then repr𝜏(𝑟) ∩ freed𝜏 = ∅ by induction. By denition,

we get repr𝜏 = repr𝜏 .act and freed𝜏 .act = freed𝜏 ∪{𝑎 }. To arrive at repr𝜏 .act(𝑟)∩ freed𝜏 .act = ∅,

it suces to establish 𝑎 ∉ repr𝜏(𝑟). Towards a contradiction, assume 𝑎 ∈ repr𝜏(𝑟). Then,
induction gives reachO𝑡,𝑎(ℎ) ⊆ Loc(Γ(𝑟)). As before, however, we get ℎ.free(𝑎) ∉ S(O)
from isValid(Γ(𝑟)). Hence, 𝑎 ∉ repr𝜏(𝑟) must hold as desired.

For the remaining properties, consider some 𝑥 ∈ dom(Γ4). Let 𝑏 = 𝑚𝜏 .act(𝑥) = 𝑚𝜏(𝑥)
if 𝑥 ∈ PVar and 𝑏 ∈ repr𝜏 .act(𝑥) = repr𝜏(𝑥) if 𝑥 ∈ AVar . By the denition of OBase and

guarantees A,L, we have:

reachO𝑡,𝑏(ℎ) ⊆ Loc(A) ⟹ reachO𝑡,𝑏(ℎ.free(𝑎)) ⊆ Loc(A) if 𝑎 ≠ 𝑏

and reachO𝑡,𝑏(ℎ) ⊆ Loc(L) ⟹ reachO𝑡,𝑏(ℎ.free(𝑎)) ⊆ Loc(L) if 𝑎 ≠ 𝑏 .

Section C.4 Type System 247

By the denition of interference freedom and guarantees S,E𝐿 , we have:

reachO𝑡,𝑏(ℎ) ⊆ Loc(E𝐿) ⟹ reachO𝑡,𝑏(ℎ.free(𝑎)) ⊆ Loc(E𝐿)

and reachO𝑡,𝑏(ℎ) ⊆ Loc(S) ⟹ reachO𝑡,𝑏(ℎ.free(𝑎)) ⊆ Loc(S) .

Recall from before that {A,L, S }∩Γ(𝑥) ≠ ∅ implies𝑎 ≠ 𝑏. Hence, the above properties entail

the desired reachO𝑡,𝑏(ℎ.free(𝑎)) ⊆ Loc(Γ(𝑥)) because we have reachO𝑡,𝑏(ℎ) ⊆ Loc(Γ(𝑥)) by
induction together with𝑚𝜏 =𝑚𝜏 .act and repr𝜏 = repr𝜏 .act .

The above case distinction is complete and thus concludes the induction. �

Proof C.73 (Corollary B.84). Let ⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ } and inv(⟦P⟧∅∅). Towards a contra-
diction, assume the claim does not hold. That is, there is a shorted prex 𝜎.act ∈ O⟦P⟧∅Adr of
𝜏 such that 𝜎.act raises a pointer race. By minimality, 𝜎 is PRF. By denition, we have inv(𝜎).
Let act = ⟨𝑡, com, up⟩. By minimality, com is neither beginAtomic nor endAtomic as otherwise 𝜎

would be a pointer race. Lemma B.75 yields Γ3 with ⊢ { Γ[𝑡]init } stmt(𝜎.act, 𝑡) { Γ3 }. We have

stmt(𝜎.act, 𝑡) = stmt(𝜎, 𝑡); com. So by the type rules there are Γ0, Γ1, Γ2

⊢ { Γ[𝑡]init } stmt(𝜎, 𝑡) { Γ0 } and Γ0 ↝ Γ1 and ⊢ { Γ1 } com { Γ2 } and Γ2 ↝ Γ3 .

We show that act does not raise a pointer race.

⋄ Case 1: act is an unsafe access

Then, com contains 𝑝.next or 𝑝.data with 𝑝 ∉ valid𝜎 . That is,⊢ { Γ1 } com { Γ2 } is derived
using on of the following rules: (assign2), (assign3), (assign5), or (assign6). Since

the derivation is dened, we must have Γ1(𝑝) = 𝑇 with isValid(𝑇). By Theorem B.83, we

have 𝑝 ∈ valid𝜎 . Since this contradicts the assumption of act raising an unsafe access, this

case cannot apply.

⋄ Case 2: act is a racy call

Then, com ≡ in∶func(𝑟). That is,⊢{ Γ1 } com { Γ2 } is derived using Rule (enter). Consider
𝑚𝜎(𝑟) = 𝑣 with 𝑟 = 𝑟1, . . . , 𝑟𝑘 , . . . , 𝑟𝑛 and 𝑣 = 𝑣1, . . . , 𝑣𝑛 . Wlog. let 𝑟1, . . . , 𝑟𝑘 ∈ PExp and

𝑟𝑘+1, . . . , 𝑟𝑛 ∈ DExp. That act is a racy call means that there are𝑤 = 𝑤1, . . . ,𝑤𝑛 and 𝑐 with:

∀𝑖 . (𝑣𝑖 = 𝑐 ∨ 𝑟𝑖 ∈ valid𝜎 ∨ 𝑟𝑖 ∈ DExp) ⟹ 𝑣𝑖 = 𝑤𝑖

and FO(ℎ.in∶func(𝑡,𝑤), 𝑐) /⊆ FO(ℎ.in∶func𝑡, 𝑣, 𝑐) .

248 Appendix C Proof of Meta Theory

Let 𝑇𝑖 = Γ(𝑟𝑖) for 1 ≤ 𝑖 ≤ 𝑘 . From Theorem B.83 we get that 𝑟𝑖 ∉ valid𝜎 ⟹ ¬isValid(𝑇𝑖).
Hence:

∀𝑖 . (𝑣𝑖 = 𝑐 ∨ 𝑟𝑖 ∈ valid𝜎 ∨ 𝑟 ∈ DExp) ⟹ 𝑣𝑖 = 𝑤𝑖

implies ∀𝑖 . 𝑣𝑖 ≠ 𝑤𝑖 ⟹ (𝑣𝑖 ≠ 𝑐 ∧ 𝑟𝑖 ∉ valid𝜎 ∧ 𝑟𝑖 ∉ DExp)

implies ∀𝑖 . 𝑣𝑖 ≠ 𝑏𝑖 ⟹ (𝑣𝑖 ≠ 𝑐 ∧ ¬isValid(𝑇𝑖) ∧ 𝑟𝑖 ∉ DExp)

implies ∀𝑖 . (𝑣𝑖 = 𝑐 ∨ isValid(𝑇𝑖) ∨ 𝑟𝑖 ∈ DExp) ⟹ 𝑣𝑖 = 𝑤𝑖 .

Moreover, Theorem B.83 gives reachO𝑡,𝑣𝑖 (𝜎) ⊆ Loc(Γ(𝑟𝑖)) for all 𝑟𝑖 ∉ DExp. Hence, by

denition, we arrive at SafeCall(Γ1, func(𝑟)) = false. As this contradicts⊢ { Γ1 } com { Γ2 },
this case cannot apply.

The above case distinction is complete. Since it yields a contradiction in each case, 𝜏 must be

PRF. �

Proof C.74 (Theorem B.85). Let ⊢ { Γinit } P { ΓP } and inv(⟦P⟧∅∅). Towards a contradiction,
assume the claim does not hold. That is, there is a shortest computation 𝜏 .act ∈ O⟦P⟧∅Adr such
that 𝜏 .act contains moderate pointer race. By minimality, 𝜏 is MPRF. Hence, there is some

𝜎 ∈ ⟦P⟧∅∅ with inv(𝜎) ⟹ inv(𝜏) by Theorem B.72. Assumption inv(⟦P⟧∅∅) thus implies

inv(𝜏). Let act = ⟨𝑡, com, up⟩. If com ≡ @inv •, then act cannot raise a pointer race and

we have 𝜏 .act PRF. Otherwise, we have inv(𝜏 .act) by denition and thus obtain 𝜏 .act PRF by

Corollary B.84. Consequently, 𝜏 .act must be an unsafe assumption. That is, there is some com′
∈

next-com(𝜏 .act) with com′
≡ assume 𝑝 = 𝑞 and {𝑝, 𝑞 } /⊆ valid𝜏 .act . By denition, this means

there is pc ∈ ctrl(𝜏 .act) with pc(𝑡 ′) −−−⇁com′ • for some thread 𝑡
′. By Lemma B.75, there are

Γ1, Γ3 with⊢ { Γ1 } pc(𝑡 ′) { Γ3 }. Then, Lemma B.74 yields Γ2 such that⊢ { Γ1 } com′ { Γ2 }. This
derivation is due to Rule (assume1) or (assume1-constant). In the latter case, we have

𝑝 ∈ CVar or 𝑞 ∈ CVar by denition of the type rule. By denition, this means com′ is not an

unsafe assumption. The case cannot apply. The derivation must be due to Rule (assume1).

By denition of the type rule, Γ1(𝑝) = 𝑇 with isValid(𝑇) and Γ1(𝑞) = 𝑇
′ with isValid(𝑇 ′).

Theorem B.83, which is enabled because 𝜏 .act is PRF, gives { 𝑝, 𝑞 } ⊆ valid𝜏 . That is, 𝜏 .act is not

prone to an unsafe assumption. Overall, this contradicts 𝜏 .act being a moderate pointer race.

Hence, we conclude that O⟦P⟧∅Adr is MPRF as required. �

Proof C.75 (Theorem B.86). Furthermore, assume ⊢ P and inv(⟦P⟧∅∅). To the contrary, assume

that the overall claim does not hold. That is, there is 𝜏 .act ∈ O⟦P⟧∅Adr with act = ⟨𝑡, com, up⟩
such that com ≡ in∶retire(𝑝) and 𝑚𝜏(𝑝) = 𝑎 and 𝑎 ∈ retired𝜏 . Lemma B.75 for 𝜏 .act now

yields some Γ3 with ⊢ { Γ[𝑡]init } stmt(𝜏 .act, 𝑡) { Γ3 }. By denition, stmt(𝜏 .act, 𝑡) = stmt(𝜏, 𝑡); com.

The type rules give:

⊢ { Γ[𝑡]init } stmt(𝜏, 𝑡) { Γ0 } and Γ0 ↝ Γ1 and ⊢ { Γ1 } com { Γ2 } and Γ2 ↝ Γ3

Section C.4 Type System 249

for some Γ0, Γ1, Γ2 where the derivation⊢ { Γ1 } com { Γ2 } is due to Rule (enter). By denition,

this means we have A ∈ Γ1(𝑝). Note that 𝜏 .act is MPRF and thus UAF by Theorem B.85. Then,

Theorem B.83 yields reachO𝑡,𝑎(𝜏) ⊆ Loc(Γ1(𝑝)). In particular, reachO𝑡,𝑎(𝜏) ⊆ Loc(A). Hence, we
arrive at (𝐿2, 𝜑)−−−→

H(𝜏) (𝐿2, 𝜑) for 𝜑 = { 𝑧𝑎 ↦ 𝑎 }. Now, Lemma B.45 gives 𝑎 ∉ retired𝜏 . This,

however, contradicts the assumed 𝑎 ∈ retired𝜏 . �

Proof C.76 (Theorem B.87). Furthermore, assume ⊢ P and inv(⟦P⟧∅∅). To the contrary, assume

the overall claim does not hold. Then, there is a shortest 𝜏 .act ∈ O⟦P⟧∅Adr with ¬inv(𝜏 .act).
By minimality, we have inv(𝜏). By Theorem B.85, 𝜏 .act is MPRF. Then, Theorem B.72 for 𝜏 .act

yields 𝜎 ∈ ⟦P⟧∅∅ with inv(𝜎) ⟹ inv(𝜏 .act). The contrapositive implication and ¬inv(𝜏 .act)
gives ¬inv(𝜎). Hence, ¬inv(⟦P⟧∅∅). This contradicts the assumption. �

Proof C.77 (Theorem 8.14). Set CVar = ∅ so that Assumption A.9 is satised. From Corol-

lary B.84 we know that 𝜏 is PRF. Consider some thread 𝑡 and 𝑥 ∈ PVar ∪ AVar . Let 𝑎 ∈𝑚𝜏(𝑥)
and 𝑇 = Γ(𝑥). We need to show that reachO𝑡,𝑎(𝜏) ⊆ Loc(𝑇) and isValid(𝑇) ⟹ 𝑥 ∈ valid𝜏 . Both

properties follow by Theorem B.83. �

Proof C.78 (Theorem 8.15). Set CVar = ∅ so that O⟦P⟧AdrAdr satises Assumption A.9. Theo-

rem B.85 yields O⟦P⟧∅Adr is MPRF. By CVar = ∅, this means O⟦P⟧∅Adr SPRF. �

Proof C.79 (Theorem 8.16). Set CVar = ∅ so that O⟦P⟧AdrAdr satises Assumption A.9. Theo-

rem B.86 yields O⟦P⟧∅Adr is DRF. �

Proof C.80 (Theorem 8.21). Follows from Theorems 8.15 and B.87. �

Proof C.81 (Theorem 8.22). Proof given in Section 8.5. �

Proof C.82 (Theorem 8.24). Proof given in Section 8.6. �

Proof C.83 (Theorem 8.26). Proof given in Section 8.6. �

Proof C.84 (Theorem A.11). Follows from Theorems B.85 to B.87 �

Proof C.85 (Proposition A.12). By denition of active(•) and Assumption A.9. �

250 Appendix C Proof of Meta Theory

	Table of Contents
	1 Introduction
	Contribution 1: SMR Specifications and Compositional Verification
	Contribution 2: Ownership for Manual Memory Reclamation
	Contribution 3: Avoiding Reallocations
	Contribution 4: Verification under Garbage Collection
	Outlook

	I Preliminaries
	2 Non-blocking Data Structures
	2.1 Linearizability
	2.2 Fine-grained Synchronization
	2.3 Manual Memory Reclamation
	2.3.1 Free Lists
	2.3.2 Epoch-Based Reclamation
	2.3.3 Hazard Pointers

	2.4 Data Structure Implementations
	2.4.1 Stacks
	2.4.2 Queues
	2.4.3 Sets

	3 Model of Computation
	3.1 Memory, or Heaps and Stacks
	3.2 Syntax of Programs
	3.3 Semantics of Commands
	3.4 Semantics of Programs

	4 Thread-Modular Analysis

	II Contributions
	5 Compositional Verification
	5.1 SMR Automata
	5.2 SMR Specifications
	5.3 Verification Relative to SMR Automata

	6 Ownership and Reclamation
	6.1 Reclamation breaks Ownership
	6.2 Regaining Ownership
	6.3 Evaluation
	6.3.1 Integrating Safe Memory Reclamation
	6.3.2 Linearizability Experiments

	7 Pointer Races
	7.1 Similarity of Computations
	7.2 Preserving Similarity
	7.3 Detecting ABAs
	7.4 Reduction Result
	7.5 Evaluation
	7.5.1 Soundness checks
	7.5.2 Linearizability Experiments
	7.5.3 Verifying SMR Implementations

	8 Strong Pointer Races
	8.1 Annotations
	8.2 Avoiding All Reallocations
	8.3 A Type System to Prove Strong Pointer Race Freedom
	8.3.1 Guarantees
	8.3.2 Types
	8.3.3 Type Rules
	8.3.4 Soundness

	8.4 Example
	8.4.1 Type Transformer Relation
	8.4.2 Angels
	8.4.3 Typing
	8.4.4 Annotations
	8.4.5 Hazard Pointers

	8.5 Invariant Checking
	8.6 Type Inference
	8.7 Avoiding Strong Pointer Races
	8.8 Evaluation

	III Discussion
	9 Related Work
	9.1 Data Structures
	9.2 Memory Reclamation
	9.3 Reasoning and Verification
	9.3.1 Memory Safety
	9.3.2 Typestate
	9.3.3 Program Logics
	9.3.4 Linearizability
	9.3.5 Moverness

	10 Future Work
	11 Conclusion
	Bibliography

	Appendices
	A Additional Material
	A.1 Compositionality
	A.2 Hazard Pointer Specification
	A.3 Relaxation of Strong Pointer Races

	B Meta Theory
	B.1 Formal Definitions
	B.2 Compositionality
	B.3 Ownership
	B.4 Reductions
	B.5 Type System

	C Proof of Meta Theory
	C.1 Compositionality
	C.2 Ownership
	C.3 Reductions
	C.4 Type System

